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Abstract 

In this paper, we present a chunk based partial pars- 
ing system for spontaneous, conversational speech 
in unrestricted domains. We show that the chunk 
parses produced by this parsing system can be use- 
fully applied to the task of reranking Nbest lists 
from a speech recognizer, using a combination of 
chunk-based n-gram model scores and chunk cov- 
erage scores. 
The input for the system is Nbest lists generated 
from speech recognizer lattices. The hypotheses 
from the Nbest lists are tagged for part of speech, 
"cleaned up" by a preprocessing pipe, parsed by 
a part of speech based chunk parser, and rescored 
using a backpropagation neural net trained on the 
chunk based scores. Finally, the reranked Nbest lists 
are generated. 
The results of a system evaluation are promising in 
that a chunk accuracy of 87.4% is achieved and the 
best performance on a randomly selected test set is 
a decrease in word error rate of 0.3 percent (abso- 
lute), measured on the new first hypotheses in the 
reranked Nbest lists. 

1 I n t r o d u c t i o n  

In the area of parsing spontaneous speech, most 
work so far has primarily focused on dealing with 
texts within a narrow, well-defined domain. Full 
scale parsers for spontaneous speech face severe dif- 
ficulties due to the intrinsic nature of spoken lan- 
guage (e.g., false starts, hesitations, ungrammati- 
calities), in addition to the well-known complexities 
of large coverage parsing systems in general (Lavie, 
1996; Light, 1996). 

An even more serious problem is the imper- 
fect word accuracy of speech recognizers, particu- 
larly when faced with spontaneous speech over a 
large vocabulary and over a low bandwidth channel. 
This is particularly the case for the SWITCHBOARD 
database (Godfrey et al., 1992) which we mainly 
used for development, testing, and evaluation of our 
system. Current state-of-the-art recognizers exhibit 
word error rates (WER 1) for this corpus of approx- 

IThe word error rate (WEFt in %) is defined as follows: 

imately 30%-40% (Finke et al., 1997). This means 
that in fact about every third word in an input utter- 
ance will be misrecognized. Thus, any parser which 
is too restrictive with respect to the input it accepts 
will likely fail to find a parse for most of these ut- 
terances. 

When the domain is restricted, sufficient cover- 
age can be achieved using semantically guided ap- 
proaches that allow skipping of unparsable words or 
segments (Ward, 1991; Lavie, 1996). 

Since we cannot build on semantic knowledge for 
constructing parsers in the way it is done for lim- 
ited domains when attempting to parse spontaneous 
speech in unrestricted domains, we argue that more 
shallow approaches have to be employed to reach a 
sufficient reliability with a reasonable amount of ef- 
fort. 

In this paper, we present a chunk based partial 
parser, following ideas from (Abney, 1996), which 
is used to to generate shallow syntactic structures 
from speech recognizer output. These representa- 
tions then serve as the basis for scores used in the 
task of reranking Nbest lists. 

The organization of this paper is as follows: In 
section 2 we introduce the concept of chunk.pars- 
ing and how we interpret and use it in our system. 
Section 3 deals with the issue of reranking Nbest 
lists and the question of why we consider it appro- 
priate to use chunk representations for this task. In 
section 4, the system architecture is described, and 
then the results from an evaluation of the system are 
presented and discussed (sections 5 and 6). Finally, 
we give the results of a small study with human sub- 
jects on an analogous task (section 7), before point- 
ing out directions for future research (section 8) and 
summarizing our work (section 9). 

2 C h u n k  P a r s i n g  

There have been recent developments which encour- 
age the investigation of the possibility of parsing 
speech in unrestricted domains. It was demon- 
strated that parsing natural language 2 can be han- 

W E R  ----- 100.0 .  substitutiona-~d~leticms-~insertions 
cor rec t t  ~ubstitutiollsJrd¢|¢tion$ 

2mostly of the written, but also of the spoken type 
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dled by very simple, even finite-state approaches if 
one adheres to the principle of "chunking" the input 
into small and hence easily manageable constituents 
(Abney, 1996; Light, 1996). 

We use the notion of a chunk similar to (Abney, 
1996), namely a contiguous, non-recursive phrase. 
Chunk phrases mostly correspond to traditional no- 
tions of syntactic constituents, such as NPs or PPs, 
but there are exceptions, e.g. VCs ("verb complex 
phrases"), which are not used in most traditional 
linguistic paradigms. 3 Unlike in (Abney, 1996), our 
goal was not to build a multi-stage, cascaded sys- 
tem to result in full sentence parses, but to confine 
ourselves to parsing of "basic chunks". 

A strong rationale for following this simple ap- 
proach is the nature of the ill-formed input due to 
(i) spontaneous speech dysfluencies, and (ii) errors 
in the hypotheses of the speech recognizer. 

To get an intuitive feel about the output of the 
chunk parser, we present a short example here: 4 

[conj BUT] [np HE] [vc DOESN'T REALLY LIKE] 
[np HIS HISTORY TEACHER] [advp VERY MUCH] 

3 R e r a n k i n g  o f  S p e e c h  R e c o g n i z e r  
N b e s t  L i s t s  

State-of-the-art speech recognizers, such as the 
JANUS recognizer (Waibel et al., 1996) whose output 
we used for our system, typically generate lattices of 
word hypotheses. From these lattices, Nbest lists 
can be computed automatically, such that it is en- 
sured that the ordering of hypotheses in these lists 
corresponds to the internal ranking of the speech 
recognizer. 

As an example, we present a reference utterance 
(i.e., "what was actually said") and two hypotheses 
from the Nbest list, given with their rank: 

KEF: YOU WEREN'T BORN JUST TO SOAK UP SUN 
1: YOU WF.JtEN'T BORN JUSTICE SO CUPS ON 

190: YOU WEREN'T BORN JUST TO SOAK UP SUN 

This is a typical example, in that it is frequently 
the case that hypotheses which are ranked further 
down the list, are actually closer to the true (ref- 
erence) utterance (i.e., the WER would be lower). 5 
So, if we had an oracle that could tell the speech 
recognizer to always pick the hypothesis with the 
lowest WER from the Nbest list (instead of the top 

3A VC-chunk is a contiguous verbal segment of an u t ter -  
ance, whereas a VP usually comprises this verbal segment and 
i t s  arguments  together.  

4conj=conjunct ion chunk, n p = n o u n  phrase chunk, 
vc=verb  complex chunk, advp--adverbial  phrase chunk 

5In this  case, hypothesis 190 is completely correct; gener- 
ally i t  is not the  case, particularly for longer ut terances,  to 
find the  correct hypothesis in the lattice. 

ranked hypothesis), the global performance could be 
improved significantly. 6 

In the speech recognizer architecture, the search 
module is guided mostly by very local phenomena, 
both in the acoustic models (a context of several 
phones), and in the language models (a context of 
several words). Also, the recognizer does not make 
use of any syntactic (or constituent-based) howl -  
edge. 

Thus, the intuitive idea is to generate represen- 
tations that allow for a discriminative judgment be- 
tween different hypotheses in the Nbest list, so that 
eventually a more plausible candidate can be iden- 
tified, if, as it is the case in the following example, 
the resulting chunk structure is more likely to be 
well-formed than that of the first ranked hypothesis: 

1: [np YOU] [vc ~.J~.$I'T BORN] [np JUSTICE] 
[advp SO] [np CUPS] [advp ON] 

190: [np YOU] [vc WFJtEN'T BORN] 
[advp JUST] [vc TO SOAK UP] [np SUN] 

We use two main scores to assess this plausibility: 
(i) a chunk coverage score (percentage of input string 
which gets parsed), and (ii) a chunk language model 
score, which is using a standard n-gram model based 
on the chunk sequences. The latter should give 
worse scores in cases like hypothesis (1) in our exam- 
ple, where we encounter the vc-np-advp-np-advp 
sequence, as opposed to hypothesis (190) with the 
more natural vc-advp-vc-np sequence. 

4 S y s t e m  A r c h i t e c t u r e  

4.1 Overv iew 

Figure 1 shows the global system architecture. 
The Nbest lists are generated from lattices that are 
produced by the JANUS speech recognizer (Walbel 
et al., 1996). First, the hypothesis duplicates with 
respect to silence and noise words are removed from 
the Nbest lists 7, next the word stream is tagged with 
Brill's part of speech (POS) tagger (Brill, 1994), 
Version 1.14, adapted to the SWITCHBOARD Cor- 
pus. Then, the token stream is "cleaned up" in the 
preprocessing pipe, which then serves as the input 
of the POS based chunk parser. Finally, the chunk 
representations generated by the parser are used to 
compute scores which are the basis of the rescoring 
component that eventually generates new reranked 
Nbest lists. 

In the following, we describe the major compo- 
nents of the system in more detail. 

6On our data ,  from WER.--43.5~ to WER=30.4%, using 
the  top 300 hypotheses of each ut terance (see Table I). 

7since we are ignoring these pieces of information in later  
stages of processing 

1454 



input utlemnces 

speech recognizer 

t wordlattices 

] duplicate filter I 

. . . . . . . . . . . . . . . . . . . . . . . . .  I . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

I 

It oh- ,--tli 
chunk sequence 

Nbest rescorer 

. . . . . . . . . . . . . .  i . . . . . . . . . . . . . .  • 
reranked Nbest lists 

Figure 1: Global system architecture 

4.2 Preprocess lng  P ipe  

This preprocessing pipe consists of a number of fil- 
ter components that serve the purpose of simplify- 
ing the input for subsequent components, without 
loss of essential information. Multiple word repeti- 
tions and non-content interjections or adverbs (e.g., 
"actually") are removed from the input, some short 
forms are expanded (e.g., "we'll" -+ "we will"), and 
frequent word sequences are combined into a single 
token (e.g., % lot of" --~ "a_lot_of"). Longer turns 
are segmented into short clauses, which are defined 
as consisting of at least a subject and an inflected 
verbal form. 

4.3 C h u n k  Parse r  

The chunk parser is a chart based context free 
parser, originally developed for the purpose of se- 
mantic frame parsing (Ward, 1991). For our pur- 
poses, we define the chunks to be the relevant con- 
cepts in the underlying grammar. We use 20 differ- 
ent chunks that consist of part of speech sequences 
(there are 40 different POS tags in the version of 
Brill's tagger that we are using). Since the grammar 

is non-recursive, no attachments of constituents are 
made, and, also due to its small size, parsing is ex- 
tremely fast (more than 2000 tokens per second), s 
The parser takes the POS sequence from the tagged 
input, parses it in chunks, and finally, these POS- 
chunks are combined again with the words from the 
input stream. 

4.4 Nbes t  Rescorer  

The rescorer's task is to take an Nbest list generated 
from the speech recognizer and to label each element 
in this list (=hypothesis) with a new score which 
should correspond to the true WER of the respective 
hypothesis; these new scores are then used for the 
reranking of the Nbest list. Thus, in the optimal 
case, the hypothesis with lowest WER would move 
to the top of the reranked Nbest list. 

The three main components of the rescorer are: 

1. Score Calcula t ion:  
There are three types of scores used: 

(a) normalized score from the recognizer (with 
respect to the acoustic and language mod- 
els used internally): highest score = lowest 
rank number in the original Nbest list 

(b) chunk coverage scores: derived from the 
relative coverage of the chunk parser for 
each hypothesis: highest score = complete 
coverage, no skipped words in the hypoth- 
esis 

(c) chunk language model score: this is a stan- 
dard n-gram score, derived from the se- 
quence of chunks in each hypothesis (as 
opposed to the sequence of words in the 
recognizer): high score = high probability 
for the chunk sequence; the chunk language 
model was computed on the chunk parses 
of the LDC 9 SWITCHBOARD transcripts 
(about 3 million words total; we computed 
standard 3-gram and 5-gram backoff mod- 
els). 

2. Re rank ing  Neura l  Network:  We are using 
a standard three layer backpropagation neural 
network. The input units are the scores de- 
scribed here, the output unit should be a good 
predictor of the true WER of the hypothesis. 
For training of the neural net, the data was split 
randomly into a training and a test set. 

3. Cu to f f  Fi l ter :  Initial experiments and data 
analysis showed clearly that in short utterances 
(less than 5-10 words) the potential reduction 
in WER is usually low: many of these utter- 
ances are (almost) correctly recognized in the 

SDEC Alpha, 200MHz 
9Linguistic Data Consortium 
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data set Utts. true opt. 
WER WER 

train 271 1"45.05 30.75 
test 103 40.50 29.83 

Total 374 43.51 30.41 

Table 1: Characteristics of train and test sets 
(WER in %) 

first place. For this reason, this filter prevents 
application of reranking to these short utter- 
a n c e s .  

5 Exper iment:  Sys tem Performance 
5.1 D a t a  

The data we used for system training, testing, 
and evaluation were drawn from the SWITCHBOARD 
and CALLHOME LVCSR 1° evaluation in spring 1996 
(Finke and Zeppenfeld, 1996). In total, 374 utter- 
ances were used that were randomly split to form a 
training and test set. For these utterances, Nbest 
lists of length 300 were created from speech recog- 
nizer lattices. 11 The word error rates (WER) of 
these sets are given in Table 1. While the true 
WER corresponds to the WER of the first hypoth- 
esis (--top ranked), the optimal WER is computed 
under the assumption that an oracle would always 
pick the hypothesis with the lowest WER in every 
Nbest list. The difference between the average true 
WER and the optimal WER is 13.1%; this gives 
the maximum margin of improvement that rerank- 
ing can possibly achieve on this data set. Another 
interesting figure is the expected WER gain, when 
a random process would rerank the Nbest lists and 
just pick any hypothesis to be the (new) top one. 
For the test set, this expected WER gain is -4.9% 
(i.e., the WER would drop by 4.9%). 

5.2 Globa l  S y s t e m  S p e e d  

The system runtime, starting from the POS-tagger 
through all components up to the final evaluation of 
WER gain for the 103 utterances of the test set (ca. 
8400 hypotheses, 145000 tokens) is less than 10 min- 
utes on a DEC Alpha workstation (200 MHz, 192MB 
RAM), i.e., the throughput is more than 10 utter- 
ances per minute (or 840 hypotheses per minute). 

5.3 P a r t  Of  Speech  Tagger  
We are using Brill's part of speech tagger as an 
important preprocessing component of our system 
(Brill, 1994). As our evaluations prove, the perfor- 
mance of this component is quite crucial to the whole 

l°Large Vocabulary Continuous Speech Recognition 
II Short  u t terances  tend to have small lattices and therefore  

not all Nbest lists comprise t h e  m a x i m u m  of 300 hypotheses. 

test  set words miss. wrong sup.ft, error ] 
2 0 u t t s  372 33 13 1 12.6% I 

2 0 u t t s - c o r r  372 10 0 1 3.0% ] 

Table 2: Performance of the chunk parser on 
different test sets 

system's performance, in particular to the segmen- 
tation module and to the POS based chunk parser. 

Since the original tagger was trained on writ- 
ten corpora (Wall Street Journal, Brown corpus), 
we had to adapt it and retrain it on SWITCH-  
BOARD data. The tagset was slightly modified and 
adapted, to accommodate phenomena of spoken lan- 
guage (e.g., hesitation words, fillers), and to facili- 
tate the task of the segmentation module (e.g., by 
tagging clausal and non-clausal coordinators differ- 
ently). After the adaptive training, the POS accu- 
racy is 91.2% on general SWITCHBOARD 12 and 88.3% 
on a manually tagged subset of the training data we 
used for our experiments. 13 

Fortunately, some of these tagging errors are irrel- 
evant with respect to the POS based chunk gram- 
mar: the tagger's performance with respect to this 
grammar is 92.8% on general SWITCHBOARD, and 
90.6% for the manually tagged subset from our train- 
ing set. 

5.4 C h u n k  P a r s e r  

The evaluation of the chunk parser's accuracy was 
done on the following data sets: (i) 20 utterances 
(5 references and 15 speech recognizer hypothe- 
ses) (20utts) ;  (ii) the same data, but with manual 
corrections of POS tags and short clause segment 
boundaries (20u t t s - co r r ) .  

For each word appearing in the chunk parser's out- 
put (including the skipped words14), it was deter- 
mined, whether it belonged to the correct chunk, or 
whether it had to be classified into one of these three 
error categories: 

• "missing": either not parsed or wrongfully in- 
corporated in another chunk; 

• "wrong": belongs to the wrong type of chunk; 

• "superfluous": parsed as a chunk that should 
not be there (because it should be a part of 
another chunk) 

12The original.LDC transcr ipts  not  used in our rescoring 
evaluations. 

13These numbers  are significantly lower than  those achiev- 
able by taggers for wri t ten language~ we conjecture tha t  one 
reason for this lower performance is due to the more refined 
tagset  we use which causes a higher  amount  of ambiguity for 
s o m e  frequent words. 

14Skipped words are words t ha t  could not be parsed into 
any chunks. 
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data set 

eval21 
tes t  

best expected 
performance WER gain 

+2.0 +0.5 
+0.3  -4.9 

Table 3: WER gain: best results in neural 
net experiments for two test sets (in absolute 

%) 

The results of this evaluation are given in Table 2. 
We see that an optimally preprocessed input is in- 
deed crucial for the accuracy of the parser: it in- 
creases from 87.4% to 97.0%. 15 

5.5 N b e s t  Resco re r  

The task of the Nbest list rescorer is performed by 
a neural net, trained on chunk coverage, chunk lan- 
guage model, and speech recognizer scores, with the 
true WER as target value. We ran experiments to 
test various combinations of the following param- 
eters: type of chunk language model (3-gram vs. 
5-gram); chunk score parameters (e.g., penalty fac- 
tors for skipped words, length normalization param- 
eters); hypothesis length cutoffs (for the cutoff fil- 
ter); number of hidden units; number of training 
epochs. 

The net with the best performance on the test set 
has one hidden unit, and is trained for 10 epochs. A 
length cutoff of 8 words is used, i.e., only hypothe- 
ses whose average length was >_ 8 are actually con- 
sidered as reranking candidates. A 3-gram chunk 
language model proved to be slightly better than a 
5-gram model. 

Table 3 gives the results for the entire test set 
and a subset of 21 hypotheses (eval21) which had 
at least a potential gain of three word errors (when 
comparing the first ranked hypothesis with the hy- 
pothesis which has the fewest errors), le 

We also calculated the cumulative average WER 
before and after reranking, over the size of the Nbest 
list for various hypotheses. 17 Figure 2 shows the 
plots of these two graphs for the example utterance 
in section 3 ("you weren't born just to soak up sun"). 
We see very clearly, that in this example not only 
has the new first hypothesis a significant WER gain 
compared to the old one, but that in general hy- 
potheses with lower WER moved towards the top of 
the Nbest list. 

Is (Abney, 1996) reports  a comparable per word accuracy of 
his CASS2 chunk parser (92.1%). 

1aWhile the la t ter  set  w a s  obtained post hoc (using t h e  
known WEB.), it is conceivable to approximate  this biased se- 
lection, when fairly reliable confidence annota t ions  from the  
speech recognizer are available (Chase, 1997). 

17Average of the WEB. from hypotheses 1 to k in the  Nbest  
ilst. 
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Figure 2: Cumulative average WER before 
and after reranking for an example utterance 

r a n k / n r .  
1/1 
2 /3  

3 /189 
4/190 
5/214 
6/269 
 /273 
8/296 

h y p o t h e s i s  
y o u  weren' t  born  justice so cups on 
y o u  weren' t  born  jus t  t o  s e w  cups on 
y o u  weren' t  born  justice vocal song 
y o u  w e r e n ' t  b o r n  j u s t  t o  soak  u p  s u n  
y o u  weren' t  foreign jus t  to  s e w  cups on 
y o u  weren't  born  just ice so courts on 
you weren' t  born  jus t  to sew carp song 
you weren' t  boring jus t  to  s o a k  up son 

Table 4: Recognizer hypotheses from an 
example utterance (hypothesis nr. 190 
exactly corresponds to the reference) 

A more detailed account of 8 hypotheses from the 
same example utterance is given in tables 4 (which 
lists the recognizer hypotheses) and 5 (where various 
scores, WER, and the ranks before and after the 
reranking procedure are provided). It can be seen 
that while the new first best hypothesis is not the 
one with the lowest WER, it does have a lower WEB, 
than the originally first ranked hypothesis (25.0% vs. 
62.5%). 

6 Discuss ion 
Using the neural net with the characteristics de- 
scribed in the previous section, we were able to get 
a positive effect in WER reduction on a non-biased 
test set. While this effect is quite small, one has 
to keep in mind that the (constituent-like) chunk 
representations were the only source of information 
for our reranking system, in addition to the internal 
scores of the speech recognizer. It can be expected 
that including more sources of knowledge, like the 
plausibility of correct verb-argument structures (the 
correct match of subcategorization frames), and the 
likelihood of selectional restrictions between the ver- 
bal heads and their head noun arguments would fur- 
ther improve these results. 
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Hypo-Rank 
New/Old 

I/8 
2/7 
3/4 
4/3 
5/6 
6/5 
7/1 
8/2 

Table 5: Scores, WER, and 

True WER Chunk-Cov. Skipped Chunk-LM Norm.SR 
in % Score Words Score Score 
25.0 0.875 0 0.984 0.93 
37.5 0.625 0 0.865 0.94 
0.0 0.75 0 0.954 0.97 
62.5 0.5 0 0.618 0.98 
62.5 0.625 0.125 0.715 0.95 
50.0 0.75 0.125 1.056 0.96 
62.5 0.625 0.125 0.715 1.0 
37.5 0.625 0.125 1.032 0.99 

ranks before and after reranking of 8 hypotheses from an example utterance 

The second observation we make when looking at 
the markedly positive results of the eval21 set con- 
cerns the potential benefit of selecting good candi- 
dates for reranking in the first place. 

7 Comparison: Human Study 

One of our motivations for using syntactic represen- 
tations for the task of Nbest list reranking was the 
intuition that frequently, by just reading through the 
list of hypotheses, one can eliminate highly implau- 
sible candidates or favor more plausible ones. 

To put this intuition to test, we conducted a small 
experiment where human subjects were asked to look 
at pairs of speech recognizer hypotheses drawn from 
the Nbest lists and to decide which of these they con- 
sidered to be "more well-formed". Well-formedness 
was judged in terms of (i) structure (syntax) and 
(ii) meaning (semantics). 128 hypothesis pairs were 
extracted from the training set (the top ranked hy- 
pothesis and the hypothesis with lowest WER), and 
presented in random order to the subjects. 

4 subjects participated in the study and table 6 
gives the results of its evaluation: WER gain is 
measured the same way as in our system evalua- 
tion -- here, it corresponds to the average reduction 
in WER, when the well-formedness judgements of 
the human subjects were to be used to rerank the 
respective hypothesis-pairs. 

While the maximum WER gain for these 128 
hypothesis-pairs is 15.2%, the expected WER gain 
(i.e., the WER gain of a random process) is 7.6%. 

Whereas the difference between both methods to 
a random choice is highly significant (syntax: a = 
0.01,t = 9.036, df = 3; semantics: a = 0.01,t = 
11.753,df = 3) TM , the difference between these 
two methods is not (a = 0.05,t = -1.273,df = 
6) 19 . The latter is most likely due to the fact that 
there were only few hypotheses that were judged 
differently in terms of syntactic or semantic well- 
formedness by one subject: on average, only 6% of 

18These resul ts  were obta ined  using the one-sided t- test .  
tOTwo-sided t-test. 

Subject 
A 10.0 
B 10.0 
C 9.1 
D 10.2 

Total Avg. 9.8 

10.3 
10.2 
9.7 

10.8 
10.2 

Table 6: Human Performance (WER gain in %) 

the hypothesis-pairs received a different judgement 
by one subject. 

8 F u t u r e  W o r k  

From our results and experiments, we conclude that 
there are several directions of future work which are 
promising to pursue: 

• improvement of the POS tagger: Since the per- 
formance of this component was shown to be 
of essential importance for later stages of the 
system, we expect to see benefits from putting 
efforts into further training. 

• alternative language models: An idea for im- 
provement here is to integrate skipped words 
into the LM (similar to the modeling of noise 
in speech). In this way we get rid of the skip- 
ping penalties we were using so far and which 
blurred the statistical nature of the model. 

• identifying good reranking candidates: So far, 
the only and exclusive heuristics we are using 
for determining when to rerank and when not 
to, is to use the length-cutoff filter to exclude 
short utterances from being considered in the fi- 
nal reranking procedure. (Chase, 1997) showed 
that there are a number of potentially useful 
"features" from various sources within the rec- 
ognizer which can predict, at least to a cer- 
tain extent, the "confidence" that the recognizer 
has about a particular hypothesis. Hypotheses 
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which have a higher WER on average also ex- 
hibit a higher word gain potential, and there- 
fore these predictions appear to be promising 
indeed. 

• adding argument structure representations: The 
chunk representation in our system only gives 
an idea about which constituents there are in 
a clause and what their ordering is. A richer 
model has to include also the dependencies be- 
tween these chunks. Exploiting statistics about 
subcategorization frames of verbs and selec- 
tional restrictions would be a way to enhance 
the available representations. 

9 S u m m a r y  
In this paper we have shown that it is feasible to pro- 
duce chunk based representations for spontaneous 
speech in unrestricted domains with a high level of 
accuracy. 

The chunk representations are used to generate 
scores for an Nbest list reranking component. 

The results are promising, in that the best perfor- 
mance on a randomly selected test set is an absolute 
decrease in word error rate of 0.3 percent, measured 
on the new first hypotheses in the reranked Nbest 
lists. 
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