
Identifying Broken Plurals in Unvowelised Arabic Text

Abduelbaset Goweder
University of Essex
Dept. of Computer

Science
Wivenhoe Park,

Colchester CO4 3SQ,
UK

agowed@essex.ac.uk

Massimo Poesio
University of Essex
Dept. of Computer

Science
Wivenhoe Park,

Colchester CO4 3SQ,
UK

poesio@essex.ac.uk

Anne De Roeck
The Open University
Dept. of Computing
Walton Hall, Milton

Keynes
Buckinghamshire, MK7

6AA, UK

A.DeRoeck@open.ac.uk

Jeff Reynolds
University of Essex
Dept. of Computer

Science
Wivenhoe Park,

Colchester CO4 3SQ,
UK

reynt@essex.ac.uk

Abstract
Irregular (so-called broken) plural identification
in modern standard Arabic is a problematic issue
for information retrieval (IR) and language
engineering applications, but their effect on the
performance of IR has never been examined.
Broken plurals (BPs) are formed by altering the
singular (as in English: tooth � teeth) through
an application of interdigitating patterns on
stems, and singular words cannot be recovered
by standard affix stripping stemming techniques.
We developed several methods for BP detection,
and evaluated them using an unseen test set. We
incorporated the BP detection component into a
new light-stemming algorithm that conflates both
regular and broken plurals with their singular
forms. We also evaluated the new light-stemming
algorithm within the context of information
retrieval, comparing its performance with other
stemming algorithms.

1. Introduction
Broken plurals constitute ~10% of texts in large
Arabic corpora (Goweder and De Roeck, 2001), and
~41% of plurals (Boudelaa and Gaskell, 2002).
Detecting broken plurals is therefore an important
issue for light-stemming algorithms developed for
applications such as information retrieval, yet the
effect of broken plural identification on the
performance of information retrieval systems has
not been examined. We present several methods for
BP detection, and evaluate them using an unseen
test set containing 187,309 words. We also
developed a new light-stemming algorithm
incorporating a BP recognition component, and
evaluated it within an information retrieval context,

comparing its performance with other stemming
algorithms.

We give a brief overview of Arabic in Section 2.
Several approaches to BP detection are discussed in
Section 3, and their evaluation in Section 4. In
Section 5, we present an improved light stemmer
and its evaluation. Finally in Section 6, our
conclusions are summarised.

2. Arabic Morphology and its Number
System
Arabic is a heavily inflected language. Its
grammatical system is traditionally described in
terms of a root-and-pattern structure, with about
10,000 roots (Ali, 1988). Roots such as drs (���)
and ktb (���) are listed alphabetically in standard
Arabic dictionaries like the Wehr-Cowan (Beesley,
1996). The root is the most basic verb form. Roots
are categorized into: triliteral, quadriliteral, or rarely
pentaliteral. Most words are derived from a finite set
of roots formed by adding diacritics1 or affixes
(prefixes, suffixes, and infixes) through an
application of fixed patterns which are templates to
help in deriving inflectional and derivational forms
of a word. Theoretically, several hundreds of
Arabic words can be derived from a single root.
Traditional Arab grammarians describe Arabic
morphology in terms of patterns associated with the
basic root f3l (��	, “to do”)- where f, 3, and l are like
wildcards in regular expressions: the letter f (

,“pronounced fa”) represents the first consonant
(sometimes called a radical), the letter 3 (� ,
“pronounced ain”) represents the second, and the
letter l (� , “pronounced lam”) represents the third

1 Special characters which are superscript or subscript marks

added to the word.

respectively. Adding affixes to the basic root f3l
(��	, “to do”) allows additional such patterns to be
formed. For instance, adding the letter Alef () as a
prefix to the basic root f3l (��	, “to do”) we get the
pattern Af3l (��) which is used to form words such
as: anhr (���, “rivers”), arjl (���, “legs”), and asqf
(���, “ceilings”). Some examples of the word
patterns are Yf3l (����), Mf3Wl (�����), Af3Al (���	�),
MfA3l (�����), etc.

The following example shows how we can use
patterns to form words. the verb yktb (���� , “he
writes or he is writing”) is formed by mapping the
consonants of the triliteral root ktb (����) to the
pattern yf3l (����), where the letters f (
), 3 (�), and
l (�) in the second, third, and fourth positions of the
pattern respectively represent slots for a root
consonant. Figure 1 depicts the process of matching
the root ktb (����) to the pattern yf3l (����) to
produce the verb yktb (���� , “he writes or he is
writing”), then adding prefixes and/or suffixes to
obtain a word.

Figure 1: The process of mapping the root ktb (�����������) to the
pattern yf3l (����).

The Arabic number system has singular, dual, and
plural. Plurals are traditionally distinguished into
two categories: the regular (so-called sound)
plurals, and the irregular (so-called broken) plurals.
Sound Plurals are formed by appropriate suffixation
(like English: hand � hands). The sound masculine
plural is formed by adding the suffix oun (!") in the
nominative case and the suffix een (#�) in the
accusative & genitive cases. The sound feminine
plural is formed by attaching the suffix at (�) to the
singular.

Irregular or broken plurals apply mostly to triliteral
roots and are formed by altering the singular (as in
English: tooth � teeth). Many nouns and adjectives
have broken plurals (Haywood and Nahmad, 1976).
In all cases, singulars are affected by applying a

number of different patterns that alter long vowels
(Alef (), Waw ("), Yeh ($), and Alef-Maqsura (%)),
within or outside the framework of the consonants
(Cowan, 1958). Table 1 gives some examples of
BPs and their patterns.
Table 1: Broken Plural examples.

Singular BP Pattern Plural
qlm(&'(, “pen”) Af3Al (���) AqlAm()*(, “pens”)

qlb(�'(, “heart”) f3Wl (���) qlWb(��'(, “hearts”)

ktab(����, “book”) f3l (��) ktb(���, “books”)

The complexity of Arabic morphology has
motivated a great deal of studies. Some of which
especially concerned with broken plurals (McCarthy
and Prince, 1990b; Kiraz, 1996a; Idrissi, 1997).
These are successful to varying degrees, but have a
main practical drawback in the context of
information retrieval: they assume that words are
fully vowelised. Unfortunately, short vowels are
usually not written in published Arabic text, with
the exception of the religious texts (e.g., the Holy
Quran), poetry, and books for school children
(Abuleil and Evens, 1998).

3. Different Approaches to BP Identification
We tested several different approaches for BP
identification: simple BP matching, restricted BP
matching (hand restricted & decision tree
restricted), and a dictionary approach.

3.1 The Simple BP Matching Approach
Given the characterisation of broken plurals one
finds in standard Arabic grammars, the most
obvious method for identifying a broken plural is to
light stem it (strip off any prefixes and/or suffixes),
then trying to match the obtained stem against BP
patterns found in standard grammars. Since this
method is widely used, we adopted it as a baseline.

As a first step towards a simple BP matching
algorithm, we developed a basic light stemmer for
Arabic by modifying an existing root stemmer
(Khoja and Garside, 1999). This basic light stemmer
was incorporated in a simple BP identification
module based on matching, using a list of 39 BP
patterns found in grammar books such as Haywood
and Nahmad (1976) and Cowan (1958). The simple
BP matching algorithm takes in a word; light-stems
it to produce morphological information such as

stem, prefix and suffix; and returns TRUE if the
stem matches one of the BP patterns in the list. The
stem matches a BP pattern if and only if they have
the same number of letters and the same letters in
the same positions, excluding the consonants f (
),
3 (�), and l (�) of the basic root f3l (��	, “to do”)
found in the pattern.

In information retrieval and statistical natural
language processing, recall and precision are
common measures used to gauge a system’s
performance. Recall (R) is the fraction of target
items that a system selected, while the precision (P)
is the fraction of selected items that a system got
right. A third measure known as F-measure (F)2
(combines R and P) is used in some situation where
R is very high and P is very low (Manning and
Schutze, 1999). We implemented R, P, and F to
evaluate approaches we present in this paper.

The simple BP matching algorithm was
preliminarily evaluated on a subset of an Arabic
corpus (referred to as A_Corpus1) obtained from
Khoja (1999). It contains 7172 words whose BP
instances were identified (this first set of BPs is
referred below as data set1). The results showed that
the simple BP matching approach has very high
recall (99.71%), but low precision (13.73%).

We also tested two slightly modified versions of the
simple BP matching algorithm, exploiting
information about affixes information and proper
name detection, respectively. The first variant was
based on the observation that only a limited set of
prefixes and suffixes can be attached to a BP stem.
In addition, some BP prefixes and suffixes cannot
both be concatenated to a BP stem at the same time.
These observations led to a first variant of the
simple matching algorithm incorporating two post-
processing strategies for refining the decisions made
by the simple BP matching algorithm. The first
refining strategy checks if the produced prefix or
suffix is in the list of BP prefixes or suffixes; if it
isn’t, the stem will be classified as ‘Not Broken
Plural (NBP)’. The second refining strategy checks
if the prefix is a definite article (e.g., al (�, “the”),
wal (�"�, “and the”), bal (��+�, “with the”), etc.) and
the suffix is a BP suffix, and changes the output
accordingly. An evaluation of the performance of

2 F=2PR/(P+R) for equal weighting.

the simple BP matching algorithm with affix-based
refinement strategies on data set1 revealed a slight
improvement in precision (16.74%).

We also made a preliminary test evaluating the
possible usefulness of incorporating a proper name
detector in the system. We manually identified the
proper names in data set1, then modified the simple
BP matching algorithm to ignore proper names. Our
results only showed a small (if significant)
improvement in precision (19.86%), that we didn’t
feel would justify the considerable effort required to
develop a proper name detector. As a result, we
looked for simpler but more effective ways to
improve the algorithm.

3.2 The Restricted BP Matching Approach
The main problem with the simple BP matching
approach is that the BP patterns are too general to
achieve a good performance. Another way to
improve the precision of the algorithm is therefore
to obtain more specific BP patterns by restricting the
original ones. The idea is to allow only a subset of
the alphabet to be used in the meta characters f (
),
3 (�), and l (�) positions of the patterns (see Section
2), producing a number of more restrictive patterns
out of each original BP pattern. A larger number of
instances of each BP pattern is required to develop
this approach. For this purpose, we used a large
corpus of ~18.5 million words (Goweder and De
Roeck, 2001). In the remainder of the paper, we
refer to this corpus as A_Corpus2. The simple BP
matching algorithm with affix-based refinement
strategies was used to extract all instances of BPs
that occurred in A_Corpus2. We adopted two
approaches. In a first experiment we tried to produce
the more restrictive patterns by hand. Later we tried
to achieve the same goal using a decision tree
technique. We discuss the first experiment here, the
second in section 3.4. The procedure we followed to
identify the BPs in A_Corpus2 is as follows:

1. A word frequencies tool was used to
generate word frequencies for A_Corpus2,
obtaining 444,761 distinct word types.

2. Each word type was light-stemmed.
3. The word frequencies tool was run again on

the stemmed word types, producing roughly
127,000 stem types.

4. The 127,000 stem types were fed to the
simple BP matching system to retrieve all

stems that match BP patterns. The output
file, categorised according to each BP
pattern, contained about 30,000 cases. Each
specific pattern contained a list of stems
matching this pattern.

We then studied separately each BP pattern. Some
BP patterns were straightforward to restrict. For
example, all the stem types matching the BP pattern
Af3lAa (,*�), are shown in Figure 2. There are 107
cases in total. An analysis of the results reveals that
only 18 cases are BPs, highlighted (bold and
underlined). In the BP pattern Af3lAa (,*�), the
meta characters f (
), 3 (�), and l (�) are in
positions 2, 3, and 4 respectively. The remaining
characters - Alef () in positions 1 & 5, and Hamza
(,) in position 6 - are fixed. Our analysis showed
that the stems which have the letter Ta (�) in the 3rd
position are not BPs; they are nominalizations of
verbs. For example, the word abtdaa (,-�+ ,
“starting”) listed on the first row and last column is
a noun derived from the verb yabtdi (-�.�/ , “he
starts”). There are 62 cases of this type. An
exceptional rule could be induced to handle nouns
derived from verbs. The rule could be written as:
�������������	�
��������������������������	����	��������
�����������������������������

Figure 2: Results of the pattern Af3lAa (�	�
�).

The simple BP matching algorithm was modified to
use the manually restricted BP patterns. The
performance of the manual restriction method was
evaluated using the same data set used before, data
set1. The results show that precision is noticeably
improved, to 53.92%. Recall is improved as well, to
100%. The improvement in both recall and precision
caused a big increase in the F-measure, to roughly
70%. These results suggested to us that attempting
to restrict the BP patterns is worthwhile. In section
3.4, we discuss attempts to find restrictions
automatically, using decision tree methods. But the
classification of all words in A_Corpus2 as BP or
NBP also allowed us to bootstrap a dictionary-based
approach. We discuss this next.

3.3 The Dictionary Approach
In information retrieval applications, “the most
common measures of system performance are time
and space. The shorter the response time, the
smaller the space used, the better the system is
considered to be” (Baeza-Yates and Ribeiro-Neto,
1999). The fastest way to detect BPs is to use a
look-up table which lists all BP stems.

Considering some of the facts about Arabic,
discussed in Section 2, it is quite clear that it will be
fairly difficult to build look-up tables listing either
BP stems or full words from language dictionaries.
A_Corpus2, on the other hand - a large resource of
modern, unvowelised, freeflowing Arabic text -
provided a good foundation, and after the
development of the simple and restricted BP
matching algorithms discussed in the previous
sections, only minor additional effort was required
for building such a table (without such tools,
collecting the table entries would have been
prohibitively expensive).

The dictionary was built as follows:

1. The manually restricted BP matching
system was run on the 127,000 stem types,
extracted from A_Corpus2 (see section 3.2),
to retrieve all types that match (restricted
matching) BP patterns. The results were
about 12,000 instances in total.

2. We then went through these 12,000
instances, identifying the actual BPs. A list
of roughly 3,600 BP stems, alphabetically
ordered and categorised according to each
BP pattern, was extracted.

List of all words retrieved by the pattern (,*�)===>

,-�+ ,���+ ,�0�+ ,*�+ ,�1�+
 ����� ������ ����� ,��� ,2��
 ,*�� ,��� ,3�4 ,�5�4 ,�6�4
 ,���4 ,�7�4 ,��4 ,�.'4 ,�.�8
 ,�6�8 ,���8 ,*�8 ,��� ������

 ������ ,��+� ,�9:� ,-:� ,�6:�
 ,�;:� ,��:� ,�7:� ,�:� ����,
 ,��< ,�=�< ,*�< ,�;�� ,����
 ,�0�� ,���� ,���� ,*�� ,���
 ,�>�� ,���� ������ ,���? ,���?
 ������ ������ ,��@A ,-�� ,*��
 ,�7�� ,�1�� ������ ,3�B ,�1�B
 ������ ,-�	 ,��	 ,�(�	 ,-�(
 ,�;�(,���(,�1�(����� ������

 ,��� ,�5�� ,���� ,��� ������

 ,�@�� ,*�� ,�1.� ���� � ,-��
 ,�6�� ,���� ,���� ,�7�� ,����
 ,�1C� ,�D� ,*D� ,�1E� ,"2�
 ,�.5� ,�;� ,��@� ,�@� ,����
 ,�;�� ���� � ,���� ,�E7� ,-�=
 ,��= ����!� ���
!� ���"!� ,�>'�
 ,*�< ,��:F

Total number of cases is 107

3. The list was further revised in collaboration
with a linguist, who is an Arabic native
speaker. The revised list contained exactly
3,580 BP stems.

We implemented the dictionary approach using hash
tables, in which search, insertion, and deletion
operations can be done in constant time.

Before carrying an extensive comparison of the
dictionary approach to the previous approaches, its
performance was first tested on the same data set
already used to evaluate both simple and restricted
BP matching approaches, data set1. The results of
the evaluation show that precision significantly
improves (to 81.18%), while recall is still perfect
(100%). The F-measure recorded an increase
(89.61%) due to the improvement in the precision.
The results suggest that the dictionary approach
outperforms both the simple and manually restricted
BP matching approaches.

3.4 Learning Restrictions Automatically
Decision tree learning is one of the most widely
used classification methods. The decision tree
learning algorithm C4.5 developed by Quinlan
(1993) was used to generate a set of rules in the
form of a decision tree and decision rules (if-then
statements). Because we are interested in how we
could restrict the BP patterns, specifically restricting
the meta characters of the BP patterns (Fa, Ain, and
Lam), we chose them to be the attributes which
describe our data. The outcome (class) of each case
is given as BP or NBP. Figure 3 shows the classes
and the name & description of each attribute.

Figure 3: Set of attributes.

Table 2 lists some examples of the BP pattern
Af3lAa (,*�) to show how instances of the data can
be described according to the set of proposed
attributes and a classification for each instance.

Table 2: Sample of examples.

Set of Attributes Word

Fa Ain Lam

Class

Asdqaa(,�(-A , “friends”) G � H BP

Abtdaa(,-�+ , “starting”) � � � NBP

Akhtbaa(������ , “hiding”) I � � NBP

Athryaa(,���J , “wealthy”) K � $ BP

Data balance was an issue to be dealt with before
conducting decision tree experiments. For some BP
patterns, the number of BP cases is much smaller
than the number of NBP cases. In such a situation,
we are required to have equal cases for each class
(50% for BP and 50% for NBP) because C4.5 tends
to classify all the cases as one class with some error
rate if there are an insufficient, or small number of
cases of one type compared to the other. Balancing
the data was achieved by duplicating the infrequent
cases until we have an equal number of cases for
both classes.

Training data are generated using the simple BP
matching algorithm, on the text file containing
127,000 stem types extracted from A_Corpus2 (see
section 3.2). The simple BP matching algorithm
listed all instances that match every particular BP
pattern. So far, we have a list of instances, which are
labeled as BP, for each BP pattern, however, many
of the cases are not BPs. As a result, we need to
revise automatically the classification of each case
using the dictionary-based approach (discussed in
section 3.3). After the revision, all the cases which
are labeled as BPs by the simple BP matching
algorithm will be corrected by the dictionary
approach. At this stage, each BP pattern will have a
list of BP and NBP cases. The BP system will check
which class has fewer cases in order to duplicate
them to achieve the balancing. Thirty nine output
files, one for each BP pattern, were produced by the
BP system.

Test data for each BP pattern are also generated by
invoking the BP system on a large unseen data set,
containing 187,309 words (referred to as data set2)
extracted from the Arabic Newswire corpus (a third
corpus referred to as A_Corpus3, and totally

BP, NBP.

Fa: discrete (list of Arabic alaphabet).

Ain: discrete (list of Arabic alaphabet).

Lam: discrete (list of Arabic alaphabet).

different from A_Corpus1 and A_Corpus2) in order
to test the models produced by C4.5 system.

We generated one classification model for each of
the 39 (mutually exclusive) BP patterns, and
examined their performance on unseen test cases.
Each classification model was trained on a dataset
specific to that BP pattern and consisting of 10,000
cases, 50% for each class. The classification models
were then evaluated on 39 different test sets (one for
each BP pattern). Most of the classifiers were able
to achieve the task with very low error rates and
high recall & precision. Some models performed the
classification without any errors and had a very
simple decision tree (e.g., the decision tree and set
of rules produced for the BP pattern Af3lAa (,*�)).
This implies that the results are promising; however,
some classifiers had large decision trees and
suffered from overfitting.

A summary of recall and precision results for both
decision trees and set of rules are drawn as
histograms to give us a better insight of how each
BP pattern performed as shown in Figures 4, 5, 6,
and 7. The analysis of the results shows that most of
the models (Figures 4&6), representing BP patterns,
achieved high recall (except a few of them, such as
patterns 16, 27, where the recall was low L 40%).
On the other hand, some models (Figures 5&7)
performed poorly (precision L 40%), such as
patterns 4, 10, 16, 17, 21, and 28. The performance
of all combined models achieved an overall recall
and precision of approximately 95% and 75%
respectively.

Decision Trees

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

BP patterns

R
ec

al
l

Overall Recall = 95.56%

Figure 4: Recall of decision trees for all BP patterns.

Decision Trees

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

BP patterns

P
re

ci
si

on

Overall precision = 75.59053%

Figure 5: Precision of decision trees for all BP patterns.

Set of Rules

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

BP patterns

R
ec

al
l

Overall Recall = 95.91184%

Figure 6: Recall of set of rules for all BP patterns.

Set of Rules

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

BP patterns

P
re

ci
si

on

Overall precision = 75.14395%

Figure 7: Precision of set of rules for all BP patterns.

4. Comparing the Performance of the BP
Identification Approaches
The BP matching methods discussed in the previous
section were evaluated on a larger unseen data set,
data set2 (the same data set already used to generate
test cases to evaluate the decision tree approach, see
section 3.4). The BPs in this data set were tagged as
follows:

1. A modified version of the dictionary-based
BP identification algorithm was run on data
set2 to tag all the occurrences of BPs.

2. We manually went through the output twice
to revise any mistakes made by the BP
identification algorithm.

The evaluation results for the different algorithms
on data set2 are listed in Table 3. These results
confirm that the simple BP matching approach
performed poorly, the restricted BP matching
approach improved the performance significantly, a
more significant improvement achieved by the
decision tree technique, and the dictionary approach
outperformed all the approaches. The results also
suggest that affix-based refinement strategies
improved the performance of the simple matching,
the restricted matching, and the dictionary
algorithms.

Table 3: An Evaluation of different BP identification
algorithms using a large data set (data set2).

Evaluation Criteria BP
Ident.

Method
R P F

SM 99.5% 13.8% 24.2%

SMR 100% 14.5% 25.4%

MRM 99% 49.7% 66.2%

MRMR 100% 52% 68.4%

Dic 98.8% 86.9% 92.5%

DicR 100% 92.3% 96.0%

DT 95.9% 75.1% 84.3%

Acronyms:
Simple Matching
� SM

Simple Matching
with Refinement �
SMR

Manually
Restricted
Matching � MRM

Manually
Restricted
Matching with
Refinement �
MRMR

Dictionary � Dic

Dictionary with
Refinement �
DicR

Decision Trees
� DT

5. An Improved Light-Stemmer and its
Task-Based Evaluation
The dictionary-based BP detector with restriction
was included in a revised version of the light
stemmer described earlier (henceforth: Basic-
LStemmer). This revised stemmer (henceforth: BP-
LStemmer) first runs the Basic-LStemmer on a
word, then invokes the (dictionary-based) BP
detector. If the BP detector returns TRUE, the
singular form of the word is output; otherwise, the
output of the Basic-LStemmer.

The BP-LStemmer was evaluated in an information
retrieval task by developing a new indexing method,
referred to as “stem+BP”. This new indexing

method was compared with the three standard
indexing methods (full word, root, and ‘basic’ stem).
The Greenstone digital library, developed at the
University of Waikato in New Zealand, was used as
an information retrieval system for our experiment.
A collection of 385 documents (7 different domains)
and a set of 50 queries (plausible queries that we
might use ourselves were created to search for
particular information in different domains) with
their relevance judgments, were used to evaluate the
four indexing methods.

The results (Figure 8) clearly indicate that the
proposed “stem+BP” indexing method significantly
outperforms the three standard indexing/stemming
methods (p (1-tailed) < .01 both by the Sign test and
the Wilcoxon signed-rank test). This suggests that
stemming has a substantial effect on information
retrieval for highly inflected languages such as
Arabic, confirming the results obtained by Al-
Kharashi and Evens (1994), Hmeidi et al. (1997),
Abu-Salem et al. (1999), Larkey and Connell
(2001), and Larkey et al. (2002).

Average Recall versus Precision Figures

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Recall

P
re

ci
si

on

Stem+BP
Stem
Root
Full Word

Figure 8: The Average Recall vs. Precision Figures of the
Four Indexing Methods for 50 Queries.

6. Conclusion
We discussed several different methods for BP
identification: simple BP matching, affix-based
simple BP matching, simple BP matching+POS,
manually-and-DT restricted, and dictionary-based.
Although the simplest methods had poor or
mediocre results, they were used to bootstrap better
performing methods.

The baseline, the simple BP matching method, has a
high recall but a low precision (~14%). We
attempted to improve the performance of the BP
identification algorithm by (i) using affix

information, (ii) identifying proper names, and (iii)
restricting the BP patterns. Having implemented the
simple and restricted methods, and used them to
analyse all the BPs in a large corpus (A_Corpus2),
made a dictionary approach possible. All methods
were evaluated on a larger data set of 187,000
words. The results confirmed that the restricted
method clearly improved the overall performance
and the dictionary approach outperformed the other
ones.

We also developed a new light-stemming algorithm
that conflates both regular and broken plurals with
their singular forms. The new light-stemming
algorithm was assessed in an information retrieval
context, comparing its performance with other
stemming algorithms. Our work provides evidence
that identifying broken plurals results in an
improved performance for information retrieval
systems. We found that any form of stemming
improves retrieval for Arabic; and that light-
stemming with broken plural recognition
outperforms standard light-stemming, root-
stemming, and no form of stemming.

7. Acknowledgments
We would like to express our gratitude to Shereen
Khoja for providing her root stemmer. We would
also like to thank the Libyan Secretariat of
Education for supporting this work.

8. References
Abuleil, Saleem and Evens, Martha W. (1998).

“Discovering Lexical Information by Tagging Arabic
Newspaper Text.” Computational Approaches to
Semitic Languages, Proceedings of the Workshop.

Abu-Salem, Hani; Al-Omari, Mahmoud; and Evens,
Martha W. (1999). “Stemming Methodologies over
Individual Query Words for an Arabic Information
Retrieval System.” JASIST, 50(6):524-529.

Ali , N. (1988). “Computers and the Arabic Language.”
Cairo, Egypt: Al-khat Publishing Press, Ta’reep.

Al-Kharashi, I. and Evens, Martha W. (1994).
“Comparing words, stems and roots as index terms in an
Arabic Information retrieval system.” JASIST,
45(8):548-560.

Baeza-Yates, Ricardo and Ribeiro-Neto, Berthier (1999).
“Modern Information Retrieval”. Addison-Wesley,
ACM Press.

Beesley, K. R. (1996) “Arabic finite-state morphological
analysis and generation.” In COLING-96: Proceedings

of the 16th international conference on Computational
Linguistics, vol. 1, pp. 89--94.

Boudelaa , Sami; Gaskell, M. Gareth (2002). “A re-
examination of the default system for Arabic plurals.”
Psychology Press Ltd, vol. 17, pp. 321-343, 2002.

Cowan, David (1958). “Modern Literary Arabic.”
Cambridge University Press.

Goweder, Abduelbaset and De Roeck, Anne (2001).
“Assessment of a Significant Arabic Corpus.” ACL
2001. Arabic language Processing. pp. 73-79, 2001.

Haywood, J. A. and Nahmad, H. M. (1976). “A new
Arabic Grammar of the written language.” Lund
Humphries London.

Hmeidi, Ismail; Kanaan, Ghassan; and Evens, Martha
(1997). “Design and Implementation of Automatic
Indexing for Information Retrieval with Arabic
Documents.” Journal of the American Society for
Information Science. 48(10) (pp. 867-881), 1997.

Idrissi, Ali (1997). “Plural Formation in Arabic.” In
Current issues in Linguistic Theory, Perspectives on
Arabic Linguistics X. Edited by Mushira Eid and Robert
Ratcliffe. Vol 153, pp 123-145.

Khoja, S. and Garside, R. (1999) “Stemming Arabic text.”
Computing Department, Lancaster University,
Lancaster, United Kingdom.
http://www.comp.lancs.ac.uk/computing/users/khoja/ste
mmer.ps

Kiraz, G. (1996a). Analysis of the Arabic broken plural
and diminutive. In Proceedings of the 5th International
Conference and Exhibition on Multi-Lingual
Computing. Cambridge.

Larkey, L. S. and Connell, M. E. (2001) “Arabic
information retrieval at UMass in TREC-10.” In TREC
2001. Gaithersburg: NIST, 2001.

Larkey, L.; Ballesteros, L.; and Connell, M.E (2002).
“Improving Stemming for Arabic Information Retrieval:
Light Stemming and Co-occurrence Analysis.” In
SIGIR’02, August 11-15, 2002, Tampere, Finland, pp
275–282, 2002.

Manning, Christopher D. and Schutze, Hinrich (1999).
“Foundations of Statistical Natural Language
Processing.”

McCarthy, John J.; and Prince, Alan S (1990). “Foot and
Word in Prosodic Morphology: The Arabic Broken
Plural.” Natural Language and Linguistic Theory 8,
209–282.

Quinlan, J. R. (1993). “C4.5: Programs for Machine Learning.”
San Mateo: Morgan Kaufmann.

