
Combining Segmenter and Chunker for Chinese Word Segmentation

Masayuki Asahara, Chooi Ling Goh, Xiaojie Wang, Yuji Matsumoto
Graduate School of Information Science

Nara Institute of Science and Technology, Japan
{masayu-a,ling-g,xiaoji-w,matsu }@is.aist-nara.ac.jp

Abstract

Our proposed method is to use a Hidden
Markov Model-based word segmenter and a
Support Vector Machine-based chunker for
Chinese word segmentation. Firstly, input sen-
tences are analyzed by the Hidden Markov
Model-based word segmenter. The word seg-
menter produces n-best word candidates to-
gether with some class information and confi-
dence measures. Secondly, the extracted words
are broken into character units and each char-
acter is annotated with the possible word class
and the position in the word, which are then
used as the features for the chunker. Finally, the
Support Vector Machine-based chunker brings
character units together into words so as to de-
termine the word boundaries.

1 Methods

We participate in the closed test for all four sets of data
in Chinese Word Segmentation Bakeoff. Our method is
based on the following two steps:

1. The input sentence is segmented into a word se-
quence by Hidden Markov Model-based word seg-
menter. The segmenter assigns a word class with
a confidence measure for each word at the hidden
states. The model is trained by Baum-Welch algo-
rithm.

2. Each character in the sentence is annotated with the
word class tag and the position in the word. The
n-best word candidates derived from the word seg-
menter are also extracted as the features. A sup-
port vector machine-based chunker corrects the er-
rors made by the segmenter using the extracted fea-
tures.

We will describe each of these steps in more details.

1.1 Hidden Markov Model-based Word Segmenter

Our word segmenter is based on Hidden Markov Model
(HMM). We first decide the number of hidden states
(classes) and assume that the each word can belong to
all the classes with some probability. The problem is de-
fined as a search for the sequence of word classesC =
c1, . . . , cn given a word sequenceW = w1, . . . , wn. The
target is to findW andC for a given inputS that maxi-
mizes the following probability:

arg max
W,C

P (W |C)P (C)

We assume that the word probabilityP (W |C) is con-
strained only by its word class, and that the class prob-
ability P (C) is constrained only by the class of the pre-
ceding word. These probabilities are estimated by the
Baum-Welch algorithm using the training material (See
(Manning and Scḧutze., 1999)). The learning process is
based on the Baum-Welch algorithm and is the same as
the well-known use of HMM for part-of-speech tagging
problem, except that the number of states are arbitrarily
determined and the initial probabilities are randomly as-
signed in our model.

1.2 Correction by Support Vector Machine-based
Chunker

While the HMM-based word segmenter achieves good
accuracy for known words, it cannot identify compound
words and out-of-vocabulary words. Therefore, we in-
troduce a Support Vector Machine(below SVM)-based
chunker (Kudo and Matsumoto, 2001) to cover the er-
rors made by the segmenter. The SVM-based chunker
re-assigns new word boundaries to the output of the seg-
menter.

An SVM (Vapnik, 1998) is a binary classifier. Sup-
pose we have a set of training data for a binary class
problem: (x1, y1), . . . , (xN , yN), wherexi ∈ Rn is a
feature vector of thei th sample in the training data and

yi ∈ {+1,−1} is the label of the sample. The goal is to
find a decision function which accurately predictsy for
an unseenx. An SVM classifier gives a decision function
f(x) for an input vectorx where

f(x) = sign(
∑

zi∈SV

αiyiK(x, zi) + b).

f(x) = +1 means thatx is a positive member, and
f(x) = −1 means thatx is a negative member. The vec-
tors zi are called support vectors, which receive a non-
zero weightαi. Support vectors and the parameters are
determined by solving a quadratic programming prob-
lem. K(x, z) is a kernel function which maps vectors
into a higher dimensional space. We use a polynomial
kernel of degree 2 given byK(x, z) = (1 + x · z)2.

The SVM classifier determines the position tag for
each character. We introduce the word class tag as the
feature, which is generated by the word segmenter. Since
we perform chunking by character units, the feature used
by the classifier will be the information for the character
unit.

The training data for our SVM-based chunker is con-
structed from the output of the HMM-based word seg-
menter defined in the previous section. In the current
setting, the HMM produces all the possible tags (class
labels) for each of the word within a predefined probabil-
ity bound. All the words in the output are then segmented
into characters, and each of the characters is tagged with
pairs of a word class and a position tag. For example,
in the paired tag “0-B”, “0” is a class label of the word
which the character belongs to and “B” indicates the char-
acter’s position in the word. The number of classes is
determined in advance of the HMM learning. The po-
sition tag consists of the following four tags (S/B/E/I):
S means a single-character word; B is the first charac-
ter in a multi-character word; E is the last character in a
multi-character word; I is the intermediate character in a
multi-character word longer than 2 characters. As shown
in Figure 1, we set the HMM-based word segmenter to
produce the classes of n-best word candidates to take into
account multiple possibility of word boundaries.

The correct word boundary can be defined by assigning
either of two kinds of tags to each of the characters. Look
at the rightmost column of Figure 1 named as “Chunker
Outputs.” The label “B” in this column shows that the
character is the first character of acorrectword, and “I”
shows that the character is the other part of a word. This
means that the preceding positions of “B” tags are the
word boundaries.

Those two tags correspond to the two classes of the
SVM chunker: In the training (and test) phrase, we use
window size of two characters to the left and right direc-
tion to learn (and estimate) the class for a character. For
example, the shadowed parts in Figure 1 are used as the

Figure 1: The Extracted Features for the Chunker

features to learn (or estimate) the word boundary tag “I”
for the character “判”.

2 Model Validation

To find out the best setting of learning, we would like to
determine “the number of word classes” and “the depth of
n-best word candidates” by using some sort of confidence
measure. We perform validation experiments for these
two types of parameters by using the training material
provided.

2.1 Validation Tests for HMM-based Word
Segmenter

The first validation experiment is to determine “the num-
ber of word classes” of the HMM. 80% of the material is
used for the HMM training, and the other 20% is used as
the validation set. We test two settings for the number of
classes – 5 & 10. The results are shown in Table 1.

Table 1: Validation Results for HMM
Data # of classes Rec. Prec. F
AS 5 0.845 0.768 0.804
AS 10 0.900 0.857 0.878

CTB 5 0.909 0.844 0.875
CTB 10 0.912 0.848 0.879
HK 5 0.867 0.742 0.799
HK 10 0.867 0.741 0.799
PK 5 0.942 0.902 0.921
PK 10 0.944 0.905 0.924

In most cases, models perform slightly better with the
increasing of the number of classes. When the corpus
size is large like the Academia Sinica data, this tendency
becomes more significant.

Whereas it is known that the Baum Welch algorithm is
very sensitive to the initialization of the classes, we ran-
domly assigned the initial classes without making much
effort. There are two reasons: (1) Since the word seg-
menter outputs are used as the clues to the chunker in our
method, we only need some consistent class annotations.
(2) The initial classes did not affect on the word segmen-
tation accuracy in our pilot experiments.

2.2 Validation Tests for SVM-based Chunker

The second validation test is for the chunking model to
determine both “the number of word classes” and “the
depth of the n-best candidates”. 80% of the material used
for the HMM training, another 10% is used for the chunk-
ing model training and the last 10% is used for the val-
idation test. The results are shown in Table 2, 3 and 4.
Since the training of this model is time- and resource-
consuming, the Academia Sinica data being very large
could not get enough time to finish the validation test.

Table 2: Validation Results (CTB) for Chunking
of classes n-best Rec. Prec. F

5 1 0.957 0.930 0.943
5 2 0.957 0.931 0.944
5 3 0.957 0.930 0.943
5 4 0.957 0.930 0.943
10 1 0.956 0.929 0.943
10 2 0.957 0.928 0.942
10 3 0.956 0.929 0.942
10 4 0.955 0.928 0.941

Table 3: Validation Results (HK) for Chunking
of classes n-best Rec. Prec. F

5 1 0.853 0.793 0.822
5 2 0.859 0.799 0.828
5 3 0.859 0.799 0.828
5 4 0.859 0.800 0.828
10 1 0.856 0.793 0.823
10 2 0.858 0.797 0.826
10 3 0.857 0.796 0.826
10 4 0.858 0.797 0.826

The results show that the chunker actually improves
the word segmentation accuracy compared with the out-
put of the HMM word segmenter for these three data sets.
The segmentation errors made by the word segmenter for
compound words and unknown words are corrected. The

Table 4: Validation Results (PK) for Chunking
of classes n-best Rec. Prec. F

5 1 0.960 0.934 0.947
5 2 0.961 0.935 0.948
5 3 0.962 0.936 0.949
5 4 0.962 0.935 0.948
10 1 0.961 0.932 0.946
10 2 0.962 0.935 0.948
10 3 0.961 0.934 0.947
10 4 0.961 0.934 0.947

improvement in Chinese Treebank (CTB) data set is sig-
nificant, because the data set contains many compound
words.

There is no significant difference in the results between
the different depths of n-best answers. Still, we choose
the best model for the test materials among them. If we
need to have a faster analyzer, we should employ only the
best answer of the word segmentation.

For the HMM, the larger number of classes tends to
get better accuracy than smaller ones. However, for the
chunking model, the result is the other way round. The
model with the smaller number of classes gets slightly
better accuracy. So, there should be trade-off between
smaller and larger number of classes.

3 Final Models for Test Material

For the final models, 80% of the training material is used
for HMM training and 100% of the material is used for
the chunking model training. The parameters, namely
“the number of word classes” and “the depth of n-best
word candidates”, are determined by the validation tests
described in Section 2. While there is no significant dif-
ference between the depths of n-best answers, we choose
the best model among them for the testing. The parame-
ters are shown in Table 7.

We cannot create the model using all the original
Academia Sinica data because of its large size. Therefore,
we use 80% of the data for HMM training (5 classes) and
only 10% for chunking model training (with only the best
candidates).

Table 7: The Models for the Test Material
– with respect to F-Measure in Our Validation Test

Data # of classes n-best F
AS 5 1 N/A

CTB 5 2 0.943
HK 5 4 0.828
PK 5 3 0.948

Table 5: Throughput Speeds (characters per second)
Data Word Seg. (# of words) Fea. Ext. (n-best) Chunker (# of SV) Total Speed
AS 57000 (462750) 7640 (Only Best) 279 (96452) 241

CTB 54400 (77324) 4040 (to 2nd Best) 894 (16736) 671
HK 38900 (93231) 3870 (to 4th Best) 649 (14904) 524
PK 57400 (215865) 6209 (to 3rd Best) 254 (49736) 200

Table 6: Results for the Test Materials
Data T. Rec. T. Prec. F OOV Rec. IV Rec. Ranking
AS 0.944 0.945 0.945 0.574 0.952 3rd/6

CTB 0.852 0.807 0.829 0.412 0.949 8th/10
HK 0.940 0.908 0.924 0.415 0.980 5th/6
PK 0.933 0.916 0.924 0.357 0.975 2nd/4

4 Throughput Speeds

As described, our system is based on three modules:
HMM-based word segmenter, Feature extractor and
SVM-based chunker. The word segmenter is composed
by ChaSen(written in C/C++) (Matsumoto et. al., 2003)
which is adopted for GB/Big5 encoding. The feature
extractor is written in Perl. The SVM-based chunker is
composed byYamCha(written in C++) (Kudo and Mat-
sumoto, 2001).

Table 5 shows the speeds1 of the three modules indi-
vidually and of the total system. “# of words” means the
size of the word segmenter lexicon. Note that, if a word
belongs to more than one class, we regard them as differ-
ent words in our definition. “# of SV” means the number
of support vectors in the chunker. The total system speed
depends highly on that of the chunker. It is known that
the speed of SVM classifiers depends on the number of
support vectors and the number of features.

5 Conclusion

We presented our method for Chinese Word Segmenta-
tion Bakeoff in 2nd SIGHAN Workshop. The results for
the test materials are shown in Table 6. The proposed
method is purely corpus-based statistical/machine learn-
ing method. Although we did not incorporate any heuris-
tic rules (e.g. part-of-speeches, functional words and
concatenation for numbers) into the model, the method
achieved considerable accuracy for the word segmenta-
tion task.

Acknowledgments

We thank Mr. Taku Kudo of NAIST for his development
of the SVM-based chunkerYamCha.

1The throughput speeds are measured on a machine: In-
tel(R) Xeon(TM) CPU 2.80GHz× 2, Memory 4GB, RedHat
Linux 9.

References

T. Kudo and Y. Matsumoto. 2001. Chunking with Sup-
port Vector Machines. InProc. of NAACL 2001, pages
192–199.

C. D. Manning and H. Scḧutze. 1999. Foundation of
Statistical Natural Language Processing.Chapter 9.
Markov Models, pages 317–340.

Y. Matsumoto, A. Kitauchi, T. Yamashita, Y. Hirano, K.
Takaoka and M. Asahara 2003. Morphological Ana-
lyzer ChaSen-2.3.0 Users Manual Tech. Report. Nara
Institute of Science and Technology, Japan.

L. A. Ramshaw and M. P. Marcus. 1995 Text chunking
using transformation-bases learning InProc. of the 3rd
Workshop on Very Large Corpora, pages 83–94.

V. N. Vapnik. 1998. Statistical Learning Theory.A
Wiley-Interscience Publication.

