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Abstract

This paper presents our recent work

for participation in the First Interna-

tional Chinese Word Segmentation Bake-

off (ICWSB-1). It is based on a general-

purpose ngram model for word segmen-

tation and a case-based learning approach

to disambiguation. This system excels

in identifying in-vocabulary (IV) words,

achieving a recall of around 96-98%.

Here we present our strategies for lan-

guage model training and disambiguation

rule learning, analyze the system’s perfor-

mance, and discuss areas for further im-

provement, e.g., out-of-vocabulary (OOV)

word discovery.

1 Introduction

After about two decades of studies of Chinese word

segmentation, ICWSB-1 (henceforth, the bakeoff)

is the first effort to put different approaches and

systems to the test and comparison on common

datasets. We participated in the bakeoff with a

segmentation system that is designed to integrate a

general-purpose ngram model for probabilistic seg-

mentation and a case- or example-based learning

approach (Kit et al., 2002) for disambiguation.

The ngram model, with words extracted from

training corpora, is trained with the EM algorithm

(Dempster et al., 1977) using unsegmented train-

ing corpora. Originally it was developed to en-

hance word segmentation accuracy so as to facili-

tate Chinese-English word alignment for our ongo-

ing EBMT project, where only unsegmented texts

are available for training. It is expected to be ro-

bust enough to handle novel texts, independent of

any segmented texts for training. To simplify the

EM training, we used the uni-gram model for the

bakeoff and relied on the Viterbi algorithm (Viterbi,

1967) for the most probable segmentation, instead of

attempting to exhaust all possible segmentations of

each sentence for a complicated full version of EM

training.

The case-based learning works in a straightfor-

ward way. It first extracts case-based knowledge,

as a set of context-dependent transformation rules,

from the segmented training corpus, and then ap-

plies them to ambiguous strings in a test corpus in

terms of the similarity of their contexts. The simi-

larity is empirically computed in terms of the length

of relevant common affixes of context strings.

The effectiveness of this integrated approach is

verified by its outstanding performance on IV word

identification. Its IV recall rate, ranging from 96%

to 98%, stands at the top or the next to the top in all

closed tests in which we have participated. Unfortu-

nately, its overall performance is not sustainable at

the same level, due to the lack of a module for OOV

word detection.

This paper is intended to present the implementa-

tion of the system and analyze its performance and

problems, aiming at exploration of directions for fur-

ther improvement. The remaining sections are or-

ganized as follows. Section 2 presents the ngram

model and its training with the EM algorithm, and

Section 3 presents the case-based learning for dis-



ambiguation. The overall architecture of our system

is given in Section 4, and its performance and prob-

lems are analyzed in Section 5. Section 6 concludes

the paper and previews future work.

2 Ngram model and training

An ngram model can be utilized to find the most

probable segmentation of a sentence. Given a Chi-

nese sentence s = c1c2 · · · cm (also denoted as cn
1 ),

its probabilistic segmentation into a word sequence

w1w2 · · ·wk (also denoted as wk
1 ) with the aid of an

ngram model can be formulated as

seg(s) = arg max
s= w1◦w2◦···◦wk

k∏

i

p(wi|w
i−1
i−n+1) (1)

where ◦ denotes string concatenation, wi−1
i−n+1 the

context (or history) of wi, and n is the order of the

ngram model in use. We have opted for uni-gram for

the sake of simplicity. Accordingly, p(wi|w
i−1
i−n+1)

in (1) becomes p(wi), which is commonly estimated

as follows, given a corpus C for training.

p(wi)
.
= f(wi)/

∑

w∈C

f(w) (2)

In order to estimate a reliable p(wi), the ngram

model needs to be trained with the EM algorithm

using the available training corpus. Each EM itera-

tion aims at approaching to a more reliable f(w) for

estimating p(w), as follows:

fk+1(w) =
∑

s∈C

∑

s′∈S(s)

pk(s′) fk(w ∈ s′) (3)

where k denotes the current iteration, S(s) the set of

all possible segmentations for s, and f k(w∈ s′) the

occurrences of w in a particular segmentation s′.
However, assuming that every sentence always

has a segmentation, the following equation holds:
∑

s′∈S(s)

pk(s′) = 1 (4)

Accordingly, we can adjust (3) as (5) with a normal-

ization factor α =
∑

s′∈S(s) pk(s′), to avoid favor-

ing words in shorter sentences too much. In general,

shorter sentences have higher probabilities.

fk+1(w) =
∑

s∈C

∑

s′∈S(s)

pk(s′)

α
fk(w ∈ s′) (5)

Following the conventional idea to speed up the

EM training, we turned to the Viterbi algorithm. The

underlying philosophy is to distribute more prob-

ability to more probable events. The Viterbi seg-

mentation, by utilizing dynamic programming tech-

niques to go through the word trellis of a sentence

efficiently, finds the most probable segmentation un-

der the current parameter estimation of the language

model, fulfilling (1)). Accordingly, (6) becomes

fk+1(w) =
∑

s∈C

pk(seg(s)) fk(w ∈ seg(s)) (6)

and (5) becomes

fk+1(w) =
∑

s∈C

fk(w ∈ seg(s)) (7)

where the normalization factor is skipped, for

only the Viterbi segmentation is used for EM re-

estimation. Equation (7) makes the EM training

with the Viterbi algorithm very simple for the uni-

gram model: iterate word segmentation, as (1), and

word count updating, via (7), sentence by sentence

through the training corpus until there is a conver-

gence.

Since the EM algorithm converges to a local max-

ima only, it is critical to start the training with an

initial f 0(w) for each word not too far away from its

“true” value. Our strategy for initializing f 0(w) is

to assume all possible words in the training corpus

as equiprobable and count each of them as 1; and

then p0(w) is derived using (2). This strategy is sup-

posed to have a weaker bias to favor longer words

than maximal matching segmentation.

For the bakeoff, the ngram model is trained with

the unsegmented training corpora together with the

test sets. It is a kind of unsupervised training.

Adding the test set to the training data is reasonable,

to allow the model to have necessary adaptation to-

wards the test sets. Experiments show that the train-

ing converges very fast, and the segmentation per-

formance improves significantly from iteration to it-

eration. For the bakeoff experiments, we carried out

the training in 6 iterations, because more iterations

than this have not been observed to bring any signif-

icant improvement on segmentation accuracy to the

training sets.



3 Case-based learning for disambiguation

No matter how well the language model is trained,

probabilistic segmentation cannot avoid mistakes on

ambiguous strings, although it resolves most ambi-

guities by virtue of probability. For the remaining

unresolved ambiguities, however, we have to resort

to other strategies and/or resources. Our recent study

(Kit et al., 2002) shows that case-based learning is

an effective approach to disambiguation.

The basic idea behind the case-based learning is

to utilize existing resolutions for known ambiguous

strings to do disambiguation if similar ambiguities

occur again. This learning strategy can be imple-

mented in two straightforward steps:

1. Collection of correct answers from the train-

ing corpus for ambiguous strings together with

their contexts, resulting in a set of context-

dependent transformation rules;

2. Application of appropriate rules to ambiguous

strings.

A transformation rule of this type is actually an ex-

ample of segmentation, indicating how an ambigu-

ous string is segmented within a particular context.

It has the following general form:

C lα Cr : α → w1 w2 · · ·wk

where α is the ambiguous string, C l and Cr its left

and right contexts, respectively, and w1 w2 · · ·wk

the correct segmentation of α given the contexts.

In our implementation, we set the context length on

each side to two words.

For a particular ambiguity, the example with the

most similar context in the example (or, rule) base

is applied. The similarity is measured by the sum

of the length of the common suffix and prefix of,

respectively, the left and right contexts. The details

of computing this similarity can be found in (Kit et

al., 2002) . If no rule is applicable, its probabilistic

segmentation is retained.

For the bakeoff, we have based our approach to

ambiguity detection and disambiguation rule extrac-

tion on the assumption that only ambiguous strings

cause mistakes: we detect the discrepancies of our

probabilistic segmentation and the standard segmen-

tation of the training corpus, and turn them into

transformation rules. An advantage of this approach

is that the rules so derived carry out not only disam-

biguation but also error correction. This links our

disambiguation strategy to the application of Brill’s

(1993) transformation-based error-driven learning to

Chinese word segmentation (Palmer, 1997; Hocken-

maier and Brew, 1998).

4 System architecture

The overall architecture of our word segmentation

system is presented in Figure 1.

Figure 1: Overall architecture of the system

5 Performance and analysis

The performance of our system in the bakeoff is pre-

sented in Table 1 in terms of precision (P), recall

(R) and F score in percentages, where “c” denotes

closed tests. Its IV word identification performance

is remarkable.

However, its overall performance is not in bal-

ance with this, due to the lack of a module for OOV

word discovery. It only gets a small number of OOV

words correct by chance. The higher OOV propor-

tion in the test set, the worse is its F score. The rel-

atively high Roov for PKc track is, mostly, the result

of number recognition with regular expressions.

Test P R F OOV R
oov

R
iv

SAc 95.2 93.1 94.2 02.2 04.3 97.2

CTBc 80.0 67.4 73.2 18.1 07.6 95.9

PKc 92.3 86.7 89.4 06.9 15.9 98.0

Table 1: System performance, in percentages (%)



5.1 Error analysis

Most errors on IV words are due to the side-effect

of the context-dependent transformation rules. The

rules resolve most remaining ambiguities and cor-

rect many errors, but at the same time they also cor-

rupt some proper segmentations. This side-effect is

most likely to occur when there is inadequate con-

text information to decide which rules to apply.

There are two strategies to remedy, or at least al-

leviate, this side-effect: (1) retrain probabilistic seg-

mentation – a conservative strategy; or, (2) incorpo-

rate Brill’s error-driven learning with several rounds

of transformation rule extraction and application, al-

lowing mistakes caused by some rules in previous

rounds to be corrected by other rules in later rounds.

However, even worse than the above side-effect is

a bug in our disambiguation module: it always ap-

plies the first available rule, leading to many unex-

pected errors, each of which may result in more than

one erroneous word. For instance, among 430 er-

rors made by the system in the SA closed test, some

70 are due to this bug. A number of representative

examples of these errors are presented in Table 2,

together with some false errors resulting from the

inconsistency in the standard segmentation.

Errors Standard False errors Standard

2í (8) 2 í �ùŸ×D �ù Ÿ ×D

É u (7) Éu tjs—� tj s—�

. ? (7) .? ÙÍ’Ä ÙÍ ’Ä

_ A (5) _A P_,ñ P_ ,ñ

É � (4) É� 1w±Ñ 1w± Ñ

n? (4) n ? .™¤Þ . ™ ¤ Þ

Table 2: Errors and false errors

6 Conclusion and future work

We have presented our recent work for partici-

pation in ICWSB-1 based on a general-purpose

ngram model for probabilistic word segmentation

and a case-based learning strategy for disambigua-

tion. The ngram model is trained using available

unsegmented texts with the EM algorithm with the

aid of Viterbi segmentation. The learning strategy

acquires a set of context-dependent transformation

rules to correct mistakes in the probabilistic segmen-

tation of ambiguous substrings. This integrated ap-

proach demonstrates an impressive effectiveness by

its outstanding performance on IV word identifica-

tion. With elimination of the bug and false errors, its

performance could be significantly better.

6.1 Future work

The above problem analysis points to two main di-

rections for improvement in our future work: (1)

OOV word detection; (2) a better strategy for learn-

ing and applying transformation rules to reduce the

side-effect. In addition, we are also interested in

studying the effectiveness of higher-order ngram

models and variants of EM training for Chinese

word segmentation.
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