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Abstract

We propose a novel approach for the max-
string problem in acyclic nondeterminis-
tic weighted FSA’s, which is based on
a convexity-related notion of domination
among intermediary results, and which
can be seen as a generalization of the usual
dynamic programming technique for find-
ing the max-path (a.k.a. Viterbi approxi-
mation) in such automata.

1 Introduction

Let A be an acyclic weighted finite-state automa-
ton (WFSA) on a vocabulary V with weights in the
(extended) set of non-negative reals R∞+ = [0,∞],
which we assume to be combined multiplicatively.

We can consider two problems. The first one,
max-path, is to find the path π of maximum weight
in the automaton, that is, the path that maximizes
the product of the weights associated with its tran-
sitions; the second one, max-string, is to find the
string x in V ∗ that maximizes the sum of the
weights of all the paths that yield x. While the
max-string problem is often the most important in
principle, it is much more difficult to solve than
the max-path problem; in fact (Casacuberta and
de la Higuera, 2000) show that the problem is NP-
hard: they describe a class of acyclic weighted
automata that encode the Satisfiability problem
(SAT) in such a way that identifying the max-
string in such automata in polynomial time would
imply a polynomial solution to SAT. In practice,
one tends to use the max-path solution as a proxy
to the max-string solution; this approximation em-
ploys the Viterbi algorithm (Viterbi, 1967), and is
widely used in speech recognition, machine trans-
lation and other NLP tasks. The contribution of

this paper is to propose a novel approach for the
max-string problem over the “sum-times” semir-
ing Ks ≡ (R∞+ ,+, ·, 0, 1), involving a generaliza-
tion of the Viterbi procedure.

A naive approach to the max-string problem
would consist in enumerating all the paths, sum-
ming the weights of paths corresponding to the
same string, and outputting the maximum string.

Another, more appealing, approach consists
in noting that in the case of a deterministic
weighted automaton A′, the max-string and max-
path problems coincide, and therefore in trying
to determinize A, and then apply the standard
Viterbi algorithm. However, while existing tech-
niques for determinizing a weighted automaton
(Mohri, 1997; Mohri, 2009) work reasonably
well in some practical cases over the “max-times”
semiring (R∞+ ,max, ·, 0, 1),1 they often — rather
counter-intuitively — lead to combinatorial ex-
plosion when working in the sum-times semir-
ing, even in cases where the automaton is acyclic
and where the classical (unweighted) determiniza-
tion of A does not explode (Buchsbaum et al.,
1998).2 While the applications of determinization
cited in (Mohri, 2009) to such domains as speech
recognition tend to focus on the max-times semir-
ing, we are aware of one application where de-
terminization is based on the sum-times semiring,
but in a slightly different formal situation (May
and Knight, 2006). In this paper, the authors gen-
eralize the determinization technique of (Mohri,
1997) from string to tree automata, and then ad-
dress the question of determinizing a weighted tree

1This semiring is isomorphic to the more common “trop-
ical” semiring, through a logarithmic mapping.

2A simple example of a cyclic automaton over the sum-
times semiring which is not determinizable at all is given in
(Aminof et al., 2011).
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automaton generating a set of trees, where each
tree represents a possible translation of a fixed
source sentence, in the context of a syntax-based
SMT system (they also present an application to
data-oriented parsing). In this way they are of-
ten able, at least for short sentences, to find the
translation tree of maximum total weight in rea-
sonable time. A similar technique, directly based
on (Mohri, 1997), but using the sum-times semir-
ing over a string automaton, could presumably
be tempted for the weighted lattices produced by
a phrase-based translation system such as Moses
(Koehn et al., 2007), but we are not aware of any
such attempt.

The novelty of our approach to the max-string
problem is that it bypasses the need for a prelim-
inary determinization of the automaton before ap-
plying Viterbi, but instead proposes to apply a gen-
eralization of Viterbi directly to the original non-
deterministic automaton. Let us now describe this
approach.

Elements of V are called symbols, elements of
V ∗ strings. It will be convenient to assume that
the automaton A has a special form: (i) it has ex-
actly one initial state q0 and one final state qf , (ii)
there is a special “end-of-string” symbol $ in V ,
(iii) $ only appears on transitions to qf , and no
other symbol can appear on such a transition, (iv)
transitions labeled with $ have weight 1 or 0.3

In a nutshell and informally, the main idea
is then the following. Consider a string x =
a1a2 . . . ak. If A were deterministic, then, start-
ing from q0, this string would end in a single state
q and would assign to this state a certain weight
w equal to the product of the weights associated
with the transitions of x; then, if some other string
x′ also ended in q, but with a higher weight w′,
then we would know that x could not be a prefix of
the max-string for A; this observation contains the
essence of the Viterbi procedure: for each state q,
it is sufficient to only “remember” the prefix string
producing the highest weight at q. Now, when A
is non-deterministic, the string x can end in sev-
eral states q1, ..., qm simultaneously, with weights
w1, ..., wm; in this case, if it happens that some

3These conditions are not restrictive, as it is easy to trans-
form any A into this form, by adding to each final state of the
original automaton an outgoing edge of weight 1 with label
$ and target qf . It can be verified that the weight of a string
of symbols a1a2 . . . ak relative to the original automaton is
equal to that of the string a1a2 . . . ak$ relative to the trans-
formed automaton.

other string x′ ends in the same states, but with
weights w′1, ..., w

′
m s.t. w′1 > w1, ..., w

′
m > wm,

then it can be shown that x cannot be a prefix of
the max-string for A, and we can then discard x;
as we will see, we can also discard x under weaker
“domination” conditions, namely when the weight
vector w = (w1, ..., wm) associated with x be-
longs to a certain kind of convex hull of “dom-
inating” vectors associated with a set S of pre-
fix strings. Using this observation, we only need
to explicitely store the set S of dominating prefix
strings; whatever the suffix used to go to the final
state, at least one of these dominating prefixes will
lead to a better result with this suffix than using a
dominated prefix x with the same suffix.

2 Preliminaries

Automata and transition matrices Let us de-
fine U = V \ {$}. The weighted automaton A
can be viewed as associating, with each symbol
a ∈ U a transition matrix, that we will also call a,
of dimension D × D over the non-negative reals
R∞+ , where D is the number of non-final states in
A; the coordinate aij of that matrix is equal to the
weight of the transition of label a between qi and
qj , this weight being null if there is no such tran-
sition. The initial state q0 of the automaton can
be identified with the D-dimensional line vector
(1, 0, ..., 0), and the distribution of weights over
the (non-final) states of A after having consumed
the string a1a2 . . . ak is then given by the D-
dimensional line vector (1, 0, ..., 0) ·a1 ·a2 . . . ·ak,
where the a1, . . . , ak’s are identified with their
matrices.

Due to our assumptions on the symbol $, we can
identify $ with a D-dimensional column vector
(w0, w1, ..., wD−1)>, where wi is equal to 1 or to
0. The weight relative to the automaton of a string
of the form a1a2 . . . ap$ is then obtained by com-
puting the scalar value (1, 0, ..., 0)·a1 ·a2 · · ··ap ·$,
which can also be viewed as a scalar product of a
line vector with the column vector $.

Convex, ortho and ortho-convex hulls We now
need to introduce the notions of convex, ortho, and
ortho-convex hulls. Let d be a positive integer, and
let S be a set (finite or not) of d-dimensional vec-
tors over the non-negative reals. We say that:

• The vector u is in the convex-hull (or c-hull)
of S iff we can write u as a finite sum u =∑

j αjsj , with sj ∈ S, j ∈ [1,m],
∑

j αj =
26
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Figure 1: The sets {1, 2, 3, 6, 7} [left pane], {1, 2, 3, 4} [middle pane], and {1, 2, 3} [right pane] are
subsets of dominators of the set W = {1, 2, 3, 4, 5, 6, 7}, respectively relative to the notions of convex-
hull, ortho-hull, and ortho-convex hull.

1, αj ≥ 0. This is the standard notion.
• The vector u is in the ortho-hull (or o-hull) of
S iff there exists a v ∈ S s.t. u ≤ v, where
the inequality is interpreted to hold for each
coordinate. The ortho-hull is in general not
convex.
• The vector u is in the ortho-convex-hull (or

oc-hull) of S iff u is in the ortho-hull of the
convex-hull of S. It is easy to check that the
ortho-convex-hull is convex.4

When a set W of d-vectors is contained in the hull
of some subset S ⊂ W , then we will say that S
is a set of “dominators” of W , relative to the spe-
cific notion of hull used. Figure 1 illustrates these
notions for dimension d = 2.

Lemma If x is in the convex-hull (resp. ortho-
hull, ortho-convex-hull) of S, and if z is a non-
negative d-vector, then there exists s ∈ S such that
x.z ≤ s.z, where . denotes scalar product.5

3 Algorithm

Algorithm 1 is our main algorithm. The integer k
corresponds to a stage of the algorithm. W is a set
of pairs of the form (prefix, vector), where prefix
is a string not ending in $, and vector is the D-
dimensional vector associated with this prefix; for

4Our notion of oc-hull is related to that of anti-blocking
polyhedra in the LP literature (Schrijver, 1998).

5Proof sketch. Suppose by contradiction that for all s ∈
S, we have s.z < x.z. But now (i) if x is in the convex-
hull of S, then x can be written as the convex combina-
tion x =

∑
i αisi of elements si in S; therefore x.z =∑

i αisi.z < x.z, a contradiction; (ii) if x is in the ortho-
hull of S, then there exists s ∈ S s.t. x ≤ s coordinate-wise,
hence x.z ≤ s.z by the non-negativity of z, again a contra-
diction; (iii) if x is in the ortho-convex-hull of S, then there
exists x′ s.t. x ≤ x′ and x′ can be written as x′ =

∑
i αisi,

and we can combine the two previous arguments to again
reach a contradiction.

each stage k of the algorithm, W = Wk contains
only prefixes of length k, and S = Sk is a subset of
dominators of Wk; F = Fk is either the empty set
or is a singleton set containing a pair of the form
(string, number), where string is a string ending in
$ and number is a scalar.

Algorithm 1 MAIN

1: k ← 0, F ← ∅,W ← {(ε, (1, 0, . . . , 0)}
2: while W 6= ∅ do
3: S ← DOMINATORS(W )
4: k ← k + 1
5: (W,F )← FORWARD(S, F )
6: return F

On line 1, we initialize F to the empty set, and
W to the empty string prefix ε together with a vec-
tor carrying weight 1 on q0 and weight 0 on the
other states. On line 2, we loop until W is empty.
On line 3, we extract a subset S of dominators
from W , according to one of the three hull vari-
ants we have described. We then increment k, and
on line 5, we compute through the FORWARD pro-
cedure the next version ofW and F corresponding
to strings of length k + 1. Lastly, on line 6, we re-
turn the final result F , which is either empty (when
A does not recognize any string), or contains a pair
(string, number) where string is a6 max-string for
A and number its total weight. The loop in line
2 terminates because the automaton is acyclic: all
prefixes above a certain length will eventually be
mapped to the null D-vector which will result in
producing at a certain point an empty Wk.

6The max-string is not always unique: several strings may
reach the same maximum.
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Algorithm 2 FORWARD(S, F )

1: W ← ∅
2: for (prefix, vector) ∈S do
3: F ← MAX(F, (prefix.$, vector.$))
4: for a ∈ U and vector.a 6= 0 do
5: W ←W ∪ {(prefix.a, vector.a)}
6: return (W,F )

Algorithm 2 defines the FORWARD procedure.
We start by initializing W to the empty set, then
for each pair (prefix, vector) in S we do the fol-
lowing. On line 3, we compute the concatenated
string prefix.$ along with its weight, given by the
scalar product vector.$; If vector.$ is equal to
0, then MAX does not modify F , if F is empty
MAX returns the singleton set (prefix.$, vector.$),
and finally if F = {(string, number)} it returns
either {(string, number)} or {(prefix.$, vector.$)}
according to which of number or vector.$ is the
largest. On line 4, for each symbol a inU such that
vector.a is not null, we add to W the pair consist-
ing of the prefix string prefix.a and of the vector
vector.a. Finally we return the pair (W,F ).

Theorem Whatever the notion of hull used for
defining DOMINATORS in Algorithm 1, if the re-
sult F is empty, then the language of the automa-
ton is empty; otherwise F = {(string, number)},
where ‘number’ is the maximum weight of a string
relative to the automaton A, and where ‘string’
ends in $ and is of weight ‘number’.7

We still need to explain how we define the
DOMINATORS procedure in Algorithm 1, depend-
ing on which notion of hull is chosen. Line 3 of the
algorithm consists in pruning the set of prefixesW
to get the subset S, and the efficiency of the algo-
rithm as a whole depends on pruning as much as
possible at each level k, thus it is in our interest
to extract a small set of dominators from W . To
simplify the description here, we will pretend that
an element (prefix, vector) of W is identified with
its second component vector, and will identify W

7Proof sketch. Let T be the set of strings (often, this set
is actually a singleton) ending in $ which do reach the actual
max-string weight relative to the automaton. Call “rank” of
a string t ∈ T the largest number k such that a prefix of t
appears in Sk, and let us focus on a t which has maximal
rank k relative to the other elements of T , and on its prefix x
of length k. In case t = x.$, then t “makes it” to F in line 5
of Algorithm 1, and we are done. Otherwise t can be written
as t = x.a.z, with a ∈ U , and with x.a 6∈ Sk+1. But then,
by the Lemma, there exists s ∈ Sk+1 s.t., in vectorial terms,
x.a.z ≤ s.z, and therefore, because of the definition of T ,
the string s.z also belongs to T ; but s.z has rank k + 1, a
contradiction.

to a set of vectors; we can easily recover the pre-
fix associated with each vector at the end of the
process. Let us start with the simplest case, that
of the ortho-hull. In that case, the minimal set of
dominators forW is easily shown to be simply the
set of all vectors that survive after eliminating any
w ∈ W s.t. there exists another w′ ∈ W with
w ≤ w′; a straightforward quadratic algorithm in
the size of W can be designed for that purpose.
If the hull is the convex-hull, the minimal set of
dominators is the set of so-called extreme points
from W , for which there exist several algorithms
(Helbling, 2010). Overall, the ortho-convex hull
is more effective at pruning than both the ortho-
and the convex-hull. Let us therefore give some
indications on how to compute a minimal set of
dominators relative to the oc-hull.

Similar to the o-hull case, we want to elimi-
nate any w from W which is in the oc-hull of
the remaining vectors w1, ..., wn of W . Such a
vector is determined by the condition that one
can find a convex combination

∑
i αiwi such that

w ≤ ∑
i αiwi. We can directly map this prob-

lem into a Linear Programming format, for which
a large number of solvers are available: the solver
is asked to decide whether the following LP, in the
variables α1, ..., αn, is feasible:8

∑

i

αi = 1,
∑

i

αiwi − w ≥ 0,

αi ≥ 0,∀i.

The complexity of this oc-hull algorithm is on the
order of n+1 times the complexity for solving one
instance of the LP above, which cannot be charac-
terized simply and depends on the type of solver
used (simplex vs. interior-point based). However,
the preliminary experiments we have conducted
indicate that it is more efficient to first prune W
relative to the o-hull notion, which already elim-
inates many points and only then prune this in-
termediary result using the LP formulation above
(this can be shown to preserve the notion of oc-
dominators).

8This LP is our adaptation to the ortho-convex-hull case
of a similar program described by (Helbling, 2010) for the
convex-hull case, of which more sophisticated versions are
also proposed.
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4 Conclusion

The procedure that we have described can be seen
as a generalization of the standard Viterbi tech-
nique. Viterbi (even in the case of an original
non-deterministic automaton) can be formulated
in terms of a max-string problem over a certain
deterministic automaton. For such a deterministic
automaton, our procedure only produces vectors
that are each placed on a single axis of RD, corre-
sponding to the single state reached by the corre-
sponding prefix. In this case it can be checked that
o-dominators and oc-dominators lead to the same
result, namely to keeping the maximum point on
each axis separately, which exactly corresponds to
the Viterbi procedure, which keeps the maximum
on each state independently of other states.

It should also be noted that pruning the space of
prefixes using the oc-hull construction appears to
be the best we can hope to achieve if we are not
allowed to use heuristics that look forward in the
automaton: it can be shown that by appropriately
choosing the weights of transitions not yet seen at
level k, the max-string can be made to “select” any
of the oc-dominators from Wk — this is however
not true for the c-dominators or the o-dominators.

We believe the method to have potential appli-
cations to such domains as speech recognition or
phrase-based statistical machine translation; the
latter in particular tends to produce large word lat-
tices where many paths can correspond to the same
string; there the main object of interest is the max-
string, to which the Viterbi best-path is only an
approximation. More generally, the method could
be of interest for doing inference with Hidden
Markov Models, when the objects of real interest
are not the hidden paths in the HMM, but rather
the projections of these paths onto sequences of
directly interpretable labels.
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