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Abstract
Despite an increasing amount of research
on biomedical named entity recognition,
there has been not enough work done on
disease mention recognition. Difficulty of
obtaining adequate corpora is one of the
key reasons which hindered this particu-
lar research. Previous studies argue that
correct identification of disease mentions
is the key issue for further improvement
of the disease-centric knowledge extrac-
tion tasks. In this paper, we present a ma-
chine learning based approach that uses
a feature set tailored for disease mention
recognition and outperforms the state-of-
the-art results. The paper also discusses
why a feature set for the well studied
gene/protein mention recognition task is
not necessarily equally effective for other
biomedical semantic types such as dis-
eases.

1 Introduction

The massive growth of biomedical literature vol-
ume has made the development of biomedical text
mining solutions indispensable. One of the essen-
tial requirements for a text mining application is
the ability to identify relevant entities, i.e. named
entity recognition. Previous work on biomedi-
cal named entity recognition (BNER) has been
mostly focused on gene/protein mention recogni-
tion. Machine learning (ML) based approaches
for gene/protein mention recognition have already
achieved a sufficient level of maturity (Torii et
al., 2009). However, the lack of availability of
adequately annotated corpora has hindered the
progress of BNER research for other semantic
types such as diseases (Jimeno et al., 2008; Lea-
man et al., 2009).

Correct identification of diseases is crucial for
various disease-centric knowledge extraction tasks

(e.g. drug discovery (Agarwal and Searls, 2008)).
Previous studies argue that the most promising
candidate for the improvement of disease related
relation extraction (e.g. disease-gene) is the cor-
rect identification of concept mentions including
diseases (Bundschus et al., 2008).

In this paper, we present a BNER system which
uses a feature set specifically tailored for disease
mention recognition. The system1 outperforms
other approaches evaluated on the Arizona Dis-
ease Corpus (AZDC) (more details in Section 5.1).
One of the key differences between our approach
and previous approaches is that we put more em-
phasis on the contextual features. We exploit syn-
tactic dependency relations as well. Apart from
the experimental results, we also discuss why the
choice of effective features for recognition of dis-
ease mentions is different from that for the well
studied gene/protein mentions.

The remaining of the paper is organized as fol-
lows. Section 2 presents a brief description of pre-
vious work on BNER for disease mention recog-
nition. Then, Section 3 describes our system and
Section 4 the feature set of the system. After that,
Section 5 explains the experimental data, results
and analyses. Section 6 describes the differences
for the choice of feature set between diseases and
genes/proteins. Finally, Section 7 concludes the
paper with an outline of our future research.

2 Related Work

Named entity recognition (NER) is the task of lo-
cating boundaries of the entity mentions in a text
and tagging them with their corresponding seman-
tic types (e.g. person, location, gene and so on).
Although several disease annotated corpora have
been released in the last few years, they have been
annotated primarily to serve the purpose of re-
lation extraction and, for different reasons, they

1The source code of our system is available for download
at http://hlt.fbk.eu/people/chowdhury/research
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are not suitable for the development of ML based
disease mention recognition systems (Leaman et
al., 2009). For example, the BioText (Rosario
and Hearst, 2004) corpus has no specific anno-
tation guideline and contains several inconsisten-
cies, while PennBioIE (Kulick et al., 2004) is very
specific to a particular sub-domain of diseases.
Among other disease annotated corpora, EBI dis-
ease corpus (Jimeno et al., 2008) is not annotated
with disease mention boundaries which makes it
unsuitable for BNER evaluation for diseases. Re-
cently, an annotated corpus, named as Arizona
Disease Corpus (AZDC) (Leaman et al., 2009),
has been released which has adequate and suitable
annotation of disease mentions following specific
annotation guidelines.

There has been some work on identifying dis-
eases in clinical texts, especially in the context
of CMC Medical NLP Challenge2 and i2b2 Chal-
lenge3. However, as noted by Meystre et al.
(2008), there are a number of reasons that make
clinical texts different from texts of biomedical
literature, e.g. composition of short, telegraphic
phrases, use of implicit templates and pseudo-
tables and so on. Hence, the strategies adopted
for NER on clinical texts are not the same as the
ones practiced for NER on biomedical literature.

As mentioned before, most of the work to
date on BNER is focused on gene/protein men-
tion recognition. State-of-the-art BNER systems
are based on ML techniques such as conditional
random fields (CRFs), support vector machines
(SVMs) etc (Dai et al., 2009). These systems use
either gene/protein specific features (e.g. Greek
alphabet matching) or post-processing rules (e.g.
extension of the identified mention boundaries to
the left when a single letter with a hyphen precedes
them (Torii et al., 2009)) which might not be as
effective for other semantic type identification as
they are for genes/proteins. There is a substantial
agreement in the feature set that these systems use
(most of which are actually various orthographical
and morphological features).

Bundschus et al. (2008) have used a CRF
based approach that uses typical features for
gene/protein mention recognition (i.e. no feature
tailoring for disease recognition) for disease, gene
and treatement recognition. The work has been
evaluated on two corpora which have been anno-

2http://www.computationalmedicine.org/challenge/index.php
3https://www.i2b2.org/NLP/Relations/Main.php

tated with those entities that participate in disease-
gene and disease-treatment relations. The reported
results show F-measure for recognition of all the
entities that participate in the relations and do
not indicate which F-measure has been achieved
specifically for disease recognition. Hence, the re-
ported results are not applicable for comparison.

To the best of our knowledge, the only sys-
tematic experimental results reported for disease
mention recognition in biomedical literature using
ML based approaches are published by Leaman
and Gonzalez (2008) and Leaman et al. (2009).4

They have used a CRF based BNER system named
BANNER which basically uses a set of ortho-
graphic, morphological and shallow syntactic fea-
tures (Leaman and Gonzalez, 2008). The system
achieves an F-score of 86.43 on the BioCreative
II GM corpus5 which is one of the best results for
gene mention recognition task on that corpus.

BANNER achieves an F-score of 54.84 for dis-
ease mention recognition on the BioText corpus
(Leaman and Gonzalez, 2008). However, as said
above, the BioText corpus contains annotation in-
consistencies6. So, the corpus is not ideal for com-
paring system performances. The AZDC corpus
is much more suitable as it is annotated specifi-
cally for benchmarking of disease mention recog-
nition systems. An improved version of BAN-
NER achieves an F-score of 77.9 on AZDC cor-
pus, which is the state of the art on ML based dis-
ease mention recognition in biomedical literature
(Leaman et al., 2009).

3 Description of Our System

There are basically three stages in our approach –
pre-processing, feature extraction and model train-
ing, and post-processing.

3.1 Pre-processing
At first, the system uses GeniaTagger7 to tokenize
texts and provide PoS tagging. After that, it cor-
rects some common inconsistencies introduced by
GeniaTagger inside the tokenized data (e.g. Ge-
niaTagger replaces double inverted commas with

4However, there are some work on disease recognition in
biomedical literature using other techniques such as morpho-
syntactic heuristic based approach (e.g. MetaMap (Aronson,
2001)), dictionary look-up method and statistical approach
(Névéol et al., 2009; Jimeno et al., 2008; Leaman et al.,
2009).

5As mentioned in http://banner.sourceforge.net/
6http://biotext.berkeley.edu/data/dis treat data.html
7http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
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two single inverted commas). These PoS tagged
tokized data are parsed using Stanford parser8.
The dependency relations provided as output by
the parser are used later as features. The tokens
are further processed using the following general-
ization and normalization steps:

• each number (both integer and real) inside a
token is replaced with ‘9’

• each token is further tokenized if it contains
either punctuation characters or both digits
and alphabetic characters

• all letters are changed to lower case

• all Greek letters (e.g. alpha) are replaced with
G and Roman numbers (e.g. iv) with R

• each token is normalized using SPECIALIST
lexicon tool9 to avoid spelling variations

3.2 Feature extraction and model training

The features used by our system can be catego-
rized into the following groups:

• general linguistic features (Table 1)

• orthographic features (Table 2)

• contextual features (Table 3)

• syntactic dependency features (Table 4)

• dictionary lookup features (see Section 4)

During dictionary lookup feature extraction, we
ignored punctuation characters while matching
dictionary entries inside sentences. If a sequence
of tokens in a sentence matches an entry in the dic-
tionary, the leftmost token of that sequence is la-
beled with B-DB and the remaining tokens of the
sequence are labeled with I-DB. The label B-DB
indicates the beginning of a dictionary match. If a
token belongs to several dictionary matches, then
all the other dictionary matches except the longest
one are discarded.

The syntactic dependency features are extracted
from the output of the parser while the general lin-
guistic features are extracted directly from the pre-
processed tokens. To collect the orthographic fea-
tures, the original tokens inside the corresponding
sentences are considered. The contextual features

8http://nlp.stanford.edu/software/lex-parser.shtml
9http://lexsrv3.nlm.nih.gov/SPECIALIST/index.html

are derived using other extracted features and the
original tokens.

Tokens are labeled with the corresponding dis-
ease annotations according to the IOB2 format.
Our system uses Mallet (McCallum, 2002) to train
a first-order CRF model. CRF is a state-of-the-
art ML technique applied to a variety of text
processing tasks including named entity recogni-
tion (Klinger and Tomanek, 2007) and has been
successfully used by many other BNER systems
(Smith et al., 2008).

3.3 Post-processing

Once the disease mentions are identified using
the learned model, the following post-processing
techniques are applied to reduce the number of
wrong identifications:

• Bracket mismatch correction: If there is a
mismatch of brackets in the identified men-
tion, then the immediate following (or pre-
ceding) character of the corresponding men-
tion is checked and included inside the men-
tion if that character is the missing bracket.
Otherwise, all the characters from the index
where the mismatched bracket exists inside
the identified mention are discarded from the
corresponding mention.

• One sense per discourse: If any instance of
a character sequence is identified as a disease
mention, then all the other instances of that
character sequence inside the same sentence
are also annotated as disease mentions.

• Short/long form annotation: Using the algo-
rithm of Schwartz and Hearst (2003), “long
form (short form)” instances are detected in-
side sentences. If the short form is annotated
as disease mention, then the long form is also
annotated and vice versa.

• Ungrammatical conjunction structure cor-
rection: If an annotated mention contains
comma (,) but there is no “and” in the fol-
lowing character sequence (from the charac-
ter index of that comma) of that mention, then
the annotation is splitted into two parts (at the
index of the comma). Annotation of the origi-
nal mention is removed and the splitted parts
are annotated as two separate disease men-
tions.
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• Short and long form separation: If both short
and long forms are annotated in the same
mention, then the original mention is dis-
carded and the corresponding short and long
forms are annotated separately.

4 Features for Disease Recognition

There are compelling reasons to believe that vari-
ous issues regarding the well studied gene/protein
mention recognition would not apply to the other
semantic types. For example, Jimeno et al. (2008)
argue that the use of disease terms in biomedical
literature is well standardized, which is quite op-
posite for the gene terms (Smith et al., 2008).

After a thorough study and extensive experi-
ments on various features and their possible com-
binations, we have selected a feature set specific
to the disease mention identification which com-
prises features shown in Tables 1, 2, 4 and 3, and
dictionary lookup features.

Feature name Description
PoS Part-of-speech tag

NormWord Normalized token
(see Section 3.1)

Lemma Lemmatized form
charNgram 3 and 4 character n-grams

Suffix 2-4 character suffixes
Prefix 2-4 character prefixes

Table 1: General linguistic features for tokeni

Feature name Description
InitCap Is initial letter capital
AllCap Are all letters capital

MixCase Does contain mixed case letters
SingLow Is a single lower case letter
SingUp Is a single upper case letter

Num Is a number
PuncChar Punctuation character

(if tokeni is
a punctuation character)

PrevCharAN Is previous character
alphanumeric

Table 2: Orthographic features for tokeni

Like Leaman et al. (2009), we have created
a dictionary with the instances of the following
nine of the twelve UMLS semantic types from

Feature name Description
Bi-gramk,k+1 Bi-grams of

for i− 2 ≤ k < i + 2 normalized tokens
Tri-gramk,k+1,k+2 Tri-grams of

for i− 2 ≤ k < i + 2 normalized tokens
CtxPoSk,k+1 Bi-grams of

for i ≤ k < i + 2 token PoS
CtxLemmak,k+1 Bi-grams of
for i ≤ k < i + 2 lemmatized tokens

CtxWordk,k+1 Bi-grams of
for i− 2 ≤ k < i + 2 original tokens
Offset conjunctions Extracted by Mallet

from features
in the range from

tokeni−1 to tokeni+1

Table 3: Contextual features for tokeni

Feature name Description
dobj Target token(s) to which tokeni

is a direct object
iobj Target token(s) to which tokeni

is an indirect object
nsubj Target token(s) to which tokeni

is an active nominal subject
nsubjpass Target token(s) to which tokeni

is a passive nominal subject
nn Target token(s) to which tokeni

is a noun compound modifier

Table 4: Syntactic dependency features for tokeni.
For example, in the sentence “Clinton defeated
Dole”, “Clinton” is the nsubj of the target token
“defeated”.

the semantic group “DISORDER”10 from UMLS
Metathesaurus (Bodenreider, 2004): (i) disease or
syndrome, (ii) neoplastic process, (iii) congenital
abnormality, (iv) acquired abnormality, (v) exper-
imental model of disease, (vi) injury or poison-
ing, (vii) mental or behavioral dysfunction, (viii)
pathological function and (ix) sign or symptom.
We have not considered the other three semantic
types (findings, anatomical abnormality and cell
or molecular Dysfunction) since these three types
have not been used during the annotation of Ari-
zona Disease Corpus (AZDC) which we have used
in our experiments.

Previous studies have shown that dictionary
lookup features, i.e. name matching against a

10http://semanticnetwork.nlm.nih.gov/SemGroups/
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dictionary of terms, often increase recall (Torii
et al., 2009; Leaman et al., 2009). However,
an unprocessed dictionary usually does not boost
overall performance (Zweigenbaum et al., 2007).
So, to reduce uninformative lexical differences or
spelling variations, we generalize and normalize
the dictionary entries using exactly the same steps
followed for the pre-processing of sentences (see
Section 3.1).

To reduce chances of false and unlikely
matches, any entry inside the dictionary having
less than 3 characters or more than 10 tokens is
discarded.

5 Experiments

5.1 Data

We have done experiments on the recently re-
leased Arizona Disease Corpus (AZDC)11 (Lea-
man et al., 2009). The corpus has detailed annota-
tions of diseases including UMLS codes, UMLS
concept names, possible alternative codes, and
start and end points of disease mentions inside
the corresponding sentences. These detailed an-
notations make this corpus a valuable resource
for evaluating and benchmarking text mining so-
lutions for disease recognition. Table 5 shows var-
ious characteristics of the corpus.

Item name Total count
Abstracts 793
Sentences 2,783
Total disease mentions 3,455
Disease mentions without overlaps 3,093
Disease mentions with overlaps 362

Table 5: Various characteristics of AZDC.

For the overlapping annotations, (e.g. “endome-
trial and ovarian cancers” and “ovarian cancers”)
we have considered only the larger annotations
in our experiments. There remain 3,224 disease
mentions after resolving overlaps according to the
aforementioned criterion. We have observed mi-
nor differences in some statistics of the AZDC re-
ported by Leaman et al. (2009) with the statistics
of the downloadable version12 (Table 5). How-

11Downloaded from http://diego.asu.edu/downloads/AZDC/
at 5-Feb-2009

12Note that “Disease mentions (total)” in the paper of Lea-
man et al. (2009) actually refers to the total disease mentions
after overlap resolving (Robert Leaman, personal communi-
cation). One other thing is, Leaman et al. (2009) mention 794

ever, these differences can be considered negligi-
ble.

5.2 Results
We follow an experimental setting similar to the
one in Leaman et al. (2009) so that we can com-
pare our results with that of the BANNER system.
We performed 10-fold cross validation on AZDC
in such a way that all sentences of the same ab-
stract are included in the same fold. The results of
all folds are averaged to obtain the final outcome.
Table 6 shows the results of the experiments with
different features using the exact matching crite-
rion.

As we can see, our approach achieves signif-
icantly higher result than that of BANNER. Ini-
tially, with only the general linguistic and or-
thographic features the performance is not high.
However, once the contextual features are used,
there is a substantial improvement in the result.
Note that BANNER does not use contextual fea-
tures. In fact, the use of contextual features is also
quite limited in other BNER systems that achieve
high performance for gene/protein identification
(Smith et al., 2008).

Dictionary lookup features provide a very good
contribution in the outcome. This supports the ar-
gument of Jimeno et al. (2008) that the use of dis-
ease terms in biomedical literature is well stan-
dardized. Post-processing and syntactic depen-
dency features also increase some performance.

We have done statistical significance tests for
the last four experimental results shown in Table 6.
For each of such four experiments, the immediate
previous experiment is considered as the baseline.
The tests have been performed using the approx-
imate randomization procedure (Noreen, 1989).
We have set the number of iterations to 1,000 and
the confidence level to 0.01. According to the
tests, the contributions of contextual features and
dictionary lookup features are statistically signif-
icant. However, we have found that the contri-
butions of post-processing rules and syntactic de-
pendency features are statistically significant only
when the confidence level is 0.2 or more. Since
AZDC consists of only 2,783 sentences, we can
assume that the impact of post-processing rules

abstracts, 2,784 sentences and 3,228 (overlap resolved) dis-
ease mentions in the AZDC. But in our downloaded version
of AZDC, there is 1 abstract missing (i.e. total 793 abstracts
instead of 794). As a result, there is 1 less sentence and 4
less (overlap resolved) disease mentions than the originally
reported numbers.
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and syntactic dependency features has been not so
significant despite of some performance improve-
ment.

5.3 Error analysis

One of the sources of errors is the annotations
having conjunction structures. There are 94 dis-
ease mentions in the data which contain the word
“and”. The boundaries of 11 of them have been
wrongly identified during experiments, while 39
of them have been totally missed out by our sys-
tem. Our system also has not performed well
for disease annotations that have some specific
types of prepositional phrase structures. For ex-
ample, there are 80 disease annotations having the
word “of” (e.g. “deficient activity of acid beta-
glucosidase GBA”). Only 28 of them are correctly
annotated by our system. The major source of er-
rors, however, concerns abbreviated disease names
(e.g. “PNH”). We believe one way to reduce this
specific error type is to generate a list of possi-
ble abbreviated disease names from the long forms
of disease names available in databases such as
UMLS Metathesaurus.

6 Why Features for Diseases and
Genes/Proteins are not the Same

Many of the existing BNER systems, which are
mainly tuned for gene/protein identification, use
features such as token shape (also known as word
class and brief word class (Settles, 2004)), Greek
alphabet matching, Roman number matching and
so forth. As mentioned earlier, we have done ex-
tensive experiments with various feature combina-
tions for the selection of disease specific features.
We have observed that many of the features used
for gene/protein identification are not equally ef-
fective for disease identification. Table 7 shows
some of the results of those experiments.

This observation is reasonable because
gene/protein names are much more complex than
entities such as diseases. For example, they often
contain punctuation characters (such as paren-
theses or hyphen), Greek alphabets and digits
which are unlikely in disease names. Ideally,
the ML algorithm itself should be able to utilize
information from only the useful features and
ignore the others in the feature set. But practically,
having non-informative features often mislead
the model learning. In fact, several surveys have
argued that the choice of features matter at least

as much as the choice of the algorithm if not more
(Nadeau and Sekine, 2007; Zweigenbaum et al.,
2007).

One of the interesting trends in gene/protein
mention identification is to not utilize syntactic
dependency relations (with the exception of Vla-
chos (2007)). Gene/protein names in biomedi-
cal literature are often combined (i.e. without
being separated by space characters) with other
characters which do not belong to the correspond-
ing mentions (e.g. p53-mediated). Moreover,
as mentioned before, gene/protein mentions com-
monly have very complex structures (e.g. PKR(1-
551)K64E/K296R or RXRalphaF318A). So, it is a
common practice to tokenize gene/proten names
adopting an approach that split tokens as much as
possible to extract effective features (Torii et al.,
2009; Smith et al., 2008). But while the extensive
tokenization boosts performance, it is often diffi-
cult to correctly detect dependency relations for
the tokens of the gene/protein names in the sen-
tences where they appear. As a result, use of the
syntactic dependency relations is not beneficial in
such approaches.13 In comparison, disease men-
tions are less complex. So, the identified depen-
dencies for disease mentions are more reliable and
hence may be usable as potential features (refer to
our experimental results in Table 6).

The above mentioned issues are some of the
reasons why a feature set for the well studied
gene/protein focused BNER approaches is not
necessarily suitable for other biomedical semantic
types such as diseases.

7 Conclusion

In this paper, we have presented a single CRF clas-
sifier based BNER approach for disease mention
identification. The feature set is constructed us-
ing disease-specific contextual, orthographic, gen-
eral linguistic, syntactic dependency and dictio-
nary lookup features. We have evaluated our ap-
proach on AZDC corpus. Our approach achieves
significantly higher result than BANNER which is
the current state-of-the-art ML based approach for
disease mention recognition. We have also ex-
plained why the choice of features for the well
studied gene/protein does not apply for other se-
mantic types such as diseases.

13We have done some experiments on Biocreative II GM
corpus with syntactic dependency relations of the tokens,
which are not reported in this paper, and the results support
our argument.
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System Note Precision Recall F-score
BANNER (Leaman et al., 2009) 80.9 75.1 77.9

Our system Using general linguistic and orthographic features 74.90 71.01 72.90
Our system After adding contextual features 82.15 75.81 78.85
Our system After adding post-processing 81.57 76.61 79.01
Our system After adding syntactic dependency features 82.07 76.66 79.27
Our system After adding dictionary lookup features 83.21 79.06 81.08

Table 6: 10-fold cross validation results using exact matching criteria on AZDC.

Experiment Note Precision Recall F-score
(i) Using general linguistic, orthographic 82.15 75.81 78.85

and contextual features
(ii) After adding WC and BWC features in (i) 82.08 75.57 78.69
(iii) After adding IsGreekAlphabet, HasGreekAlphabet 82.10 75.69 78.76

and IsRomanNumber features in (i)

Table 7: Experimental results of our system after using some of the gene/protein specific features for
disease mention recognition on AZDC. Here, WC and BWC refer to the “word class” and “brief word
class” respectively.

Future work includes implementation of disease
mention normalization (i.e. associating a unique
identifier for each disease mention). We also
plan to improve our current approach by includ-
ing more contextual features and post-processing
rules.
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