
Proceedings of the 14th European Workshop on Natural Language Generation, pages 206–207,
Sofia, Bulgaria, August 8-9 2013. c©2013 Association for Computational Linguistics

Team UDEL KBGen 2013 Challenge

Keith Butler, Priscilla Moraes, Ian Tabolt, Kathleen F. McCoy
Computer and Information Science Department

University of Delaware
Newark, DE 19716

keithb@udel.edu, pmoraes@udel.edu, itabolt@udel.edu, mccoy@cis.udel.edu

Abstract

This document describes the University of Dela-
ware’s entry into KBGen 2013 Challenge which
provided teams with input data representation from
the AURA knowledge base (KB), developed in the
context of the HALO Project at SRI International,
along with a lexicon mapping for concepts present
on those input files. Training sentences were also
provided. The task was to accurately generate an
English sentence depicting the information from a
set of triples from the knowledge base.

1 Approach

Our approach to the problem was to develop a
set of rules for translating KB structures into
English structures and to use an existing genera-
tor, such as SimpleNLG (Gatt & Reiter, 2009) or
FUF-SURGE (Elhadad, 1993) to generate the
sentences.

Our analysis of pre-release data provided by
the KBGen organization (triple-files, training
sentences, tree graphs, lexicon) was facilitated by
writing a mashup program (KBGenMashup) that
enabled viewing/searching the data. The program
initially loads all the training sentences into a
clickable list box. When a sentence is clicked,
all data relating to that sentence is displayed: cor-
responding triples, tree-graph, and Stanford parse
of the sentence. The displayed triples are given
“hot spots” so clicking on them will present a list
of other sentences containing (or NOT contain-
ing) that same relation or instance type. Finally,
KBGenMashup enables a search for other sen-
tences that contain a given word or phrase. Us-
ing this tool allowed us to discover common real-
ization patterns for certain KB triples.

2 Major sentence types

Our initial generator implementation utilized
SimpleNLG in a java wrapper. Our tack was to
focus on the realization of major sentence types,
generally identified by the presence of a particu-

lar function in the KB triples, e.g. has-function,
subevent, plays. These functions provided the
main verb and sentence structures, and other KB
relations were fit into this structure (in sub-
ject/object position or as adjuncts) in a rule-
based way.

For instance, Figure 1 shows a triples file from
the testing data that was identified under the
cluster has-function, along with the sentence
generated by our system and the rule used to re-
alize the cluster for this relation type.

Figure 1: A triples file from the testing data.

Sentence generated: The function of the peptide
bond is to hold together hydrogen and nitrogen
using a single bond.

The identified rule for this input is the has-
function rule. The main entity is the entity that is
related to the event of the instance by the has-
function relation type. The rule states that the
subject of the sentence is the “the function of
[main entity]”. For this template the verb to be is
identified as the main verb and the object of the
sentence is a verb phrase (VP) composed of the
events present in the triples file in the infinitive
form, and the existing secondary entities. Each
secondary entity is related to an event by a se-
mantic relation type. The nature of this relation
defines which role the secondary entity plays in
the sentence (e.g. the “object” relation, when
present, usually links the event to the head(s) of
the noun phrase (NP) within the VP). Although
the majority of the input files have secondary

206

entities that are related to the main event by the
object relation, some other cases do not present
them. The head of the noun phrases can be repre-
sented, in those cases, by secondary relations
connected to the main event by one of agent,
base, result, raw-material, relation types. Heuris-
tics are applied in order to define the head of the
noun phrase since the relation that will define
which entity is the head of the NP is based on the
combination of the existing relations. The rela-
tions in the set of triples that are not already real-
ized as one of the previous roles in the sentence
are then realized recursively for each event,
complementing the VP. Those relations are rep-
resented by prepositional phrases (PP) and the
preposition chosen for each PP represents the
semantic role of the relation type (e.g. instrument
relations often use the prepositions with or us-
ing, while donor and origin relations often use
from).

3 No-Events and other sentence types

The simple strategy described above worked well
for some sentence types, but others required
more sophisticated triple traversal. In particular,
realizing triple sets not containing an event was
problematic. With time running short, we im-
plemented a second realizer to handle these
types. It used its own heuristics, plus stored the
sets of triples in a database that allowed for flex-
ible traversing. Consider its heuristics to handle
no-event triple sets (events generally provide the
verb and sentence structure). No-event sentences
would use a form of “be” as the main verb, but
we still needed to identify the sentence’s main
subject. To do this, the software looks for the
Entity that is on the left side of the most triples.
Why? There is more information about this Enti-
ty than about any other. Consider ex29b.4 (Fig-
ure 2). The tree graph shows that “Restriction-
Site” is on the left side of five triples. It should
be the subject of the sentence, which could be
realized as “A restriction site is a short DNA se-
quence which consists of 2 deoxyribose and a
deoxyribonucleoside monophosphate.” Note the
order of the Entities in the sentence. The subject
is mentioned first, then its adjective (“short”),
then class (“DNA sequence”), then remaining
entities. In realizing the remaining Entities, a
common routine is used to check for cardinality
and perform any rewording as appropriate.

Figure 2: ex29b.4

In many cases, there was a tie among the times
Entities were on the left. In one type of “tie”
(ex05a2.265, Figure 3), there is a cycle in the
graph (see “Fibronectin, “Carbohydrate-Side-
Chain”, “Surface”.) In these cases, the heuristic
chooses the “middle” Entity in the cycle (Carbo-
hydrate in this case) as the subject. Then in
choosing mention-order, the software (usually)
starts the sentence by putting the adjective before
the subject (i.e. “branched” & “carbohydrate side
chain”), then visits each Entity around the cycle,
then traverses up to the “Top” Entity. This sen-
tence is realized as “There are branched carbo-
hydrate side chains at the surface of the fibron-
ectin of an animal plasma membrane.”

Figure 3: ex05a2.265

4 Conclusions

We have described a template-based generation
entry based on two different paradigms. In one,
sentences are formed on the basis of a major re-
lation that generally selects the main verb and
fits the realization of the other pieces according
to the structures specific for that sentence type.
The second piece that we needed is based on
flexibly traversing the knowledge base and real-
izing based on patterns found in the triples.

References
Albert Gatt and Ehud Reiter. 2009. SimpleNLG: A

realization engine for practical applications, Pro-
ceedings of the 12th European Workshop on Natu-
ral Language Generation, pages 90–93, Athens,
Greece, 30 – 31 March 2009.

Michael Elhadad. 1993. FUF: the Universal Unifier
User Manual Version 5.2.

207

