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Abstract 

This paper considers statistical parsing of Czech, 
which differs radically from English in at least two 
respects: (1) it is a highly inflected language, and 
(2) it has relatively free word order. These dif- 
ferences are likely to pose new problems for tech- 
niques that have been developed on English. We 
describe our experience in building on the parsing 
model of (Collins 97). Our final results - 80% de- 
pendency accuracy - represent good progress to- 
wards the 91% accuracy of the parser on English 
(Wall Street Journal) text. 

1 Introduction 

Much of the recent research on statistical parsing 
has focused on English; languages other than En- 
glish are likely to pose new problems for statisti- 
cal methods. This paper considers statistical pars- 
ing of Czech, using the Prague Dependency Tree- 
bank (PDT) (Haji~, 1998) as a source of training and 
test data (the PDT contains around 480,000 words 
of general news, business news, and science articles 
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annotated for dependency structure). Czech differs 
radically from English in at least two respects: 

• It is a highly inflected (HI) language. Words 
in Czech can inflect for a number of syntac- 
tic features: case, number, gender, negation 
and so on. This leads to a very large number 
of possible word forms, and consequent sparse 
data problems when parameters are associated 
with lexical items, o n  the positive side, inflec- 
tional information should provide strong cues 
to parse structure; an important question is how 
to parameterize a statistical parsing model in a 
way that makes good use of inflectional infor- 
mation. 

• It has relatively free word order (F-WO). For 
example, a subject-verb-object triple in Czech 
can generally appear in all 6 possible surface 
orders (SVO, SOV, VSO etc.). 

Other Slavic languages (such as Polish, Russian, 
Slovak, Slovene, Serbo-croatian, Ukrainian) also 
show these characteristics. Many European lan- 
guages exhibit FWO and HI phenomena to a lesser 
extent. Thus the techniques and results found for 
Czech should be relevant to parsing several other 
languages. 

This paper first describes a baseline approach, 
based on the parsing model of (Collins 97), which 
recovers dependencies with 72% accuracy. We then 
describe a series of refinements to the model, giv- 
ing an improvement to 80% accuracy, with around 
82% accuracy on newspaper/business articles. (As 
a point of comparison, the parser achieves 91% de- 
pendency accuracy on English (Wall Street Journal) 
text.) 
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2 Data and Evaluation 

The Prague Dependency Treebank PDT (Haji~, 
1998) has been modeled after the Penn Treebank 
(Marcus et al. 93), with one important excep- 
tion: following the Praguian linguistic tradition, 
the syntactic annotation is based on dependencies 
rather than phrase structures. Thus instead of "non- 
terminal" symbols used at the non-leaves of the tree, 
the PDT uses so-called analytical functions captur- 
ing the type of relation between a dependent and 
its governing node. Thus the number of nodes is 
equal to the number of tokens (words + punctuation) 
plus one (an artificial root node with rather techni- 
cal function is added to each sentence). The PDT 
contains also a traditional morpho-syntactic anno- 
tation (tags) at each word position (together with a 
lemma, uniquely representing the underlying lexicai 
unit). As Czech is a HI language, the size of the set 
of possible tags is unusually high: more than 3,000 
tags may be assigned by the Czech morphological 
analyzer. The PDT also contains machine-assigned 
tags and lemmas for each word (using a tagger de- 
scribed in (Haji~ and Hladka, 1998)). 

For evaluation purposes, the PDT has been di- 
vided into a training set (19k sentences) and a de- 
velopment/evaluation test set pair (about 3,500 sen- 
tences each). Parsing accuracy is defined as the ratio 
of correct dependency links vs. the total number of 
dependency links in a sentence (which equals, with 
the one artificial root node added, to the number of 
tokens in a sentence). As usual, with the develop- 
ment test set being available during the development 
phase, all final results has been obtained on the eval- 
uation test set, which nobody could see beforehand. 

3 A Sketch of the Parsing Model 

The parsing model builds on Model 1 of (Collins 
97); this section briefly describes the model. The 
parser uses a lexicalized grammar - -  each non- 
terminal has an associated head-word and part-of- 
speech (POS). We write non-terminals as X (x): X 
is the non-terminal label, and x is a (w, t> pair where 
w is the associated head-word, and t as the POS tag. 
See figure 1 for an example lexicalized tree, and a 
list of the lexicalized rules that it contains. 

Each rule has the form 1 : 

P(h) --+ L,~(l,)...Ll(ll)H(h)Rl(rl)...Rm(rm) 
(1) 

IWith the exception of the top rule in the tree, which has the 
f0rmTOP -+ H(h). 

H is the head-child of the phrase, which inher- 
its the head-word h from its parent P. L1...Ln 
and R1...Rm are left and right modifiers of 
H. Either n or m may be zero, and n = 
m = 0 for unary rules. For example, 
in S (bought,VBD) -+ NP (yesterday,NN) 
NP (IBM, NNP) VP (bought, VBD) : 

n = 2  m = 0  
P=S H=VP 
LI = NP L2 = NP 
l I = <IBM, NNP> 12 = <yesterday, NN> 
h = < b o u g h t ,  VBD) 

The model can be considered to be a variant 
of Probabilistic Context-Free Grammar (PCFG). In 
PCFGs each role cr --+ fl in the CFG underlying 
the PCFG has an associated probability P(/3la ). 
In (Collins 97), P(/~lo~) is defined as a product of 
terms, by assuming that the right-hand-side of the 
rule is generated in three steps: 

1. Generate the head constituent label of the 
phrase, with probability 79H( H I P, h ). 

2. Generate modifiers to the left of the head with 
probability Hi=X..n+l 79L(Li(li) [ P, h, H), 
where Ln+l(ln+l) = STOP. The STOP 
symbol is added to the vocabulary of non- 
terminals, and the model stops generating left 
modifiers when it is generated. 

3. Generate modifiers to the right of the head with 
probability Hi=l..m+l PR(Ri(ri) [ P, h, H). 
Rm+l ( rm+l)  is defined as STOP. 

For example, the probability of s ( b o u g h t ,  VBD) 
-> NP(yesterday,NN) NP(IBM,NNP) 
VP (bought, VBD) is defined as 

/oh (VP I S, bought, VBD) × 

Pt (NP ( IBM, NNP) I S, VP, bought, VBD) x 

Pt(NP (yesterday, NN) I S ,VP, bought ,VBD) × 

e~ (STOP I s, vP, bought, VBD) × 
Pr (STOP I S, VP, b o u g h t .  VBD) 

Other rules in the tree contribute similar sets of 
probabilities. The probability for the entire tree is 
calculated as the product of all these terms. 

(Collins 97) describes a series of refinements to 
this basic model: the addition of "distance" (a con- 
ditioning feature indicating whether or not a mod- 
ifier is adjacent to the head); the addition of sub- 
categorization parameters (Model 2), and parame- 
ters that model wh-movement (Model 3); estimation 
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TOP 
I 

S(bought,VBD) 

NP(yesterday,NN) NP(IBM,NNP) 
I I 

NN NNP 
I I 

yesterday IBM 

TOP 
S(bought,VBD) 
NP(yesterday,NN) 
NP(IBM,NNP) 
VP(bought,VBD) 
NP(Lotus,NNP) 

-> S(bought,VBD) 
-> NP(yesterday,NN) 
-> NN(yesterday) 
-> NNP(IBM) 
-> VBD(bought) 
-> NNP(Lotus) 

VP(bought,VBD) 

VBD NP(Lotus,NNP) 
I I 

bought NNP 
I 

Lotus 

NP(IBM,NNP) VP(bought,VBD) 

NP(Lotus,NNP) 

Figure 1: A lexicalized parse tree, and a list of the rules it contains. 

techniques that smooth various levels of back-off (in 
particular using POS tags as word-classes, allow- 
ing the model to learn generalizations about POS 
classes of words). Search for the highest probabil- 
ity tree for a sentence is achieved using a CKY-style 
parsing algorithm. 

4 Parsing the Czech PDT 

Many statistical parsing methods developed for En- 
glish use lexicalized trees as a representation (e.g., 
(Jelinek et al. 94; Magerman 95; Ratnaparkhi 97; 
Charniak 97; Collins 96; Collins 97)); several (e.g., 
(Eisner 96; Collins 96; Collins 97; Charniak 97)) 
emphasize the use of parameters associated with 
dependencies between pairs of words. The Czech 
PDT contains dependency annotations, but no tree 
structures. For parsing Czech we considered a strat- 
egy of converting dependency structures in training 
data to lexicalized trees, then running the parsing 
algorithms originally developed for English. A key 
point is that the mapping from lexicalized trees to 
dependency structures is many-to-one. As an exam- 
ple, figure 2 shows an input dependency structure, 
and three different lexicalized trees with this depen- 
dency structure. 

The choice of tree structure is crucial in determin- 
ing the independence assumptions that the parsing 
model makes. There are at least 3 degrees of free- 
dom when deciding on the tree structures: 

. How "fiat" should the trees be? The trees could 
be as fiat as possible (as in figure 2(a)), or bi- 
nary branching (as in trees (b) or (c)), or some- 
where between these two extremes. 

2. What non-terminal labels should the internal 
nodes have? 

3. What set of POS tags should be used? 

4.1 A Baseline Approach 

To provide a baseline result we implemented what is 
probably the simplest possible conversion scheme: 

. 

. 

. 

The trees were as fiat as possible, as in fig- 
ure 2(a). 

The non-terminal labels were "XP", where X 
is the first letter of the POS tag of the head- 
word for the constituent. See figure 3 for an 
example. 

The part of speech tags were the major cate- 
gory for each word (the first letter of the Czech 
POS set, which corresponds to broad category 
distinctions such as verb, noun etc.). 

The baseline approach gave a result of 71.9% accu- 
racy on the development test set. 
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Input: 
sentence with part of speech tags: UN saw/V the/D man/N (N=noun, V=verb, D=determiner) 

dependencies (word ~ Parent): (I =~ saw), (saw =:~ START), (the =~ man), (man =¢, saw> 

Output: a lexicalized tree 

(a) X(saw) (b) X(saw) (c) 

N X(saw) 
X(I) V X(man) I 

[ I ~ I V X(man) 
N saw D N [ 
[ I I saw D N 
I the man [ [ 

the man 

X(saw) 

X(saw) X(man) 

N V D N 
I I I I 
I saw the man 

Figure 2: Converting dependency structures to lexicalized trees with equivalent dependencies. The trees 
(a), (b) and (c) all have the input dependency structure: (a) is the "flattest" possible tree; (b) and (c) are 
binary branching structures. Any labels for the non-terminals (marked X)  would preserve the dependency 
structure. 

VP(saw) 

NP(I) V NP(man) 

N saw D N 
I I I 
I the man 

Figure 3: The baseline approach for non-terminal 
labels. Each label is XP, where X is the POS tag for 
the head-word of the constituent. 

'4.2 Modifications to the Baseline Trees 

While the baseline approach is reasonably success- 
ful, there are some linguistic phenomena that lead 
to clear problems. This section describes some tree 
transformations that are linguistically motivated, 
and lead to improvements in parsing accuracy. 

4.2.1 Relative Clauses 

In the PDT the verb is taken to be the head of both 
sentences and relative clauses. Figure 4 illustrates 
how the baseline transformation method can lead to 
parsing errors in relative clause cases. Figure 4(c) 
shows the solution to the problem: the label of the 
relative clause is changed to SBAR, and an addi- 
tional vP level is added to the right of the relative 
pronoun. Similar transformations were applied for 
relative clauses involving Wh-PPs (e.g., "the man 
to whom I gave a book"), Wh-NPs (e.g., "the man 
whose book I read") and Wh-Adverbials (e.g., "the 
place where I live"). 

4.2.2 Coordination 

The PDT takes the conjunct to be the head of coor- 
dination structures (for example, and would be the 
head of the NP dogs and cats). In these cases the 
baseline approach gives tree structures such as that 
in figure 5(a). The non-terminal label for the phrase 
is JP  (because the head of the phrase, the conjunct 
and, is tagged as J). 

This choice of non-terminal is problematic for 
two reasons: (1) the JP  label is assigned to all co- 
ordinated phrases, for example hiding the fact that 
the constituent in figure 5(a) is an NP; (2) the model 
assumes that left and right modifiers are generated 
independently of each other, and as it stands will 
give unreasonably high probability to two unlike 
phrases being coordinated. To fix these problems, 
the non-terminal label in coordination cases was al- 
tered to be the same as that of the second conjunct 
(the phrase directly to the right of the head of the 
phrase). See figure 5. A similar transformation was 
made for cases where a comma was the head of a 
phrase. 

4.2.3 Punctuation 

Figure 6 shows an additional change concerning 
commas. This change increases the sensitivity of 
the model to punctuation. 

4.3 Model Alterations 

This section describes some modifications to the pa- 
rameterization of the model. 
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(a) VP 

NP V NP 

John likes 
Mary VP 

Z P V NP 

I I [ I 
who likes Tim 

(b) VP 

VP Z VP 

NP V NP P V NP 

I I t I I I 
John likes Mary who likes Tim 

a) JP(a) b) NP(a) 

NP(hl) J NP(h 2) NP(hl) J NP(h 2) 
I I i I I I 

and . . . . . .  and ... 

Figure 5: An example of coordination. The base- 
line approach (a) labels the phrase as a Jp ;  the re- 
finement (b) takes the second conjunct's label as the 
non-terminal for the whole phrase. 

NP(h) --t- NPX(h) 

Z(,) ~ N(h) ~ Z(,) NP(h) 

I ... h "" 
I r~(h) I 

.., i 
h 

Figure 6: An additional change, triggered by a 
comma that is the left-most child of a phrase: a new 
non-terminal NPX is introduced. 

(c) vP 

NP V NP 

John likes 
Mary SBAR 

Z P VP 

who V NP 
I I 

likes Tim 

Figure 4: (a) The baseline approach does not distin- 
guish main clauses from relative clauses: both have 
a verb as the head, so both are labeled VP. (b) A typ- 
ical parsing error due to relative and main clauses 
not being distinguished. (note that two main clauses 
can be coordinated by a comma, as in John likes 
Mary, Mary likes Tim). (c) The solution to the prob- 
lem: a modification to relative clause structures in 
training data. 

4.3.1 Preferences for dependencies that do not 
cross verbs 

The model of (Collins 97) had conditioning vari- 
ables that allowed the model to learn a preference 
for dependencies which do not cross verbs. From 
the results in table 3, adding this condition improved 
accuracy by about 0.9% on the development set. 

4.3.2 Punctuation for phrasal boundaries 
The parser of (Collins 96) used punctuation as an in- 
dication of phrasal boundaries. It was found that if a 
constituent Z ~ (...XY...) has two children X and 
Y separated by a punctuation mark, then Y is gen- 
erally followed by a punctuation mark or the end of 

sentence marker. The parsers of (Collins 96,97) en- 
coded this as a hard constraint. In the Czech parser 
we added a cost of -2.5 (log probability) z to struc- 
tures that violated this constraint. 

4.3.3 First-Order (Bigram) Dependencies 
The model of section 3 made the assumption that 
modifiers are generated independently of each other. 
This section describes a bigram model, where the 
context is increased to consider the previously gen- 
erated modifier ((Eisner 96) also describes use of 
bigram statistics). The right-hand-side of a rule is 
now assumed to be generated in the following three 
step process: 

1. Generate the head label, with probability 

~'~ (H I P, h) 

2. Generate left modifiers with probability 

1-I Pc(L~(li) l Li-I'P'h'H) 
/ = l . . n + l  

where L0 is defined as a special NULL sym- 
bol. Thus the previous modifier, Li-1, is 
added to the conditioning context (in the pre- 
vious model the left modifiers had probability 
1"[i=1..,~+1 Pc(Li(li) I P,h,H).) 

3. Generate fight modifiers using a similar bi- 
gram process. 

Introducing bigram-dependencies into the parsing 
model improved parsing accuracy by about 0.9 % 
(as shown in Table 3). 

2 T h i s  v a l u e  w a s  o p t i m i z e d  o n  t h e  d e v e l o p m e n t  s e t  
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1. main part of 8. person 
speech 

2. detailed part of 9. tense 
speech 

3. gender 10. degree of compar- 
ison 

4. number I I. negativeness 
5. case 12. voice 
6. possessor's 13. variant/register 

gender 
7. possessor's num- 

ber 

Table 1: The 13-character encoding of the Czech 
POS tags. 

4.4 Alternative Part-of-Speech Tagsets 

Part of speech (POS) tags serve an important role 
in statistical parsing by providing the model with a 
level of generalization as to how classes of words 
tend to behave, what roles they play in sentences, 
and what other classes they tend to combine with. 
Statistical parsers of English typically make use of 
the roughly 50 POS tags used in the Penn Treebank 
corpus, but the Czech PDT corpus provides a much 
richer set of POS tags, with over 3000 possible tags 
defined by the tagging system and over 1000 tags 
actually found in the corpus. Using that large a 
tagset with a training corpus of only 19,000 sen- 
tences would lead to serious sparse data problems. 
It is also clear that some of the distinctions being 
made by the tags are more important than others 
for parsing. We therefore explored different ways 
of extracting smaller but still maximally informative 
POS tagsets. 

4.4.1 Description of the Czech Tagset 

The POS tags in the Czech PDT corpus (Haji~ and 
Hladk~i, 1997) are encoded in 13-character strings. 
Table 1 shows the role of each character. For exam- 
ple, the tag NNMP1 . . . . .  A - -  would be used for a 
word that had "noun" as both its main and detailed 
part of speech, that was masculine, plural, nomina- 
tive (case 1), and whose negativeness value was "af- 
firmative". 

Within the corpus, each word was annotated with 
all of the POS tags that would be possible given its 
spelling, using the output of a morphological analy- 
sis program, and also with the single one of those 
tags that a statistical POS tagging program had 
predicted to be the correct tag (Haji~ and Hladka, 
1998). Table 2 shows a phrase from the corpus, with 

Form Dictionary Tags Machine Tag 
poslanci NNMPI ..... A- - 

NNMP5 ..... A 

NNMP7 ..... A. 

NNMS3 ..... A. 

NNMS6 ..... A. 

NNMPI ..... A. 

Parlamentu NNIS2 ..... A-- NNIS2 ..... A 

NNIS3 ..... A. 

NNIS6 ..... A-I 

schv~ilili VpMP- - -XR-AA- VpMP- - -XR-AA- 

Table 2: Corpus POS tags for "the representatives 
of the Parliament approved". 

the alternative possible tags and machine-selected 
tag for each word. In the training portion of the cor- 
pus, the correct tag as judged by human annotators 
was also provided. 

4.4.2 Selection of a More Informative Tagset 

In the baseline approach, the first letter, or "main 
part of speech", of the full POS strings was used as 
the tag. This resulted in a tagset with 13 possible 
values. 

A number of alternative, richer tagsets were ex- 
plored, using various combinations of character po- 
sitions from the tag string. The most successful al- 
ternative was a two-letter tag whose first letter was 
always the main POS, and whose second letter was 
the case field if the main POS was one that dis- 
plays case, while otherwise the second letter was 
the detailed POS. (The detailed POS was used for 
the main POS values D, J, V, and X; the case field 
was used for the other possible main POS values.) 
This two-letter scheme resulted in 58 tags, and pro- 
vided about a 1.1% parsing improvement over the 
baseline on the development set. 

Even richer tagsets that also included the per- 
son, gender, and number values were tested without 
yielding any further improvement, presumably be- 
cause the damage from sparse data outweighed the 
value of the additional information present. 

4.4.3 Explorations toward Clustered Tagsets 
An entirely different approach, rather than search- 
ing by hand for effective tagsets, would be to use 
clustering to derive them automatically. We ex- 
plored two different methods, bottom-up and top- 
down, for automatically deriving POS tag sets based 
on counts of governing and dependent tags extracted 
from the parse trees that the parser constructs from 
the training data. Neither tested approach resulted 
in any improvement in parsing performance com- 
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pared to the hand-designed "two letter" tagset, but 
the implementations of each were still only prelim- 
inary, and a clustered tagset more adroitly derived 
might do better. 

4.4.4 Dealing with Tag Ambiguity 

One final issue regarding POS tags was how to deal 
with the ambiguity between possible tags, both in 
training and test. In the training data, there was a 
choice between using the output of the POS tagger 
or the human annotator's judgment as to the correct 
tag. In test data, the correct answer was not avail- 
able, but the POS tagger output could be used if de- 
sired. This turns out to matter only for unknown 
words, as the parser is designed to do its own tag- 
ging, for words that it has seen in training at least 
5 times, ignoring any tag supplied with the input. 
For "unknown" words (seen less than 5 times), the 
parser can be set either to believe the tag supplied 
by the POS tagger or to allow equally any of the 
dictionary-derived possible tags for the word, effec- 
tively allowing the parse context to make the choice. 
(Note that the rich inflectional morphology of Czech 
leads to a higher rate of"unknown" word forms than 
would be true in English; in one test, 29.5% of the 
words in test data were "unknown".) 

Our tests indicated that if unknown words are 
treated by believing the POS tagger's suggestion, 
then scores are better if the parser is also trained 
on the POS tagger's suggestions, rather than on the 
human annotator's correct tags. Training on the cor- 
rect tags results in 1% worse performance. Even 
though the POS tagger's tags are less accurate, they 
are more like what the parser will be using in the test 
data, and that turns out to be the key point. On the 
other hand, if the parser allows all possible dictio- 
nary tags for unknown words in test material, then 
it pays to train on the actual correct tags. 

In initial tests, this combination of training on the 
correct tags and allowing all dictionary tags for un- 
known test words somewhat outperformed the alter- 
native of using the POS tagger's predictions both for 
training and for unknown test words. When tested 
with the final version of the parser on the full de- 
velopment set, those two strategies performed at the 
same level. 

• 5 Results  

We ran three versions of the parser over the final 
test set: the baseline version, the full model with 
all additions, and the full model with everything but 
the bigram model. The baseline system on the fi- 

[I Modification II Improvement 
Coordination +2.6% 
Relative clauses + 1.5 % 
Punctuation -0.1% ?? 
Enriched POS tags +1. 1% 

Punctuation +0.4% 
Verb crossing +0.9% 
Bigram +0.9% 

I Total change +7.4% 
Total Relative Error reduction 26% 

Table 3: A breakdown of the results on the develop- 
ment set. 

Genre 

Newspaper 
Business 
Science 

Proportion 
(Sentences/ 
Dependencies) 
50%/44% 
25%/19% 
25%/38% 

Accuracy 

81.4% 
81.4% 
76.0% 

Table 4: Breakdown of the results by genre. Note 
that although the Science section only contributes 
25% of the sentences in test data, it contains much 
longer sentences than the other sections and there- 
fore accounts for 38% of the dependencies in test 
data. 

nal test set achieved 72.3% accuracy. The final sys- 
tem achieved 80.0% accuracy 3: a 7.7% absolute im- 
provement and a 27.8% relative improvement. 

The development set showed very similar results: 
a baseline accuracy of 71.9% and a final accuracy of 
79.3%. Table 3 shows the relative improvement of 
each component of the model 4. Table 4 shows the 
results on the development set by genre. It is inter- 
esting to see that the performance on newswire text 
is over 2% better than the averaged performance. 
The Science section of the development set is con- 
siderably harder to parse (presumably because of 
longer sentences and more open vocabulary). 

3The parser fails to give an analysis on some sentences, be- 
cause the search space becomes too large. The baseline system 
missed 5 sentences; the full system missed 21 sentences; the 
full system minus bigrams missed 2 sentences. To score the 
full system we took the output from the full system minus bi- 
grams when the full system produced no output (to prevent a 
heavy penalty due to the 21 missed sentences). The remaining 
2 unparsed sentences (5 in the baseline case) had all dependen- 
cies attached to the root. 

4We were surprised to see this slight drop in accuracy for 
the punctuation tree modification. Earlier tests on a different 
development set, with less training data and fewer other model 
alterations had shown a good improvement for this feature. 
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5.1 Comparison to Previous Results 
The main piece of previous work on parsing Czech 
that we are aware of is described in (Kubofi 99). 
This is a rule-based system which is based on a man- 
ually designed set of rules. The system's accuracy 
is not evaluated on a test corpus, so it is difficult 
to compare our results to theirs. We can, however, 
make some comparison of the results in this paper 
to those on parsing English. (Collins 99) describes 
results of 91% accuracy in recovering dependen- 
cies on section 0 of the Penn Wall Street Journal 
Treebank, using Model 2 of (Collins 97). This task 
is almost certainly easier for a number of reasons: 
there was more training data (40,000 sentences as 
opposed to 19,000); Wall Street Journal may be an 
easier domain than the PDT, as a reasonable pro- 
portion of sentences come from a sub-domain, fi- 
nancial news, which is relatively restricted. Unlike 
model 1, model 2 of the parser takes subcategoriza- 
tion information into account, which gives some im- 
provement on English and might well also improve 
results on Czech. Given these differences, it is dif- 
ficult to make a direct comparison, but the overall 
conclusion seems to be that the Czech accuracy is 
approaching results on English, although it is still 
somewhat behind. 
6 Conclusions 

The 80% dependency accuracy of the parser repre- 
sents good progress towards English parsing perfor- 
mance. A major area for future work is likely to 
be an improved treatment of morphology; a natural 
approach to this problem is to consider more care- 
fully how POS tags are used as word classes by 
the model. We have begun to investigate this is- 
sue, through the automatic derivation of POS tags 
through clustering or "splitting" approaches. It 
might also be possible to exploit the internal struc- 
ture of the POS tags, for example through incremen- 
tal prediction of the POS tag being generated; or to 
exploit the use of word lemmas, effectively split- 
ting word-word relations into syntactic dependen- 
cies (POS tag-POS tag relations) and more seman- 
tic (lemma-lemma) dependencies. 
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