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Abstract

We describe a computational framework for
language learning and parsing in which dy-
namical systems navigate on fractal sets. We
explore the predictions of the framework in
an artificial grammar task in which humans
and recurrent neural networks are trained on
a language with recursive structure. The re-
sults provide evidence for the claim of the
dynamical systems models that grammatical
systems continuously metamorphose during
learning. The present perspective permits
structural comparison between the recursive
representations in symbolic and neural net-
work models.

1 Introduction

Some loci in the phrase structure systems of natural
languages appear to employ center embedding re-
cursion (Chomsky, 1957), or at least an approxima-
tion of it (Christiansen and Chater, 1999). For exam-
ple, one can embed a clause within a clause in En-
glish, using the object-extracted relative clause con-
struction (e.g., the dog that the goat chased barked.).
But such recursion does not appear in every phrase
and may not appear in every language (Everett,
2005). Therefore, the system that learns natural lan-
guages must have a way of recognizing recursion
when it occurs. We are interested in the problem,
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How does a language learner, seeing only a finite
amount of data, decide on an unbounded recursive
interpretation?

Here, we use the term “finite state” to refer to a
system that can only be in a finite number of states.
We use the term “recursion” to refer to situations in
which multiple embeddings require the use of an un-
bounded symbol memory to keep track of unfinished
dependencies.1 We focus here on the case of center-
embedding recursion, which can be generated by a
context free grammar (one symbol on the left of each
rule, finitely many symbols on the right) or a push-
down automaton (stack memory + finite state con-
troller) but not by a finite state device (Hopcroft and
Ullman, 1979).

One natural approach to the recursion recognition
problem, recently explored by Perfors et al. (2011),
involves Bayesian grammar selection. Perfors et
al.’s model considered a range of grammars, in-
cluding both finite state and context free grammars.
Their system, parameterized by data from English-
speaking children in the Childes Database selected
a context free grammar. Several features of this ap-
proach are notable: (i) There is a rich set of struc-
tural assumptions (the grammars in the pool of can-
didates). (ii) Because many plausible grammars
generate overlapping data sets, a complexity ranking
is also assumed and the system operates under Oc-
cam’s Razor: prefer simpler grammars. (iii) Gram-
mar selection and on-line parsing are treated as sep-

1This is a narrow construal of the term “recursion”. Some-
times the term is used for any situation in which a rule can be
applied arbitrarily many times in the generation of a single sen-
tence, including finite-state cases.
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arate problems in that the system is evaluated for
coverage of the observed sentences, but the partic-
ular method of parsing plays no role in the selection
process.

Here, we focus on a contrasting approach: recur-
rent neural network models discover the structure of
grammatical systems by sequentially processing the
corpus data, attempting to predict after each word,
what word will come next (Elman, 1990; Elman,
1991). With respect to the properties mentioned
above, the neural network approach has some ad-
vantages: (i) Formal analyses of some of the net-
works and related systems (Moore, 1998; Siegel-
mann, 1999; Tabor, 2009b) indicate that these mod-
els make even richer structural assumptions than the
Bayesian approach: if the networks have infinite
precision, then some of them recognize all string
languages, including non-computable ones. For a
long while, theorists of cognition have adopted the
view that positing a restrictive hypothesis space is
desirable—otherwise a theory of structure would
seem to have little substance. However, if one offers
a hypothesis about the organization of the hypoth-
esis space, and a principle that specifies the way a
learning organism navigates in the space, then the
theory can still make strong, testable predictions.
We suggest that assuming a very general function
class is preferable to presupposing arbitrary gram-
mar or class restrictions. (ii) The recurrent networks
do not employ an independently defined complexity
metric. Instead, the learning process successively
breaks symmetries in the initially unbiased weight
set, driven by asymmetries in the data. The result is
a bias toward simplicity. We see this as an advantage
in that the simplicity preference stems from the form
of the architecture and learning mechanism. (iii)
Word-by-word parsing and grammar selection occur
as part of a single process—the network updates its
weights every time it processes a word and this re-
sults in the formation of a parsing system. We see
this as an advantage in that the moment-to-moment
interaction of the system with data resembles the cir-
cumstances of a learning child.

On the other hand, there has long been a seri-
ous difficulty with the network approach: the net-
work dynamics and solutions have been very opaque
to analysis. Although the systems sometimes learn
well and capture data effectively, they are not sci-

entifically very revealing unless we can interpret
them. The Bayesian grammar-selection approach is
much stronger in this regard: the formal properties
of the grammars employed are well understood and
the selection process is well-grounded in statistical
theory—e.g., Griffiths et al. (2010).

Here, we take advantage of recent formal results
indicating how recurrent neural networks can en-
code abstract recursive structure (Moore, 1998; Pol-
lack, 1987; Siegelmann, 1999; Tabor, 2000) An es-
sential insight is that the network can use a spatial
recursive structure, a fractal, to encode the tempo-
ral recursive structure of a symbol sequence. When
the network is trained on short sentences exhibit-
ing a few levels of embedding, it tends to general-
ize to higher levels of embedding, suggesting that
it is not merely shaping itself to the training data,
but discovers an abstract principle (Rodriguez et al.,
1999; Rodriguez, 2001; Tabor, 2003; Wiles and El-
man, 1995). During the course of learning, the frac-
tal comes into being gradually in such a way that
lower-order finite-state approximations to the recur-
sion develop before higher-order structure does—a
complexity cline phenomenon (Tabor, 2003).

We examined human and neural network learning
of a recursive language with an artificial grammar
paradigm, the Box Prediction paradigm. Whereas
our previous investigations of this task (Cho et
al., 2011) focused on counting recursion languages
(only a single stack symbol is required to track the
recursive dependencies), we provide evidence here
for mirror recursion learning by a few participants
(multiple stack symbols required). We show how
the theory of fractal grammars can be used to hand
wire a network that processes the recursive language
of our task. We then provide evidence that a Sim-
ple Recurrent Network (Elman, 1990; Elman, 1991),
trained on the same task, also develops a fractal en-
coding. Moreover, the network shows evidence of a
embodying a complexity-cline—similarly complex
grammars are adjacent in the parameter space. An
individual differences analysis indicates that a simi-
lar pattern arises in the humans. We conclude that
the network encodings can be formally related to
symbolic recursive models, but are different in that
learning occurs by continuous grammar metamor-
phosis.
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2 The Box Prediction paradigm

Human participants sat in front of a computer screen
on which five black outlines of boxes were displayed
(Figure 1). When the participant clicked on the
screen, one of the boxes changed color. The task
was to indicate, by clicking on it, which box would
change color next on each trial. The sequence of
color changes corresponded to the structure of sen-
tences generated by the center-embedding grammar
in Table 1a. The sentences can be divided into em-
bedding level classes. Level n sentences have (n-
1) center-embedded clauses (Table 1b). There were
three, distinct phases of the color-change sequence:
during the first 60 trials, participants saw only Level
1 sentences. From trials 61 to 410, Level 2 sentences
were introduced with increasing frequency. We re-
fer to these two phases of presentation together as
the “Training Phase”. Starting at Trial 411, Level
3 sentences were included, along with more Level
1 and Level 2 sentences. We refer to the trials
from 411 to 553, the end of the experiment, as the
“Test Phase”. Other than by their structural differ-
ences, these phases were not distinguished for the
participants: the participants experienced them as
one, long sequence of 553 trials. We introduced
the deeper levels of embedding gradually because
of evidence from the language acquisition litera-
ture (Newport, 1990), from the connectionist liter-
ature (Elman, 1993), and from the artificial gram-
mar learning literature (Cho et al., 2011; Lai and
Poletiek, 2011) that “starting small” facilitates learn-
ing of complex syntactic structures. Following stan-
dard terminology, we call the trials in which boxes
1 and 4 change colors “push” trials (because in a
natural implementation of the grammar with a push-
down automaton, the automaton pushes a symbol
onto the stack at these trials). We call the trials in
which boxes 2, 3, and 5 change color “pop” trials.
The push trials were fairly unpredictable: the choice
of whether to push 1 or 4 was approximately uni-
formly distributed throughout the experiment, and
the choice about whether to embed was fairly ran-
dom within the constraints of the “starting small”
scheme described above. Because we did not want
participants to have to guess at these nondeterminis-
tic events, we made the 1 and 4 boxes turn blue or
green whenever they occurred and told the partici-

Figure 1: Structure of the display for the Box Prediction
Task. The numerals were not present in the screen display
shown to the participants.

pants that they did not need to predict blue or green
boxes. On the other hand, we wanted them to predict
the pop trials whenever they occurred. Therefore,
we colored boxes 2, 3, and 5 a shade of red when-
ever they occurred and told the participants that they
should try to predict all boxes that turned a shade of
red. When two of the same symbol occurred in a row
(e.g., 1 1 2 2 5), we shifted the shade of the color of
the repeated element so that participants would no-
tice the change. To reinforce this visual feedback,
a beep sounded on any trial in which a participant
failed to predict a box that changed to a shade of red.
Box 5 has a different structural status than the other
boxes: it marks the ends of sentences. We included
box 5, placing it in the center of the visual array, and
making it smaller than the other boxes, to make the
task easier relative to a pilot version in which Box 5
was absent.

2.1 Simulation Experiment

We employed Michal Cernansky’s implementa-
tion of Elman (1990)’s Simple Recurrent Network
(http://www2.fiit.stuba.sk/c̃ernans/main/download.html).
The network had five input units, five output units
and ten hidden units. Activations changed as
specified in (1) and weights changed according to
(2).
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a. Root → S 5
S → 1 S 2
S → 1 2
S → 4 S 3
S → 4 3

b. Level 1 Level 2 Level 3
1 2 5 1 1 2 2 5 1 1 1 2 2 2 5
4 3 5 1 4 3 2 5 1 1 4 3 2 2 5

4 1 2 3 5 1 4 1 2 3 2 5
4 4 3 3 5 2 4 4 3 3 2 5

. . .

Table 1: a. Grammar 1: a recursive grammar for gen-
erating the color change sequence employed in the ex-
periment. “Root” is the initial node of every sentence
generation process. Null stands for the empty string. b.
Examples of Level 1, 2, and 3 sentences generated by
Grammar 1.

~h(t) = f(Whh · ~h(t− 1) + Whi · ~s(t) +~bh)

~o(t) = f(Woh · ~h(t) +~bo)
f(x) = 1

1+e−x

(1)

∆wij ∝ −
∂E

∂wij
(2)

Here, ~s(t) is the vector of input unit activations at
time step t, Whi are the weights from input to hid-
den units, Whh are the recurrent hidden connec-
tions, and Woh connect hidden to output.

On each trial, the input to the network was an in-
dexical bit vector corresponding to one of the five
sentence symbols. The task of the network was to
predict, on its output layer, what symbol would oc-
cur next at each point. The sequence of symbols was
modeled on the sequence presented to the human
participants as follows: the human sequence was
divided into 14 nearly equal-length segments, each
with a whole number of sentences (the first 11 seg-
ments corresponded to the Training Phase and the
last 3 to the Test Phase). Each segment contained
approximately ten sentences. For each segment, 400
sentences were sampled randomly according to the
distribution of types found in the segment. These
groups of 400 were concatenated end to end to form
the training sequence for the network (a total of
22398 trials).

The error gradient of equation (2) was ap-
proximated using Backpropagation Through
Time (Rumelhart et al., 1986) with eight time steps
unfolded. To simulate the absence of negative
feedback on push trials in the human experiment,
the network error signal on push trials was set to
zero. The constant of proportionality in equation 2
(the “learning rate”) was set to 0.4.

3 Fractal Encoding of Recursive Structure
in Neural Ensembles

In the past several decades, a number of re-
searchers (Moore, 1998; Pollack, 1987; Siegel-
mann, 1996; Siegelmann and Sontag, 1994; Ta-
bor, 2000) have developed devices for symbol pro-
cessing which compute on finite-dimensional com-
plete metric spaces (distance is defined, no points
are “missing”— (Bryant, 1985)), like the neural net-
works considered here. A common strategy in all
of these proposals is the use of spatially recursive
sets—i.e., fractals—to encode the temporal recur-
sive structure in symbol sequences. For example,
Tabor (2000) defines a Dynamical Automaton (or
DA), M , as in (3).

M = (H,F, P,Σ, IM, x0, FR) (3)

Here, H is a complete metric space (Bryant, 1985;
Barnsley, 1993). F is a finite list of functions fi :
H → H , P is a partition of the metric space, Σ is
a finite symbol alphabet, IM is an Input Map—that
is, a function from symbols in Σ and compartments
in P to functions in F . The input to the machine is
a finite string of symbols. The machine starts at x0

and invokes functions corresponding the symbols in
the input in the order in which they occur. If, when
the last symbol has been presented, the system is in
the region FR ⊆ H , then the DA accepts the string.

Table 3 specifies DA 1, a dynamical automa-
ton that recognizes (and generates) the language of
Grammar 1. A good way of understanding the prin-
ciple underlying this mechanism is to note that a
pushdown automaton (PDA) (Hopcroft and Ullman,
1979) for processing this language must employ a
stack alphabet with one symbol for tracking“1” and
another for tracking “4”. (See Table 3). If DA 1 is to
successfully process the same language, it must dis-
tinguish at least the states that PDA 1 distinguishes
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(PDA 1 is minimal in this sense). DA 1 does this by
executing state transitions analogous to the push and
pop operations of the PDA, arriving in its final re-
gion when the PDA is in an accepting state. Figure 3
shows the correspondence between machine states
of PDA 1 and points in the metric space H that un-
derlies DA 1’s language recognition capability. This
figure makes it clear that DA 1 is structurally equiv-
alent to PDA 1.

The computing framework discussed here is very
general. One can construct a fractal grammar that
generates any context free language (Tabor, 2000).
In fact, similar mechanisms recognize and generate
not only all computable languages but all languages
of strings drawn from a finite alphabet (Moore,
1998; Siegelmann, 1999; Siegelmann and Sontag,
1994). Wiles & Elman (1995) and Rodriguez (2001)
showed that an SRN trained on a counting recur-
sion language (anbn) uses a fractal principle to keep
track of the embeddings and generalizes to deeper
levels of embedding than those found in its training
set. (Tabor et al., 2003) showed that a gradient de-
scent mechanism operating in the parameter space
of a fractal grammar model discovered close ap-
proximations of several mirror recursion languages.
These findings suggest that the fractal solutions are
stable equilibria (“attractors”) of recurrent network
gradient descent learning processes (Tabor, 2011).
This observation argues against a widespread belief
about neural networks that they are blank slate ar-
chitectures, only performing “associative process-
ing” without structural generalization (Fodor and
Pylyshyn, 1988). It suggests a close relationship be-
tween the classical theory of computation and neural
network models even though the two frameworks are
not equivalent (Siegelmann, 1999; Tabor, 2009a) .

The results of Tabor (2003) indicate that network
learning proceeds along a complexity cline: sen-
tences with lower levels of embedding are correctly
processed before sentences with higher levels of em-
bedding. This indicates that there are proximity
relationships in the network parameter space: pa-
rameterizations that parse successively deeper lev-
els of embedding are adjacent to each other. In the
next section, we investigate the outcome of the SRN
learning experiment with the Box Prediction train-
ing data, first testing for evidence that the network
forms a fractal code, then testing for a proximity ef-

M = (Q,Σ,Γ, δ, q0, Z0, F )
Q = {q1, q2, q3}
Σ = {1, 2, 3, 4, 5}, Γ = {B,O, F}
q0 = q3, Z0 = B, F = B

δ(q3, 1, B) = (q1, OB), δ(q3, 4, B) = (q1, FB)
δ(q1, 1, O) = (q1, OO), δ(q1, 4, O) = (q1, FO)
δ(q1, 1, F ) = (q1, OF ), δ(q1, 4, F ) = (q1, FF )
δ(q1, 2, O) = (q2, ε), δ(q2, 2, O) = (q2, ε)
δ(q1, 3, F ) = (q2, ε), δ(q2, 3, F ) = (q2, ε)
δ(q2, 5, B) = (q3, B)

Table 3: PDA 1. A Pushdown Automaton for processing
the language of Grammar 1. ”O” is pushed on ”1”. ”F”
is pushed on ”4”.

fect consistent with the complexity cline prediction.

4 Results: Simple Recurrent Network Box
Prediction

We trained 71 networks, corresponding to the 71 hu-
man participants on the sequence described above in
Section 2. The networks all used the same archi-
tecture, but differed in the values of their random
initial weights and the precise ordering of the train-
ing sentences (although all used the same progres-
sive scheme described above). To approximate the
observed variation in human performance, each net-
work also had gaussian noise with constant variance
added to the weights with each new word input. The
variance values were sampled from the uniform dis-
tribution on [0,4]. This range was chosen to pro-
duce a mean (57%) and standard deviation (20%)
similar to that of the humans at the end of training
(M = 51%, SD = 21%).

Unlike some of the humans, none of the networks
generalized immediately to Level 3 sentences on the
first try. Nevertheless, several of them learned to
parse the Level 3 sentences with very few errors by
the end of the “Test Phase”. To determine accuracy
of a deterministic transition, we normalized the net-
work output vector by dividing all the outputs by the
sum of the outputs. If the highest normalized acti-
vation was on the correct transition, we counted the
transition as accurate. When tested on all eight types
of Level 3 sentences, the top 4 networks made 1, 3,
3, and 3 errors among the 56 transitions in this sen-
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Compartment Symbol Function

h1 > 0 & h2 > 0 1 ~h←
[

1
2 0
0 1

2

]
~h+

(
1
0

)

h1 > 0 & h2 > 0 4 ~h←
[

1
2 0
0 1

2

]
~h+

(
0
0

)

h1 > 1 2 ~h←
[
−2 0
0 −2

]
~h+

(
2
0

)

0 < h1 < 1 3 ~h←
[
−2 0
0 −2

]
~h+

(
0
0

)

h1 < −1 2 ~h←
[

2 0
0 2

]
~h+

(
2
0

)

−1 < h1 & h1 < 1 3 ~h←
[

2 0
0 2

]
~h+

(
0
0

)

h1 = −1 & h2 = −1 5 ~h←
[
−1 0
0 −1

]
~h+

(
0
0

)

Table 2: Input Map for DA 1. The automaton starts at the point, (1, 1). It’s Final Region is also (1, 1).
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Figure 2: Correspondence between states of DA 1 and
PDA stack states.

tence set.
We hypothesized that the networks were approx-

imating a fractal grammar with the same qualita-
tive structure as that of DA 1, possibly in more than
two dimensions. We sought two kinds of evidence:
“linear separability” and “branching structure”. For
“linear separability”, we asked if the SRN states cor-
responding to a particular point in DA 1 (state of

PDA 1) were clustered so as to be linearly sepa-
rable from SRN states corresponding to a different
point. Two sets A and B of points in a vector space
of dimension n are linearly separable if there is an
n − 1 dimensional hyperplane in the space with all
the points of A on one side of it and all the points
of B on the other. In fractal grammar parsing, pair-
wise linear separability suffices to distinguish the
machine states (Tabor, 2000). Among the cases
where more than one sample point corresponded to
the same PDA state, an average of 17.6/22 were pair-
wise linearly separable from the other groups. In six
of the networks, all the multi-element clusters were
pairwise linearly separable. This finding lends sup-
port to the claim that the networks approximate frac-
tal grammars.

For “branching structure”, we asked if the deploy-
ment of these (largely) linearly separable clusters
corresponded to the branching structure of the frac-
tal of DA 1. In particular, for each cluster corre-
sponding to a DA 1/PDA 1 state with more than one
symbol on the stack in PDA 1, we considered all the
clusters with one-fewer symbols on the stack. We
asked if the nearest cluster with one fewer symbols
on the stack corresponded to the nearest one-fewer
stack symbol point in DA 1. In Level 1 to and 3 sen-
tences, there are 20 such states to consider. Across
networks, the average rate of unexpected proxim-
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ity relationships was 3.5/20 (SD = 1.7). The best
networks we observed under this training method
(noise reduced to 0) generated only 1 unexpected
proximity relationship. These results also indicate
a close correspondence between the organization of
the network and fractal grammars.

Up to this point, the evidence we have been pre-
senting has supported a formal correspondence be-
tween SRNs and fractal grammars. In the final
part of this section, we consider one prediction of
the network approach that is not obviously pre-
dicted by symbolic grammar mixture accounts like
the Bayesian model discussed in the introduction.

Tabor (2003) shows how a fractal for process-
ing another recursive language (similar to the lan-
guage of Grammar 1) arises by gradual metamor-
phosis of (Stage I) a single point into (Stage II) a line
of points, then into (Stage III) an infinite lattice, then
into (Stage IV) a fractal with overlapping branches
and finally into (Stage V) the fully-formed fractal
that very closely captures the recursive embedding
structure. During Stage IV, the system correctly pro-
cesses shallow levels of embedding but fails to pro-
cess deeper levels of embedding. As the metamor-
phosis progresses, this Fractal Learning Neural Net-
work (FLNN) becomes able to process deeper and
deeper levels at an accelerating rate such that, after
finite time, it reaches a point where it is effectively
processing all levels, indicating a continuous com-
plexity cline in parameter space. An empirical im-
plication is that a network that has mastered n lev-
els of embedding, for n a natural number, will more
easily (with less weight change) master n+1 levels
of embedding than one that has mastered fewer than
n.

To see if the SRN’s complexity cline predictions
are in line with those of the FLNNs, we correlated
the network’s performance at the end of the Training
Phase with its performance in the Test Phase. For
this purpose, we defined the training performance as
the mean prediction accuracy across all predictable
transitions of Level 1 and 2 sentences in the fourth
quarter of the training phase. The Test Phase per-
formance was defined in two different ways. It was
defined as the mean accuracy across novel but pre-
dictable transitions (a) in all Level 3 sentences in
the test phase or (b) only in the first instances of
four different Level 3 sentences. We used the sec-

ond measure because the networks and humans con-
tinue to learn in the Test Phase: correlation of train-
ing performance with measure (a) might stem from
learning facility alone; correlation with (b) indicates
generalization ability. Both tests showed signifi-
cant correlation (a: r(69) = 0.98, p < .0001; b:
r(69) = 53, p < .0001). These results are consis-
tent with the claim that the SRN induces a complex-
ity cline similar to that induced by the fractal learn-
ing networks..

To consider how well this prediction distin-
guishes the fractal learning framework from other
approaches to grammar learning, we now consider
the Bayesian grammar selection model of (Perfors et
al., 2011). We consider this case, which is naturally
related to our focus, as a first step toward developing
concrete approaches within the Bayesian framework
that could address the issues raised by the Box Pre-
diction findings.

Perfors et al.’s model is also concerned with the
induction of recursive grammatical systems from
language data. They presented samples from the
Childes Database (MacWhinney, 2000) to their
model over 6 stages, where each stage sampled the
corpus more thoroughly than the last. This sampling
method generally caused each stage to have heavier
sampling of deeper recursive structures than the pre-
vious stage because the deeper recursive structures
are less frequent in the master corpus. The Bayesian
model selects finite-state grammars during the ear-
lier stages and then prefers recursive grammars dur-
ing the later stages. This shift occurs because, as the
sampling goes deeper, the finite state systems need
to employ many additional productions to handle the
burgeoning variety of collocations, while the recur-
sive grammars can handle them with few rules, so
the model’s anti-complexity bias causes it to prefer
the recursive grammars (Perfors et al., p. 320). It
seems likely that a version of their model, applied
to the training data in our experiment, would se-
lect finite-state grammars during the Training Phase
and the switch to a recursive grammar in the Test
Phase. Perfors et al. did not consider the question
of individual differences. We can think of one way
that the basic correlational finding reported for the
SRNs would obtain in the Bayesian system (finding
(a) above): if the perception of the stimuli by some
models was noisier than that of others, then one ex-
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pects the general correlation between Training and
Test performance to obtain: the noise interferes sim-
ilarly with both phases so correlated accuracy is ob-
served. It is not as clear to us that the Bayesian sys-
tem will predict finding (b), which shows that first-
try performance on novel structures is better for peo-
ple who show better Training performance.2 There
does not appear to be a proximity relationship be-
tween grammars in Perfors et al.’s model as there is
in the network models. Thus, if it predicts this effect,
then it would have to do so for a different reason, a
point worthy of further research.

5 Results: Human Box Prediction

Seventy-one undergraduate students in the Univer-
sity of Connecticut participated in the experiment
for course credit. The range of human performance
was substantial. The mean correct performance on
37 predictable trials during the last 100 trials of
training was 51% (SD = 21%). Despite this overall
low rate of performance at test, there was a subset
of people who learned the training grammar well by
the end of training.

Twelve of the 71 participants, scored over 80%
correct on the pop trials within the last 100 train-
ing trials. 80% is the level of correct performance
that a particular finite-state device we refer to as the
“Simple Markov Model” would yield during these
100 trials. The Simple Markov Model predicts 2 af-
ter 1, 3 after 2, 4 after 3, and 1 after 4. The two top
scorers among these twelve generalized perfectly to
each first instance of the four Level 3 types in the
test phase. If, contrary to our hypothesis, all 12 were
using finite state mechanisms, and they guessed ran-
domly on novel transitions, the chances of observing
2 or more perfect scorers would be 0.9% (p = .009).
We take this as evidence that the two strongest gen-
eralizers developed a representation closely approx-
imating a recursive system.

Performance at the end of training correlated with
accuracy on 24 novel transitions in Level 3 sentences
at test (r(69) = 0.72, p < .0001). This corresponds
to test (a) of the SRN Results section above, suggest-
ing some kind of grammar proximity model. Re-
garding (b), accuracy on the 8 novel transitions in

2This is not single-trial learning. It is immediate generaliza-
tion to unseen cases.

the 4 first instances of novel Level 3 sentences also
correlated with the performance at the end of train-
ing, r(69) = 0.57, p < .0001. These results lend
some empirical support to the complexity cline pre-
dictions of the fractal model.

6 General Discussion

We studied the learning of recursion by training
Simple Recurrent Networks (SRNs) and humans
in an artificial grammar task. We described met-
ric space computing models that navigate on frac-
tal sets and noted a complexity cline phenomenon
in learning (learning of lower embeddings facilitates
the learning of higher ones). Previous work in this
area has focused on counting recursion languages.
Here, we explored learning of a mirror recursion lan-
guage. We showed that the SRN hidden unit repre-
sentations had clustering and branching structure ap-
proximating the predictions of the fractal grammar
model. They also showed evidence of the complex-
ity cline. The human learning results on the same
language provided evidence that at least a few peo-
ple inferred a recursive principle for the mirror re-
cursion language. The complexity cline prediction
was also borne out by the human data: not only did
performance on lower levels of embedding correlate
with performance on higher levels of embedding,
but it predicted generalization behavior, suggesting
that the representation continuously metamorphoses
from a finite-state system into an infinite state sys-
tem.

We identified one closely related Bayesian gram-
mar induction model (Perfors et al., 2011) which
seems well positioned to make similar, but probably
not the same, predictions about phenomenon of infi-
nite state language learning. We suggest that further
exploration of the relationship between the Bayesian
models and the recurrent neural network models will
be helpful. A novel claim of the present work is
that they it is possible to compare recurrent neural
network models and symbolic structure models on
the same terms. We suggest that further examination
of this relationship may be helpful in addressing the
challenging problems of complex language learning.
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Boston.

Whitney Tabor, Bruno Galantucci, and Daniel
Richardson. 2003. Evidence for self-organized
sentence processing: Local coherence ef-
fects. Submitted manuscript, University of
Connecticut, Department of Psychology: See
http://www.sp.uconn.edu/ ps300vc/papers.html.

Whitney Tabor. 2000. Fractal encoding of context-free
grammars in connectionist networks. Expert Systems:
The International Journal of Knowledge Engineering
and Neural Networks, 17(1):41–56.

Whitney Tabor. 2003. Learning exponential state growth
languages by hill climbing. IEEE Transactions on
Neural Networks, 14(2):444–446.

Whitney Tabor. 2009a. Affine dynamical automata. Ms.,
University of Connecticut Department of Psychology.

Whitney Tabor. 2009b. A dynamical systems per-
spective on the relationship between symbolic and
non-symbolic computation. Cognitive Neurodynam-
ics, 3(4):415–427.

Whitney Tabor. 2011. Recursion and recursion-
like structure in ensembles of neural elements. In
H. Sayama, A. Minai, D. Braha, and Y. Bar-
Yam, editors, Unifying Themes in Complex Sys-

49



tems. Proceedings of the VIII International Confer-
ence on Complex Systems, pages 1494–1508, Cam-
bridge, MA. New England Complex Systems Institute.
http//necsi.edu/events/iccs2011/proceedings.html.

Janet Wiles and Jeff Elman. 1995. Landscapes in re-
current networks. In Johanna D. Moore and Jill Fain
Lehman, editors, Proceedings of the 17th Annual Cog-
nitive Science Conference. Lawrence Erlbaum Asso-
ciates.

50


