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Abstract 

Although there have been many research pro-
jects to extract protein pathways, most such infor-
mation still exists only in the scientific literature, 
usually written in natural languages and defying 
data mining efforts. We present a novel and robust 
approach for extracting protein-protein interactions 
from the literature. Our method uses a dynamic 
programming algorithm to compute distinguishing 
patterns by aligning relevant sentences and key 
verbs that describe protein interactions. A match-
ing algorithm is designed to extract the interactions 
between proteins. Equipped only with a protein 
name dictionary, our system achieves a recall rate 
of about 80.0% and a precision rate of about 80.5%.  

1 Introduction 

Recently there are many accomplishments in 
literature data mining for biology, most of which 
focus on extracting protein-protein interactions. 
Most of such information is scattered in the vast 
scientific literature. Many research projects have 
been designed to collect protein-protein interaction 
data. Several databases are constructed to store 
such information, for example, Database of Inter-
acting Proteins (Xenarios et al., 2000; Salwinski et 
al., 2004). Most of the data in these databases were 
accumulated manually and inadequately, at high 
costs. Yet, scientists continue to publish their 
discoveries on protein-protein interactions in scien-
tific journals, without submitting their data to the 
databases. The fact is that most protein-protein 
interaction data still exist only in the scientific 
literature, written in natural languages and hard to 
be processed with computers.  

How to extract such information has been an 
active research subject. Among all methods, 
natural language processing (NLP) techniques are 
preferred and have been widely applied. These 
methods can be regarded as parsing-based methods. 
Both full and partial (or shallow) parsing strategies 
have been used. For example, a general full parser 

with grammars applied to the biomedical domain 
was used to extract interaction events by filling 
sentences into argument structures in (Yakushiji et 
al., 2001). No recall or precision rate was given. 
Another full parsing method, using bidirectional 
incremental parsing with combinatory categorial 
grammar (CCG), was proposed (Park et al., 2001). 
This method first localizes the target verbs, and 
then it scans the left and right neighborhood of the 
verb respectively. The lexical and grammatical 
rules of CCG are even more complicated than 
those of a general CFG. The recall and precision 
rates of the system were reported to be 48% and 
80%, respectively. Another full parser utilizing a 
lexical analyzer and context free grammar (CFG), 
extracts protein, gene and small molecule inter-
actions with a recall rate of 63.9% and a precision 
rate of 70.2% (Temkin et al., 2003). Similar 
methods such as preposition-based parsing to gene-
rate templates were proposed (Leroy and Chen, 
2002), processing only abstracts with a template 
precision of 70%. A partial parsing example is the 
relational parsing for the inhibition relation (Pus-
tejovsky et al., 2002), with a comparatively low 
recall rate of 57%. In conclusion, all the methods 
are inherently complicated, requiring many re-
sources, and the performances are not satisfactory.  
Some methods only focus on several special verbs. 

Another popular approach uses pattern matching. 
As an example, a set of simple word patterns and 
part-of-speech rules were manually coded, for each 
verb, to extract special kind of interactions from 
abstracts (Ono et al., 2001). The method obtains a 
recall rate of about 85% and a precision rate of 
about 94% for yeast and Escherichia coli, which is 
the best among all reported results. However, 
manually writing patterns for every verb is not 
practical for general purpose applications. In 
GENIES, more complicated patterns with syntactic 
and semantic constraints are used (Friedman et al., 
2001). GENIES even uses semantic information. 
However, GENIES' recall rate is low. In the above 
methods, patterns are hand-coded without 
exception. Because there are many verbs and their 
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variants describing protein interactions, manually 
coding patterns for every verb and its variants is 
not feasible in practical applications.  

Most of the above methods process MEDLINE 
abstracts (Ng and Wong 1999; Thomas et al., 2000; 
Park et al., 2001; Yakushiji et al., 2001; Wong, 
2001; Marcotte et al., 2001; Leroy and Chen, 
2002). Because there is neither an accurate task 
definition on this problem nor a standard 
benchmark, it is hard to compare the results fairly 
among various methods (Hirschman et al., 2002). 
Furthermore as MEDLINE has become a standard 
resource for researchers, the results on the more 
difficult task of mining full text have been largely 
ignored. 

In this paper, we propose a novel and surprising-
ly robust method to discover patterns to extract 
interactions between proteins. It is based on 
dynamic programming (DP). In the realm of 
homology search between protein or DNA se-
quences, global and local alignment algorithm has 
been thoroughly researched (Needleman and 
Wunsch, 1970; Smith and Waterman, 1981). In our 
method, by aligning sentences using dynamic 
programming, the similar parts in sentences could 
be extracted as patterns. Compared with the pre-
vious methods, our proposal is different in the fol-
lowing ways: Firstly, it processes full biomedical 
texts, rather than only abstracts. Secondly, it auto-
matically mines verbs for describing protein inter-
actions. Thirdly, this method automatically dis-
covers patterns from a set of sentences whose 
protein names are identified, rather than manually 
creating patterns as most previous methods. Lastly, 
our method has low time complexity. It is able to 
process very long sentences. In contrast, for any 
full or partial parsing method, it is time- and 
memory-consuming to process long sentences. 

2 Method 

2.1 Alignment algorithm 

Suppose we have two sequences ),...,,( 21 nxxxX =  
and ),...,,( 21 myyyY =  which are defined over the 
alphabet }'',...,,{ 21 −==Σ laaa . Each ai is called as a 
character, and '-'  denotes a white-space or a gap. 
We want to assign a score to measure how similar 
X and Y are. Define F(i,j) as the score of the 
optimal alignment between the initial segment 
from x1 to xi of X and the initial segment from y1 to 
yj of Y. F(i,j) is recursively calculated as follows: 
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where s(a,b) is defined as follows: 

]))(*)((),(log[),( bpapbapbas =                (2) 
Here, p(a) denotes the appearance probability of 
character a, and p(a,b) denotes the probability that 
a and b appear at the same position in two aligned 
sequences. Probabilities p(a) and p(a,b) can be 
easily estimated by calculating appearance fre-
quencies for each pair with pre-aligned training 
data.  

Note that the calculation of scores for a gap will 
be different. In formula (2), when a or b is a gap, 
the scores can not be directly estimated by the 
formula because of two reasons: 1) the case that a 
gap aligns to another gap will never happen in the 
alignment algorithm since it is not optimal, 
therefore, what s('-', '-') exactly means is unclear;  2) 
Gap penalty should be negative, but it is unclear 
what p('-') should be. In DNA sequence alignment, 
these gap penalties are simply assigned with 
negative constants. Similarly, we tune each gap 
penalty for every character with some fixed 
negatives. Then a linear gap model is used. 

Given a sequence of gaps with length n which 
aligns to a sequence of ),...,,( 21 nxxxX =  with no gaps, 
the linear penalty is as follows: 
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For sequence X of length n and sequence Y of 
length m, totally (n+1)*(m+1) scores will be 
calculated by applying equation (1a-b) recursively. 
Store the scores in a matrix F=F(xi, yi). Through 
back-tracing in F, the optimal local alignment can 
be found. 

In our method, the alphabet consists of three 
kinds of tags: 1) part-of-speech tags, as those used 
by Brill’s tagger (Brill et al., 1995); 2) tag PTN for 
protein names; 3) tag GAP for a gap or white-space. 
Gap penalties for main tags are shown in Table 1. 

 
Tag Penalty Tag Penalty Tag Penalty
PTN -10 IN -6 VBP -7 
NN -8 CC -6 VBD -7 
NNS -7 TO -1 VBG -7 
VBN -7 VB -7 VBZ -7 
RB -1 JJ -1 

Table 1. Gap penalties for main tags 

2.2 Pattern generating algorithm 

For our problem, a data structure called se-
quence structure, instead of a flat sequence, is used. 
Sequence structure consists of a sequence of tags 
(including PTN and GAP) and word indices in the 
original sentence for each tag (for tag PTN and 
GAP, word indices are set to -1). Through the 
structure, we are able to trace which words align 
together. 
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Similarly, we also use another data structure 
called pattern structure which is made up of three 
parts: a sequence of tags; an array of word index 
lists for each tag, where each list defines a set of 
words for a tag that can appear at the correspond-
ing position of a pattern; a count of how many 
times the pattern has been extracted out in the 
training corpus. With the structure, the pattern 
generating algorithm is shown in Figure 1. The 
filtering rules are listed in Table 2.  

Note that a threshold d is used in the algorithm. 
If a pattern appears less than d times in the corpus, 
it will be discarded; otherwise those infrequent 
patterns will cause many matching errors. Through 
adjusting this parameter, generalization and usabi-
lity of patterns can be controlled. The larger the 
threshold is, the more general and accurate 
patterns are.  

Tags like JJ (adjective) and RB (adverb) are too 
common and can appear at every position in a 
sentence; hence if patterns include such kind of 
tags, they lose the generalization power. Some 
tags such as DT (determiner) only play a func-
tional role in a sentence and they are useless to 
pattern generation. Therefore, just as the first step 
in our algorithm shown in Figure 1, we remove 
directly the useless tags such as JJ, JJS (super-
lative adjective), JJR (comparative adjective), RB, 
RBS (superlative adverb), RBR (comparative 
adverb) and DT from the sequences. Furthermore, 
to control the form of a pattern, filtering rules 
shown in Table 2 are adapted. Verb or noun tags 
define interactions between proteins, thus they are 
indispensable for a pattern, as the first rule shows. 
The second rule guarantees the integrality of a 
pattern because tags like IN and TO must be 
followed by an object. The last one requires 
symmetry between the left and right neighborhood 
of CC tag. Actually more rigid or looser filtering 
rules than those shown in Table 2 can be applied 
to meet special demands, which will affect the 
forms of patterns. 

 

Table 2. Filtering rules. 

2.3 Pattern matching algorithm 

Because one pattern possibly matches a sen-
tence at different positions, we have to explore an 
algorithm that is able to find out multiple matches. 

 
Figure 1. Pattern generating algorithm. Time com-
plexity is O(n2) in the corpus size n. 

 
Here if we think a pattern as a motif, and sentence 
as a protein sequence, then our task is similar to 
finding out all motifs in the sequence. 

Suppose that ),...,,( 21 nxxxX =  is the sequence of 
tags for a sentence in which we look for multiple 
matches, and ),...,,( 21 myyyY =  is a pattern. We still 
use a score matrix F, while the recurrence, defined 
by formulas (4a-b), is different from that of pattern 
generating algorithm. Formula (4a) only allows 
matches to end when they have score at least T.  
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The total score of all matches is obtained by 
adding an extra cell to the matrix, F(n+1,0), using 
(4a). By tracing back from cell (n+1,0) to (0,0), 
the individual match alignments will be obtained. 
Threshold T should not be identical for different 
patterns. Threshold T is calculated as follows: 

∑=
=

m
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1

),(η                                (5) 

where η  is a factor, in our method we take η=0.5. 
The right hand of formula (5) is the maximum 
score when a pattern matches a sentence perfectly. 

A match is accepted only when three conditions 
are satisfied: 1) a pattern has a local optimal match 
with the sentence; 2) words in matching part of the 
sentence can be found in the word set of the 
pattern; 3) decision rules are satisfied.  

1. If a pattern has neither verb tag nor noun 
tag, reject it. 

2. If the last tag of a pattern is IN or TO, 
reject it. 

3. If the left neighborhood of a CC tag is not 
equal the right neighborhood of the tag in 
a pattern, reject the pattern. 

Input:  an integer d,  
a sequence set ),...,,( 21 nsssS =  

Output: pattern set P 
1. Remove useless tags from each si in S 
2. For any )(),( jiSss ji ≠∈  do 

a) Do local alignment for si and sj. Aligned 
output is Xa and Yb; 

b) Extract the identical characters at the same 
positions in Xa and Yb as pattern p. Add the 
corresponding word indices to pattern
structure; 

c) Judge whether p is legal, using the filtering 
rules. If it is illegal, go to step 2; 

d) If p exists in P, increase the count of p 
with 1. If not, add p to P with a count of 1;

3. For every p in P , do 
If the count of p is less than d, discard p;

4. Output P.
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Figure 2. Pattern matching algorithm. Time com-
plexity of |))|*|*(||(| pXPO in pattern set size |P|, 
sequence length |X| and average length of pattern 

|| p  
 

To show details how well a pattern matches a 
sentence, a measurement data structure is defined, 
which is formalized as a vector. It will be referred 
to as mVector: 

 ),,,( cVbcPtncMatchcLenmVector =                  (6) 
where cLen is the length of a pattern; cMatch is 
the number of matched tags; cPtn is the number of 
protein name tag (PTN) skipped by the alignment 
in the sentence;  cVb is the number of skipped 
verbs. Based on the structure, decision rules 
shown in Table 3 are used in the pattern matching. 
There are two parameters P and V used in the 
decision rules, which can be adjusted according to 
the performance of the experiments. Here we take 
P=0 and V=2.  
 

 
Table 3. Decision rules.  

3 System overview 

Our system uses the framework of Pathway-
Finder (Yao et al., 2004). It consists of several 
modular components, as shown in Figure 3.  

The external resource required in our method is 
a dictionary of protein names, where about 60,000 
items are collected from both databases of 

PathwayFinder and several web databases, such as 
TrEMBL, SWISSPROT (O'Donovan et al., 2002), 
and SGD (Cherry et al., 1997), including many 
synonyms. The training corpus contains about 
1200 sentences which will be explained with 
details in the next section. Patterns generated at the 
training phase are stored in the pattern database.  

For an input sentence, firstly some filtering rules 
are adapted to remove useless expressions at the 
pre-processing phase. For example, remove 
citations, such as '[1]', and listing figures, such as 
'(1)'. Then protein names in the sentence are 
identified according to the protein name dictionary 
and the names are replaced with a unique label. 
Subsequently, the sentence is part-of-speech 
tagged by Brill’s tagger (Brill et al., 1995), where 
the tag of protein names is changed to tag PTN. 
Last, since a sequence of tags is obtained, it can be 
added into the corpus at the training phase or it can 
be used by the matching algorithm at the testing 
phase.  

Because the pattern acquisition algorithm is 
aligning sequences of tags, the accuracy of part-of-
speech tagging is crucial. However, Brill’s tagger 
only obtained overall 83% accuracy for biomedical 
texts. This is because biomedical texts contain 
many unknown words. Here we propose a simple 
and effective approach called pre-tagging strategy 
to improve the accuracy, just as the method used 
by (Huang et al., 2004). 

Figure 3. Architecture of our system. 

4 Results 

Our evaluation experiments are made up of three 
parts: mining verbs for patterns, extracting patterns 
and evaluating precision and recall rates. 

4.1 Mining verbs 

The algorithm shown in Figure 1 is performed 
on the whole corpus and one more filtering rule as 
follows, is used, besides those in Table 2: 

     If the pattern has no verb tag, reject it. 
With this rule, only patterns that have verbs are 

extracted. Here the threshold d is set to 10 to 
obtain high accurate verbs for the subsequent 

Input:  a pattern set ),...,,( 21 npppP = ,  
a sequence X 

Output: aligned result set R  
1. For every pattern pi in P, do 

a) Set threshold T for pattern pi, using 
formula (5); 

b) For X and the sequence of pattern pi; build 
score matrix F using formula (4a-b); 

c) Trace-back to find multiple matches. The 
results are },,,{ 21 araar XXXA L= ;  

d) For every result Xai  in Ar 
i. Check whether every word in Xai aligned 

to pi appears in the corresponding position 
of pi,   if not, go to step d); 

ii. Fill all data in mVector ; 
iii. Determine to accept or reject the match 

according to decision rules. If reject, go to 
step d); 

iv. Add Xai to the result set R; 
2. Output R. 

Input: two parameters P and V 
1. If cMatch ≠ cLen, reject the match; 
2. if cPtn > P, reject the match; 
3. if  cVb > V, reject the match;  

Protein Name 
Identification 

Generating 
Algorithm 

Sentence Protein interactions 

Corpus 

Matching algorithm Preprocessing

Protein Name
Database 

Pattern 
Database

POS Tagger 

Train
Test
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experiments. Totally 94 verbs are extracted from 
367 verbs for describing interactions. Note that 
different tense verbs that have the same base form 
are counted as different ones. There are false 
positives which do not define interactions seman-
tically at all, such as 'affect', 'infect', 'localize', 
amounting to 16. Hence the accuracy is 83.0%.  

These verbs and their variants, particularly the 
gerund and noun form, (obtained from an English 
lexicon) are added into a list of filtering words, 
which is named as FWL (Filtering Word List). For 
example, for verb 'inhibit', its variants including 
'inhibition', 'inhibiting', 'inhibited' and 'inhibitor' 
are added into FWL. At the current phase, we add 
all verbs into FWL, including false positives 
because we think these verbs are also helpful to 
understand pathway networks between proteins.  

4.2 Extracting patterns 

Pattern generating algorithm is performed on the 
whole corpus with FWL. The threshold d is 5 here. 
The filtering rules in Table 2, plus the following 
rule, are applied. 

If a pattern has any verb or noun that is not in 
FWL, reject it. 

This ensures that the patterns have a good form 
and all their words are valid. In other word, this 
rule guarantees that the main verbs or nouns in 
every pattern exactly describe protein interactions. 
The experiment runs on about 1200 sentences, with 
threshold d=5, and 134 patterns are obtained.  
Some of them are listed in Figure 4.  

4.3 Evaluating precision and recall rates 

In this part, three tests are performed. The first 
test uses 383 sentences that only contain keyword 
interact and its variants. 293 of them are used to 
extract patterns and the rest are tested. The second 
one uses 329 sentences that only contain key word 
bind and its variants. 250 of them are used to 
generate patterns and the rest are tested. The third 
one uses 1205 sentences with all keywords, where 
1020 are used to generate patterns, the rest for test. 
As described before, we do not exclude those verbs 
such as 'affect', 'infect' and so on, therefore 
relations between proteins defined by these verbs 
or nouns are thought to be interactions. Note that 
the testing and training sentences are randomly 
partitioned, and they do not overlap in all these 
tests. The results are shown in Table 4. Some 
matching examples are shown in Figure 5. Simple 
sentences as sen1-2 are matched by only one 
pattern. But it is more common that several 
patterns may match one sentence at different 
positions, as in sen3-4. In examples sen5, the same 
pattern matches repeatedly at different positions 
since we used a 'multiple matches' algorithm.  

Keywords Recall Precision F-score 
Interact 80.5% 84.6% 82.5%
Bind 81.7% 82.8% 82.2%
All verbs 79.9% 80.3% 80.2%

Table 4. The recall and precision experiments.  

5 Discussion  

We have proposed a new method for automa-
tically generating patterns and extract protein 
interactions. In contrast, our method outperforms 
the previous methods in two main aspects: first, it 
automatically mines patterns from a set of sen-
tences whose protein names are identified; second, 
it is competent to process long and complicated 
sentences from full texts. 

In our method, a threshold d is used to control 
both the number of patterns and the generalization 
power of patterns. Although infrequent patterns are 
filtered by a small threshold, a glance to these 
patterns is meaningful. For example, on 293 
sentences containing keyword 'interact' and its 
variants, patterns whose count equals one are 
shown in Figure 6. Among the results, some are 
reasonable, such as 'PTN VBZ IN PTN IN PTN ' 
(protein1 interacts with protein2 through protein3). 
These kinds of patterns are rejected because of 
both insufficient training data and infrequently 
used expressions in natural language texts. Some 
patterns are not accurate, such as 'NNS IN PTN 
PTN PTN ', because there must be a coordinating 
conjunction between the three continuous protein 
names, otherwise it will cause many errors. Some 
patterns are even wrong, such as 'PTN NN PTN ' 
because there are never such segment 'protein1 
interaction protein2' defining a real interaction 
between protein1 and protein2. Some patterns, such 
as 'PTN VBZ IN CC IN PTN ' which should be 
'PTN VBZ IN PTN CC IN PTN ' (protein1 interacts 
with protein2 and with protein3), are not precise 
because the last filtering rule in Table 2 is used.  

Nevertheless, these patterns can be filtered out 
by the threshold. However, how to evaluate and 
maintain patterns becomes a real problem. For 
example, when the pattern generating algorithm is 
applied on about 1200 sentences, with a threshold 
d=0, approximate 800 patterns are generated, most 
of which appeared only once in the corpus. It is 
necessary to reduce such large amount of patterns. 
A MDL-based algorithm that measures the con-
fidence of each pattern and maintains them without 
human intervention is under development. 

Because our matching algorithm utilizes part-of-
speech tags, and our patterns do not contain any 
adjective (JJ), interactions defined by adjectives, 
such as 'inducible' and 'inhibitable', cannot be 
extracted correctly by our method currently.  
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Pattern 
Count 

Pattern 
Form 

Word lists of 
pattern 

1914 PTN VBZ PTN * ;modifies promotes inhibits activates mediates blocks enhances forms ;* ; 
758 PTN VBZ IN PTN * ; interacts associates; with in within ;* ; 
402 NN IN PTN CC PTN interaction association activation modification degradation ;between with of 

from by ;* ;and or but ;* ; 
270 PTN NN IN PTN * ;interaction complex conjugation modification association ;with of on by in 

within between ;* ; 
199 PTN VBZ TO PTN * ;binds; to ;* ; 
99 PTN VBZ IN PTN CC PTN * ;assembles interacts associates; of in with from ;* ;and but ;* ; 
16 PTN CC PTN NN IN PTN * ;and or ;* ;interaction conjugation complex ubiquitination degradation 

modification activation recognition ;between of with by ;* ; 
5 PTN VBP IN PTN * ;interact ;with ;* ; 

Figure 4. Pattern examples. The star symbol denotes a protein name. Words for each component of a pattern 
are separated by a semicolon. For simplicity, words in a pattern are partially listed. 
 

 
Figure 5. Examples of protein interactions extracted from sentences. Words in bold are protein names. For 
every sentence, the patterns used in the matching algorithm are listed, followed by the corresponding results. 
 

Pattern 
Count 

Pattern 
Form 

Word lists of 
pattern 

1 PTN VBZ IN CC IN PTN  * ;interacts ;with ;and ;with ;* ; 
1 PTN VBZ IN PTN IN PTN * ;interacts ;with ;* ;through;* ; 
1 PTN NN PTN * ;interaction ;* ; 
1 NNS IN PTN PTN PTN  interactions interaction ;with between ;* ;* ;* ; 

Figure 6. Some patterns whose count equals one are generated by our algorithm. 293 sentences containing 
keyword 'interact' and its variants are used in the training. 
 
This can be demonstrated by the following sen-
tence, where words in bold are protein names.  

 “The class II proteins are expressed 
constitutively on B-cells and EBV-transformed 
B-cells, and are inducible by IFN-gamma on a 
wide variety of cell types.”   
In this sentence, interaction between class II 

proteins and IFN-gamma is defined by an 
adjective inducible (tagged as JJ) does not match 
any pattern. To solve this problem, we are 
considering using word stemming and morpheme 
recognition to convert adjectives into their 
corresponding verbs with context. 

By analyzing our experimental results, We find 
that the current matching algorithm is not optimal 
and causes approximately one-third of total errors. 
This partially derives from the simple decision 
rules used in the matching algorithm. These rules 
may work well for some texts but partially fail for 

others because the natural language texts are 
multifarious. With these considerations, a more 
accurate and complicated matching algorithm is 
under development. 

6 Conclusion 

In this paper, a method for automatically 
generating patterns to extract protein-protein inter-
actions is proposed and implemented. The method 
is capable of discovering verbs and patterns in 
biomedical texts. The algorithm is fast and able to 
process long sentences. Experiments show that a 
recall rate of about 80% and a precision rate of 
about 80% are obtained. The approach is powerful, 
robust, and applicable to real and large-scale full 
texts. 
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