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Abstract 

The acoustic features used in forensic 
voice comparison (FVC) are correlated in 
almost all cases. A sizeable proportion of 
FVC studies and casework has relied, for 
statistical modelling, on the multivariate 
kernel density likelihood ratio 
(MVKDLR) formula, which considers the 
correlations between the features and 
computes an overall combined likelihood 
ratio (LR) for the offender-suspect com-
parison. However, following concerns 
over the robustness of the MVKDLR, in 
particular its computational weakness and 
numerical instability specifically when a 
large number of features are employed, the 
principal component analysis kernel densi-
ty likelihood ratio (PCAKDLR) approach 
was developed as an alternative. In this 
study, the performance of the two ap-
proaches is investigated and compared us-
ing Monte Carlo-simulated synthetic data 
based on the 16th-order Mel Frequency 
Cepstrum Coefficients extracted from the 
long vowel /e:/ segments of spontaneous 
speech uttered by 118 native Japanese 
male speakers. Performance is assessed in 
terms of validity (= accuracy) and reliabil-
ity (= precision), with the log-likelihood 
ratio cost (Cllr) being used to assess validi-
ty and the 95% credible interval (95%CI) 
to assess reliability. 

1 Introduction 

In many branches of the forensic sciences, includ-
ing fingerprint (Neumann et al., 2007), handwrit-
ing (Marquis et al., 2011), voice (Morrison, 
2009a), DNA (Evett et al., 1993), glass fragments 
(Curran, 2003), earmarks  and footwear marks 
(Evett et al., 1998), strength of evidence is widely 

measured using the LR framework, increasingly 
accepted as the standard framework for forensic 
inference and statistics. Calculating an LR for 
voice evidence requires, as a first step, that each 
individual’s evidence (e.g. offender and suspect 
recordings) be modelled using various acoustic 
features (e.g. formant frequencies) that are corre-
lated almost without exceptions. However, esti-
mating an LR based on correlated variables is not 
a simple problem; it was addressed by Aitken and 
Lucy (2004), resulting in the development of the 
multivariate kernel density likelihood ratio 
(MVKDLR) approach. The MVKDLR has been 
extensively used, especially in acoustic-phonetic 
based forensic voice comparison (FVC) 
(Kinoshita et al., 2009; Morrison, 2009b), but was 
recently shown to be prone to instability, in par-
ticular when the number of features for modelling 
is too high (e.g. features ≥ 5-6). The MVKDLR 
formula has the propensity to collapse when some 
of the covariance matrices of the offender and 
suspect data are ill-conditioned (e.g. sparse data, 
large number of input features) (Nair et al., 2014, 
pp. 90-91). This has motivated the development of 
an alternative, known as the principal component 
analysis kernel density likelihood ratio 
(PCAKDLR) approach (Nair et al., 2014).  

To date, FVC studies in which the PCAKDLR 
is used to estimate LRs are limited; thus we don’t 
know how the PCAKDLR performs in compari-
son to the MVKDLR (cf. Enzinger, 2016). To ad-
dress this gap in our knowledge, the current study 
seeks to compare the performance of the 
MVKDLR and PCAKDLR approaches when the 
number of features for modelling changes, using 
synthetic data generated by Monte Carlo simula-
tions (Fishman, 1995). The outcomes (scores) of 
the two approaches are calibrated using the lo-
gistic-regression calibration technique proposed 
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by Brümmer and du Preez (2006). The perfor-
mance of the approaches is assessed in terms of 
validity (= accuracy), for which the metric is the 
log-likelihood-ratio cost (Cllr) (Brümmer & du 
Preez, 2006), as well as reliability (= precision), 
for which the metric is the 95% credible interval 
(95%CI) (Morrison, 2011). 

2 Likelihood Ratio 

The likelihood ratio (LR), a measure of the quan-
titative strength of evidence, is a ratio of two con-
ditional probabilities: one is the probability (p) of 
observed evidence (E) assuming that one hypoth-
esis (e.g. prosecution = Hp) is true; the other is the 
probability of the same observed evidence assum-
ing that the alternative hypothesis (e.g defence = 
Hd) is true (Robertson & Vignaux, 1995). Thus, 
the LR can be expressed as 1).  

In the case of FVC, the LR will be the proba-
bility of observing the difference between the of-
fender’s and the suspect’s speech samples (re-
ferred to as the evidence, E) if they had been 
produced by the same speaker (Hp) relative to the 
probability of observing the same evidence (E) if 
they had been from different speakers (Hd). The 
relative strength of the given evidence with re-
spect to the competing hypotheses (Hp vs. Hd) is 
reflected in the magnitude of the LR. The more 
the LR deviates from unity (LR = 1; logLR = 0), 
the greater support for either the prosecution hy-
pothesis (LR > 1; logLR > 0) or the defence hy-
pothesis (LR < 1; logLR < 0).  

The important point is that the LR is con-
cerned with the probability of the evidence, giv-
en the hypothesis (either Hp or Hd), which is the 
province of forensic scientists, while the trier-of-
fact is concerned with the probability of the hy-
pothesis, given the evidence. That is, the ultimate 
decision as to whether the suspect is guilty or not 
does not lie with the forensic expert, but with the 
court. The role of the forensic scientist is to esti-
mate the strength of evidence (= LR) with a view 
to help the trier-of-fact make a final decision 
(Morrison, 2009a, p. 229).  

3 Database, target segment, and speak-
ers 

In this study, monologues from the Corpus of 
Spontaneous Japanese (CSJ) (Maekawa et al., 

2000) are used for FVC experiments. The record-
ings are 10-25 minutes long.  

For this study, it was decided to target fillers. 
Fillers are sounds or words (e.g. um, you know, 
like in English) uttered by a speaker to signal that 
he/she is thinking or hesitating. The filler /e:/ and 
the /e:/ segment of the filler /e:to:/ were chosen 
because i) they are two of the most frequently 
used fillers in Japanese (many monologues con-
tain at least ten of them) (Ishihara, 2010), ii) the 
vowel /e/ reportedly has the strongest speaker-
discriminatory power out of the five Japanese 
vowels /i,e,a,o,u/ (Kinoshita, 2001), and iii) the 
segment /e:/ is significantly long so that it is easy 
to extract stable spectral features from this seg-
ment. It is also considered that fillers are uttered 
unconsciously or semiconsciously by the speaker 
and carry no lexical meaning. They are thus not 
likely to be affected by the pragmatic focus of 
the utterance. 

For the experiments, speakers were selected 
from the CSJ based on five criteria: i) availability 
of two non-contemporaneous recordings per 
speaker (n.b. suspect and offender recordings are 
non-contemporaneous in real cases), ii) high 
spontaneity of speech (e.g. not reading), iii) ex-
clusive use of standard modern Japanese, iv) 
presence of at least ten /e:/ segments, and v) 
availability of complete annotation of the data. 
As the researchers had real casework in mind, 
only male speakers were chosen for experiments. 
This is because males are more likely to commit 
crimes than females (Kanazawa & Still, 2000). 
The five criteria combined resulted in 236 re-
cordings (118 speakers x 2 
non-contemporaneous recordings), all of which 
were used in our experiments. 

The 118 speakers were divided into three mu-
tually exclusive sub-databases: the test database 
(40 speakers), the background database (39 
speakers) and the development database (39 
speakers). Each speaker in these databases has 
two recordings that are non-contemporaneous. 
The first ten /e:/ segments were annotated in each 
recording. Thus, for example, there are 800 an-
notated /e:/ segments in the test database (= 40 
speakers x 2 sessions x 10 segments). Data spar-
sity is a common issue in FVC. Ten samples for 
each recording can be judged as a realistic set-
ting. All statistics required for conducting Monte 
Carlo simulations were calculated using these da-
tabases. 

The speaker comparisons derived from the test 
database were used to assess the performance of 
the FVC system. The background database was 

LR=
p(E|Hp)
p(E|Hd)

 1) 
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used as a background reference population, and 
the development database was for obtaining the 
logistic-regression weight, which was used to 
calibrate the scores of the test database (refer to 
§4.5 for a detailed explanation of calibration).  

4 Experiments 

4.1 Features 
We used 16 Mel Frequency Cepstrum Coeffi-
cients (MFCC) in the experiments as feature vec-
tors. MFCC is a standard spectral feature used in 
many voice-related applications, including auto-
matic speaker recognition. All original speech 
samples were downsampled to 16kHz before 
MFCC values were extracted from the mid-
duration-point of the target segment /e:/ with a 
20 ms wide hamming window. 

4.2 General experimental design 
There are two types of tests for FVC. One relies 
on so-called Same Speaker Comparisons (SS 
comparisons), where two speech samples pro-
duced by the same speakers are compared. They 
are expected to receive LR values > 1 given the 
same-origins. The other type of test relies on Dif-
ferent Speaker Comparisons (DS comparisons), 
where two speech samples produced by different 
speakers are compared. They are expected to re-
ceive LR values < 1 given the different-origins.  

For example, the 40 speakers of the test data-
base enable us to undertake 40 SS comparisons 
and 1560 (= 50C2 x 2) independent (e.g. not-
overlapping) DS comparisons. Theoretically 
speaking, origin being identical, the 40 SS com-
parisons should receive an LR > 1 (log10LR > 0); 
on the other hand, origin being different, the 
1560 DS comparisons should receive an LR < 1 
(or log10LR < 0).  

4.3 Likelihood ratio calculation 
MVKDLR Approach 
The MVKDLR formula computes a single LR 
from multiple variables (e.g. 16th-order MFCC), 
considering the correlations among them (Aitken 
& Lucy, 2004). 

The numerator of the MVKDLR formula cal-
culates the probability of evidence, which is the 
difference between the offender and suspect 
speech samples, when it is assumed that both 
samples have the same origin (in other words, 
that the persecution hypothesis Hp is true). For 
this calculation, the feature vectors of the offend-
er and suspect samples and the within-speaker 

variance, which is given in the form of a vari-
ance/covariance matrix, are needed. The same 
feature vectors of the offender and suspect sam-
ples and the between-speaker variance are used 
in the denominator of the formula to estimate the 
probability of getting the same evidence when it 
is assumed that they have different origins (i.e. 
that the defence hypothesis Hd is true). These 
within- and between-speaker variances are esti-
mated from the background database. The 
MVKDLR formula assumes normality for with-
in-speaker variance while it uses a kernel-density 
model for between-speaker variance. 

In the MVKDLR formula, the covariance ma-
trices for offender and suspect data are used ex-
tensively. The inverses of these matrices are re-
quired at some stages in the process, and there 
are also some instances of these inverted matri-
ces being re-inverted. All of these processes con-
tribute to the decorrelation of the original fea-
tures and the equalisation of their contribution. 
However, in return, the MVKDLR formula has 
the propensity to collapse when some of the co-
variance matrices of the offender and suspect da-
ta are ill-conditioned due to, for example, sparse 
data and large input parameters. 

PCAKDLR Approach 
In the PCAKDLR approach, in particular when 
high-dimensional features are used, the issue of 
the instability described for the MVKDLR is han-
dled by decorrelating the features through princi-
pal component analysis (PCA), and then estimat-
ing LRs as the product of the univariate LRs of 
the resultant uncorrelated features. Thus, PCA is 
merely used to decorrelate the features (not to re-
duce feature dimensionality). With the resultant 
orthogonal features, a univariate LR was estimat-
ed separately for each feature using the modified 
kernel density model (Nair et al., 2014, pp. 88-
90); the independent LRs were multiplied to gen-
erate an overall LR. 

4.4 Repeated experiments using Monte Car-
lo simulations  

As explained earlier, each speaker has two sets of 
ten /e:/ segments, and 16 MFCC values were ex-
tracted from each of them. That is, each session of 
each speaker can be modelled maximally with ten 
sets of 16th-order feature vectors. From these ten 
sets of vectors for each session of each speaker, 
we also obtained the basic statistics (the mean 
vector P and variance/covariance matrix H) needed 
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for the Monte Carlo simulations. In this study, we 
randomly generated, for each session of each 
speaker, ten feature vectors, each of which con-
sists of 16 MFCC values. We repeated this proce-
dure 150 times using the normal distribution func-
tion modelled with the basic statistics.  

Figure 1 is an example of the Monte Carlo 
simulation showing 150 randomly generated first 
two MFCC values (c1 and c2) from the normal 
distribution function based on the statistics (P 
and H) obtained from the first session of the first 
speaker in the test database. 

 

Figure 1: 150 randomly generated values (c1 and c2) 
from the statistics (P and H) obtained from the first 

session of the first speaker in the test database (only 
the first and second MFCC). The filled black circle = 

P. 

Experiments were repeatedly conducted using 
randomly generated synthetic feature vectors 
with different dimensions (= 
{2,4,6,8,10,12,14,16}). For example, a feature 
dimension of {2} means that the first two MFCC 
values were used for experiments, and a feature 
dimension of {14} means that the first 14 MFCC 
were used.  

4.5  Calibration 
A logistic-regression calibration (Brümmer & du 
Preez, 2006) was applied to the outputs (scores) 
of the MVKDLR and PCAKDLR approaches. 
Given two sets of scores derived from the SS and 
DS comparisons and a decision boundary, cali-
bration is a normalisation procedure involving 
linear monotonic shifting and scaling of the 
scores relative to the decision boundary, so as to 

minimise a cost function, resulting in LRs. The 
FoCal toolkit 1  was used for the logistic-
regression calibration in this study (Brümmer & 
du Preez, 2006). The logistic-regression weight 
was obtained from the development database.  

4.6 Evaluation of performance: validity and 
reliability 

The performance of the LR-based FVC system 
needs to be assessed in terms of its validity (= 
accuracy) and reliability (= precision). To ex-
plain the concepts of validity and reliability, we 
will look at an example. Let us imagine we have 
speech samples collected from two speakers at 
four different sessions denoted as S1.1, S1.2, 
S1.3, S1.4, S2.1, S2.2, S2.3 and S2.4, where S = 
speaker, and 1, 2, 3 and 4 = the first, second, 
third and fourth sessions (e.g. S1.1 refers to the 
first session recording collected from (S)peaker1, 
and S1.4 to the fourth session from that same 
speaker). From these speech samples, four inde-
pendent (not overlapping) DS comparisons are 
possible: S1.1 vs. S2.1, S1.2 vs. S2.2, S1.3 vs. 
S2.3 and S1.4 vs. S2.4. Let us further suppose 
that we conducted two separate FVC tests using 
two different systems (Systems 1 and 2), and that 
we obtained the log10LRs given in Table 1 for 
these four DS comparisons. 

 

Since the comparisons given in Table 1 are all 
DS comparisons, the desired log10LR value needs 
to be lower than 0, and the greater the negative 
log10LR value is, the better the system is, as it 
more strongly supports the correct hypothesis. 
For both Systems 1 and 2, all of the comparisons 
received log10LR < 0. That is, all of these 
log10LR values correctly single out the defence 
hypothesis. However, System 1 performs better 
than System 2 in that its log10LR values are fur-
ther away from unity (log10LR = 0) than the 
log10LR values of System 2. This means that the 
log10LR values estimated by System 1 provide 
greater support for the correct hypothesis than 
System 2. Thus, it can be said that the validity (= 

                                                      
1 https://sites.google.com/site/nikobrummer/focal 

DS comparison System 1 System 2 
S1.1 vs. S2.1 -8.3 -5.1 
S1.2 vs. S2.2 -7.9 -1.2 
S1.3 vs. S2.3 -8.0 -3.1 
S1.4 vs. S2.4 -8.2 -0.1 

Table 1: Example log10LRs explaining the concepts of 
validity and reliability. 
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accuracy) of System 1 is higher than that of Sys-
tem 2. This is the basic concept of validity.  

In this study, the log-likelihood-ratio cost 
(Cllr), which is a gradient metric based on LR, 
was used as the metric for validity. The calcula-
tion of Cllr is given in 2) (Brümmer & du Preez, 
2006).  

Cllr=
1
2
(

1
NHp

∑ log2 (1+ 1
LRi

)
NHp
i forHp=true +

1
NHd

∑ log2(1+LRj)
NHd
j forHd=true

)          2) 

 
In 2), NHp and NHd are the number of SS and 

DS comparisons, and LRi and LRj are the linear 
LRs derived from the SS and DS comparisons, re-
spectively. Given the same origins, all the SS 
comparisons should produce LRs greater than 1, 
and given the different origins, the DS compari-
sons should produce LRs less than 1. Cllr takes in-
to account the magnitude of derived LR values, 
and assigns them appropriate penalties. In Cllr, 
LRs that support counter-factual hypotheses or, in 
other words, contrary-to-fact LRs (LR < 1 for SS 
comparisons and LR > 1 for DS comparisons) are 
heavily penalised and the magnitude of the penal-
ty is proportional to how much the LRs deviate 
from unity. The lower the Cllr value, the better the 
performance.  

The Cllr measures the overall performance of a 
system in terms of validity based on a cost func-
tion in which there are two main components of 
loss: namely discrimination loss (Cllr

min) and cali-
bration loss (Cllr

cal) (Brümmer & du Preez, 2006). 
The former is obtained after the application of the 
so-called pooled-adjacent-violators (PAV) trans-
formation – an optimal non-parametric calibration 
procedure. The latter is obtained by subtracting 
the former from the Cllr. In this study, besides Cllr, 
Cllr

min and Cllr
cal are also referred to. Once again, 

the FoCal toolkit1 was used in this study for calcu-
lating Cllr (including both Cllr

min and Cllr
cal) 

(Brümmer & du Preez, 2006). 
Let us now move to the concept of reliability. 

All of the DS comparisons given in Table 1 are 
comparisons of the same speaker pair (S1 vs. S2). 
Thus, it can be expected that the LR values ob-
tained for these four DS comparisons should be 
similar as they are comparing the same speaker 
pair. However, the log10LR values based on Sys-
tem 1 are closer to each other (-8.3, -7.9, -8.0 and 
-8.2) than those based on System 2 (-5.1, -1.2, -3.1 
and -0.1). In other words, the reliability (= preci-

sion) of System 1 is higher than that of System 2. 
This is the basic concept of reliability.  

As a metric of reliability, we used 95%credible 
intervals, the Bayesian analogue of frequentist 
confidence intervals (Morrison, 2011). In this 
study, we calculated 95% credible intervals 
(95%CI) in the parametric manner based on the 
deviation-from-mean values collected from all of 
the DS comparison pairs. For example, 95%CI = 
1.23 and log10LR = 2 means, for this particular 
comparison, that it is 95% certain that log10LR > 
0.77 (= 2-1.23) and log10LR < 3.23 (= 2+1.23). 
The smaller the 95%CI, the better the reliability. 
The 95%CI is obtainable only from the DS com-
parisons in the present study. 

5 Experiment with Original Data 

Before presenting the results of the experiments 
using synthetic data, we conducted experiments 
using the full 16th-order MFCC values from the 
original databases with the two different ap-
proaches. The results of these experiments are 
given as Tippett plots in Figure 2 with the Cllr and 
95%CI values. Figure 2a is for the MVKDLR and 
Figure 2b is for the PCAKDLR. In these Tippett 
plots, the solid black curve indicates the cumula-
tive proportion of the SS comparison log10LRs 
(40) that are equal or smaller than the value indi-
cated on the x-axis, and the solid grey curve indi-
cates the cumulative proportion of the DS com-
parison log10LRs (1560) that are equal or greater 
than the value indicated on the x-axis. Tippett 
plots graphically show how strongly the derived 
LRs not only support the correct hypothesis but 
also misleadingly support the contrary-to-fact hy-
pothesis. In Figure 2, the log10LRs for the DS 
comparisons are plotted together with r95%CI 
band.  
In terms of validity, the MVKDLR (Cllr = 0.396) 
marginally outperforms the PCAKDLR (Cllr = 
0.418), but in terms of reliability, the PCAKDLR 
(95%CI = 3.536) outperforms the MVKDLR 
(95%CI = 4.026). As far as the Tippett plots are 
concerned, it can be seen from Figure 2a and Fig-
ure 2b that the magnitude of the derived LRs is 
very similar and comparable between the 
MVKDLR and PCAKDLR approaches. In terms 
of the discrimination (Cllr

min) and calibration 
(Cllr

cal) losses, although the MVKDLR (Cllr
min = 

0.253 and Cllr
cal = 0.143) is slightly better than the 

PCAKDLR (Cllr
min = 0.267 and Cllr

cal = 0.151) in 

65



metric value, they are virtually the same and 
therefore comparable. 

6 Experimental Results and Discussions 

It was shown in §5 that, in terms of the Cllr (in-
cluding both Cllr

min and Cllr
cal), the MVKDLR per-

formed marginally better than the PCAKDLR 
(they performed equally well in a practical sense), 
but that the PCAKDLR outperformed the 
MVKDLR in terms of the 95%CI. It will be in-
vestigated in this section whether the observation 
made in §5 is a general observation that retains its 
validity when synthetic data are used. It will also 
be investigated how the number of features affects 
the performance of the two different approaches 
because the MVKDLR reportedly has an issue of 
instability when high-dimensional features are 
used. 

Before the results of the experiments are dis-
played, it needs to be pointed out that the Cllr 
(MVKDLR = 0.396 and PCAKDLR = 0.418) and 
95%CI values (MVKDLR = 4.026 and 
PCAKDLR = 3.536) with the 16th-order MFCC 
feature vector of the original data, which were 
given in §5, are similar to the mean Cllr 
(MVKDLR = 0.439 and PCAKDLR = 0.465) and 
95%CI values (MVKDLR = 0.3348 and 
PCAKDLR = 2.689) of the 150 simulations with 
the synthetic 16th-order MFCC feature vector. This 

suggests the appropriateness of the Monte Carlo 
simulation. 

In Figure 3, the mean Cllr (Panel a), Cllr
min (Pan-

el b) and Cllr
cal (Panel c) values of the 150 simula-

tions are plotted for the different feature numbers 
(= {2,4,6,8,10,12,14,16}) against the mean 95%CI 
values (y-axis), but separately for the MVKDLR 
(filled circles) and PCAKDLR (empty circles) ap-
proaches. The numerical information of Figure 3 
is given in Table 2.  

It can be seen from Figure 3a that the overall 
performance of the MVKDLR in terms of validity 
(Cllr) improves as the number of features increases 
in that there is substantial improvement when 
moving from two to four features (from Cllr =  
0.939 for {2} to Cllr = 0.674 for {4}), after which 
the improvement still continues, yet to a substan-
tially lesser degree. The general trend of the relia-
bility (95%CI) for the MVKDLR is that it deterio-
rates as the feature number increases. Thus, the 
trade-off between validity and reliability is fairly 
clearly observable in the case of the MVKDLR. 
Although, in terms of validity, the PCAKDLR 
shows a more or less similar trend compared to 
the MVKDLR, some exceptions (e.g. the feature 
number = {6,8}) can also be observed in that the 
inclusion of additional features did not contribute 
to an improvement in validity (from Cllr = 0.712 
for {6} to Cllr = 0.736 for {8}). These exceptions 

  

Figure 2: Tippett plots showing the magnitude of the derived LRs plotted separately for the SS (black) and DS 
(grey) comparisons. r95%CI bands (grey dotted lines) are superimposed on the DS LRs. Panel a = MVKDLR and 
Panel b = PCAKDLR. Cllr value was calculated from the calibrated LRs and 95%CI value was calculated only for 

the calibrated DS LRs. 
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will be further investigated below with reference 
to calibration loss (Cllr

cal).  
The main difference between the two ap-

proaches that can be observed from Figure 3a is 
that the inverse-correlation identified between va-
lidity and reliability for the MVKDLR is not 
clearly observable in the case of the PCAKDLR; 
the 95%CI values stay relatively constant around 
a 95%CI = 2.5 when six or more features are used 
for the experiments. As a result, although the 
PCAKDLR is constantly better in reliability 
(95%CI) than the MVKDLR, reliability is consid-
erably better for the former than for the latter, in 
particular when the feature number is large (fea-

ture number ≥ 5-6). The observations derived 
from Figure 3a above more or less coincide with 
Enzinger (2016) finding that the MVKDLR is su-
perior to the PCAKDLR in terms of validity, but 
inferior in terms of reliability.  

Close observation of Figure 3b, which plots the 
discriminability of the system (Cllr

min) against its 
reliability shows an even clearer difference be-
tween the MVKDLR and PCAKDLR approaches 
described on the basis of Figure 3a in that the 
95%CI values seem to hit a ceiling with six fea-
tures or more for the PCAKDLR, while the 
95%CI value continues to increase for the 
MVKDLR as a function of the feature number. 

  

 

Figure 3: Mean Cllr (Panel a), Cllr
min (b) and Cllr

cal (c) values (x-axis) plotted against mean 95%CI values (y-axis). 
Filled and empty circles = MVKDLR and PCAKDLR, respectively. The number attached to each circle indicates 
the dimension of the feature vector. Note that the range of the x-axis scale is narrower for Panel c) than for Panels 

a) and b). 
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Figure 3b shows that i) system discriminability 
improves as a function of the number of features 
both for the MVKDLR and PCAKDLR ap-
proaches, ii) discriminability is marginally but 
constantly better for the MVKDLR, and iii) relia-
bility is constantly better for the PCAKDLR; the 
former is considerably better than the latter when 
the feature number is large (feature number ≥ 6). 

From Figure 3c, it can be seen that calibration 
performance is fairly constant and comparable 
(ca. Cllr

min = 0.125) between the MVKDLR and 
PCAKDLR approaches across different feature 
numbers, except for feature number = {6,8,10} for 
the PCAKDLR, which is indicated by an arrow in 
Figure 3c. The poor performance in calibration for 
feature numbers = {6,8,10} of the PCAKDLR 
contributes to the overall poor Cllr values of the 
PCAKDLR for the same feature numbers, which 
can be clearly seen in Figure 3a (as indicated by 
the arrow). As a result, the Cllr values of feature 
numbers = {6,8,10} are fairly better for the 
MVKDLR than for the PCAKDLR, while the 
former approach is only marginally better than the 
latter for the other feature numbers. However, it is 
not clear at this stage whether these poor calibra-
tions are due to the PCAKDLR approach or other 
intrinsic or extrinsic reasons. 

It has been reported in some studies that validi-
ty and reliability are often (but not always) nega-
tively correlated (Frost, 2013; Ishihara, 2017; 
Morrison, 2011). That is, the better performance 
of the PCAKDLR in reliability may be merely 
due to the trade-off between validity and reliabil-
ity because the MVKDLR performs better than 
the PCAKDLR in terms of validity. Although the 
effect of the trade-off should not be neglected, it is 
true that the PCAKDLR is substantially better in 
reliability than the MVKDLR, while the 
MVKDLR only marginally performed better than 
the PCAKDLR in terms of discriminability. The 
general trend for the 95%CI value to continue to 

increase as the feature number increases is another 
aspect of the MVKDLR that the PCAKDLR does 
not exhibit; the 95%CI values become saturated 
with a feature number ≥ 6. Thus, it is a sensible 
conclusion that the PCAKDLR is better than the 
MVKDLR in terms of reliability. 

7 Conclusions and Future Directions 

The outcomes of the experiments with the simu-
lated data demonstrate some general characteris-
tics of the PCAKDLR approach as compared to 
the MVKDLR approach: i) the PCAKDLR ap-
proach marginally underperforms the MVKDLR 
approach in terms of discriminability (Cllr

min), ii) 
the PCAKDLR approach performs constantly bet-
ter than the MVKDLR in terms of reliability, and 
iii) a substantial difference in reliability perfor-
mance can be observed in particular when the fea-
ture number is six or more. In some cases, the 
MVKDLR performed noticeably (not marginally) 
better than the PCAKDLR (e.g. feature number = 
{6,8,10}) with respect to Cllr, but it was pointed 
out that this is due to the poor calibration perfor-
mance of the PCAKDLR. However, it is not clear 
whether these poor calibrations are indeed caused 
by the PCAKDLR or by other unrelated factors. 

In the current study, the maximum number of 
/e:/ tokens, which is ten, was used to model each 
session of each speaker. It would be interesting to 
explore how a different number of tokens for 
modelling will influence the performance of the 
MVKDLR and PCAKDLR approaches because, 
in real cases, one is less likely to have many com-
parable tokens for modelling. 
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 Metrics Approaches 2 4 6 8 10 12 14 16   
 Cllr 

MVKDLR 0.939 0.674 0.628 0.626 0.534 0.482 0.477 0.439   
 PCAKDLR 0.950 0.712 0.712 0.736 0.646 0.485 0.497 0.465   
 Cllr

min MVKDLR 0.828 0.576 0.508 0.462 0.401 0.361 0.350 0.312   
 PCAKDLR 0.834 0.581 0.513 0.488 0.454 0.379 0.379 0.345   
 Cllr

cal MVKDLR 0.110 0.098 0.120 0.163 0.132 0.120 0.127 0.127   
 PCAKDLR 0.115 0.131 0.198 0.248  0.192 0.106 0.118 0.120   
 95%CI MVKDLR 1.615 2.258 2.915 3.132 3.112 3.348 3.478 3.348   
 PCAKDLR 1.250 2.148 2.595 2.771 2.498 2.360 2.603 2.689   

 Table 2: Numerical information of Figure 3. 2~16 = number of features   
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