
Efficient Construction of Underspecified Semantics under
Massive Ambiguity

J o c h e n D5rre*
Institut fiir maschinelle Sprachverarbeitung

University of Stuttgart

A b s t r a c t

We investigate the problem of determin-
ing a compact underspecified semantical
representation for sentences that may be
highly ambiguous. Due to combinatorial
explosion, the naive method of building se-
mantics for the different syntactic readings
independently is prohibitive. We present
a method that takes as input a syntac-
tic parse forest with associated constraint-
based semantic construction rules and di-
rectly builds a packed semantic structure.
The algorithm is fully implemented and
runs in O(n4log(n)) in sentence length, if
the grammar meets some reasonable 'nor-
mality' restrictions.

1 Background

One of the most central problems that any NL sys-
tem must face is the ubiquitous phenomenon of am-
biguity. In the last few years a whole new branch de-
veloped in semantics that investigates underspecified
semantic representations in order to cope with this
phenomenon. Such representations do not stand for
the real or intended meaning of sentences, but rather
for the possible options of interpretation. Quanti-
fier scope ambiguities are a semantic variety of am-
biguity that is handled especially well by this ap-
proach. Pioneering work in that direction has been
(Alshawi 92) and (Reyle 93).

More recently there has been growing interest in
developing the underspecification approach to also
cover syntactic ambiguities (cf. (Pinkal 95; EggLe-
beth 95; Schiehlen 96)). Schiehlen's approach is out-
standing in that he fully takes into account syntactic

*This research has been carried out While the au-
thor visited the Programming Systems Lab of Prof.
Gert Smolka at the University of Saarland, Saarbriicken.
Thanks to John Maxwell, Martin Miiller, Joachim
Niehren, Michael Schiehlen, and an anonymous reviewer
for valuable feedback and to all at PS Lab for their help-
ful support with the OZ system.

constraints. In (Schiehlen 96) he presents an algo-
rithm which directly constructs a single underspec-
ified semantic structure from the ideal "underspeci-
fled" syntactic structure, a parse forest.

On the other hand, a method for producing
"packed semantic structures", in that case "packed
quasi-logical forms", has already been used in the
Core Language Engine, informally described in (A1-
shawi 92, Chap. 7). However, this method only pro-
duces a structure that is virtually isomorphic to
the parse forest, since it simply replaces parse for-
est nodes by their corresponding semantic oper-
ators. No at tempt is made to actually apply se-
mantic operators in the phase where those "packed
QLFs" are constructed. Moreover, the packing of
the QLFs seems to serve no purpose in the process-
ing phases following semantic analysis. Already the
immediately succeeding phase "sortal filtering" re-
quires QLFs to be unpacked, i.e. enumerated.

Contrary to the CLE method, Schiehlen's method
actively packs semantic structures, even when they
result from distinct syntactic structures, extracting
common parts. His method, however, may take time
exponential w.r.t, sentence length. Already the se-
mantic representations it produces can be exponen-
tially large, because they grow linear with the num-
ber of (syntactic) readings and that can be exponen-
tial, e.g., for sentences that exhibit the well-known
attachment ambiguity of prepositional phrases. It is
therefore an interesting question to ask, whether we
can compute compact semantic representations from
parse forests without falling prey to exponential ex-
plosion.

The purpose of the present paper is to show that
construction of compact semantic representations
like in Schiehlen's approach from parse forests is not
only possible, but also cheap, i.e., can be done in
polynomial time.

To illustrate our method we use a simple DCG
grammar for PP-attachment .ambiguities, adapted
from (Schiehlen 96), that yields semantic represen-
tations (called UDI~Ss) according to the Underspec-
ified Discourse Representation Theory (Reyle 93;
KampReyle 93). The grammar is shown in Fig. 1.

386

start(DRS) --> s([.... itop], [],DRS).

s([Evenc,VerbL,DomL],DRS i,PRS_o) -->
np([X,VerbL,DomL],DRS_i,DRSI),
vp([Event,X,VerbL,DomL],DRS1,DRS_o).

s([Event,VerbL,DomL],DRS_i,DRS_o) -->
s([Event,VerbL, DomL],DRSi,DRSl),
pp([Event,VerbL,DomL],DRSi,DRSo).

vp([Ev,X,VerbL,DomL],DRS_i,DRSo) -->
vt([Ev,X,Y,VerbL,DomL],DRS_i,DRSI),
np([Y,VerbL,DomL],DRSI,DRS_O).

np([X, VbL,DomL],DRS i,DRS_o) -->
det([X,Nou~,L,VbL,DomL],DRS_i,DRSI),
n([X,NounL,DomL],DRSI,DRSo).

n([X,NounL,DomL],DRS i,DRS_o) -->
n([X,NounL,DomL],DRS i,DRSI),
pp([X,NounL,DomL],DRSI,DRS_o).

pp([X,L,DomL],DRS_i,DRS o) -->
prep(Cond,X,Y),
np([Y,L,DomL], [L:CondlDRS i],DRS o).

vt([Ev, X,Y,L,_DomL],DRS_i,DRS) --> [saw],
[DRS=[L:see(Ev,X,Y) IDRS_i]}.

det([X,Lab,VerbL,_],DRS i,DRS) -->
[a],
[DRS=[It(Lab, ltop),It(VerbL,Lab),

Lab:XIDRS_i],
gensym(l,Lab),gensym(x,X)}.

det([X,ResL;VbL,DomL],DRSi,DRS) -->
[e v e r y] ,
(DRS=[l t (L ,DomL) , l t (VbL,ScpL) ,ResL:X,

L:every(ResL,ScpL) IDRS_i],
gensym(l,L),gensym(l,ResL),
gensym(l,ScpL),gensym(x,X)}.

np([X],DRS_i,DRS) --> [i],
[DRS=[itop:X,anchor(X, speaker) IDRS_i],
gensyrn(x,X)}.

n([X,L,_],DRS, [L:man(X) IDRS]) --> [man].
n([X,L,_],DRS, [L:hilI(X) IDRS]) --> [hill].

prep(on(X,Y),X,Y) --> [on].
prep(with(X,Y),X,Y) --> [with].

Figure h Example DCG

The UDRSs constructed by the grammar are flat
lists of the UDRS-constraints I <__ l ' (subordination
(partial) ordering between labels; Prolog represen-
tation: i t (l , l ')) , l : Cond (condition introduction
in subUDRS labeled l), I : X (referent introduc-
tion in l), l : GenQuant (l ' , l ") (generalised quan-
tifier) and an anchoring function. The meaning of a
UDKS as a set of denoted DRSs can be explained
as follows. 1 All conditions with the same label form
a subUDRS and labels occurring in subUDRSs de-
note locations (holes) where other subUDRSs can
be plugged into. The whole UDRS denotes the set
of well-formed DRSs that can be formed by some
plugging of the subUDRSs that does not violate the
ordering <. Scope of quantifiers can be underspec-
ified in UDRSs, because subordination can be left
partial.

In our example grammar every nonterminal has
three arguments. The 2nd and the 3rd argument rep-
resent a UDRS list as a difference list, i.e., the UDRS
is "threaded through". The first argument is a list of
objects occurring in the UDRS that play a specific
role in syntactic combinations of the current node. 2
An example of a UDRS, however a packed UDRS, is
shown later on in §5.

To avoid the dependence on a particular g rammar
formalism we present our method for a constraint-
based grammar abstractly from the actual constraint

1Readers unfamiliar with DRT should think of these
structures as some Prolog terms, representing semantics,
built by unifications according to the semantic rules. It is
only important to notice how we extract common parts
of those structures, irrespective of the structures' mean-
ings.

~E.g., for an NP its referent, as well as the upper and
lower label for the current clause and the top label.

system employed. We only require that semantic
rules relate the semantic 'objects ' or structures tha t
are associated with the nodes of a local tree by em-
ploying constraints. E.g., we can view the DCG rule
s ~ np vp as a relation between three 'seman-
tic construction terms' or variables SereS, SemNP,
SemVP equivalent to the constraints
Seres = [[Event, VerbL,DomL, TopL] , DRS_i, DRS_o]

SemNP = [[X,VerbL,DomL,TopL] ,DRS_i,DRSI]
SemVP = [[Event, X, VerbL, DomL, TopL] , DRS 1, DRS_o]

Here is an overview of the paper. §2 gives the pre-
liminaries and assumptions needed to precisely state
the problem we want to solve. §3 presents the ab-
stract algorithm. Complexity considerations follow
in §4. Finally, we consider implementation issues,
present results of an experiment in §5, and close with
a discussion.

2 T h e P r o b l e m

As mentioned already, we aim at calculating from
given parse forests the same compact semantic struc-
tures that have been proposed by (Schiehlen 96),
i.e. structures tha t make explicit the common parts
of different syntactic readings, so that subsequent
semantic processes can use this generalised infor-
mation. As he does, we assume a constraint-based
grammar, e.g. a DCG (PereiraWarren 80) or HPSG
(PollardSag 94) , in which syntactic constraints and
constraints that determine a resulting semantic rep-
resentation can be seperated and parsing can be per-
formed using the syntactic constraints only.

Second, we assume that the set of syntax trees
can be compact ly represented as a parse forest
(cf. (Earley 70; BillotLang 89; Tomita 86)). Parse
forests are rooted labeled directed acyclic graphs
with AND-nodes (standing for context-free branch-

387

s s s

np
5

n n

p / \ / /
np np
12 / ,3

PP
18

16

PP
19

np v d n p d n p
23 24 25 26 27 28 29 30

np
22

d n
31 32

I saw a man on the hill with the tele

Figure 2: Example of a parse forest

ing) and OR-nodes (standing for alternative sub-
trees), that call be characterised as follows (cf. Fig. 2
for an example).3

1. The terminal yield as well as the label of two
AND-nodes are identical, if and only if they
both are children of one OR-node.

2. Every tree reading is .a valid parse tree.

Tree readings of such graphs are obtained by replac-
ing any OR-node by one of its children. Parse forests
can represent an exponential number of phrase
structure alternatives in o(n 3) space, where n is the
length of the sentence. The example uses the 3 OR-
nodes (A, B, C) and the AND-nodes 1 through 32
to represent 5 complete parse trees, that would use
5 x 19 nodes.

Third, we assume the rule-to-rule hypothesis, i.e.,

3The graphical representation of an OR-node is a box
surroux~ding its children, i.e. the AND-OR-graph struc-

ture of ~ is o ~ .

N D

that the grammar associates with each local tree a
'semantic rule' that specifies how to construct the
mother node's semantics from those of its children.

Hence, input to the algorithm is

• a parse forest

• an associated semantic rule for every local tree
(AND-node together with its children) therein

• and a semantic representation for each leaf
(coming from a semantic lexicon).

To be more precise, we assume a constraint lan-
guage C over a denumerable set of variables X,
that is a sublanguage of Predicate Logic with equal-
ity and is closed under conjunction, disjunction,
and variable renaming. Small greek letters ¢, ¢ will
henceforth denote constraints (open formulae) and
letters X, Y, Z (possibly with indeces) will denote
variables. Writing ¢ (X1 , . . . , Xk) shall indicate that
X1 , Xk are the free variables in the constraint ~.
Frequently used examples for constraint languages
are the language of equations over first-order terms

388

for DCGs, 4 PATR-style feature-path equations, or
typed feature structure description languages (like
the constraint languages of ALE (Carpenter 92) or
CUF (D6rreDorna 93)) for HPSG-style grammars.

Together with the constraint language we require
a constraint solver, that checks constraints for satis-
fiability, usually by transforming them into a normal
form (also called 'solved form'). Constraint solving
in the DCG case is simply unification of terms.

The semantic representations mentioned before
are actually not given directly, but rather as a con-
straint on some variable, thus allowing for partiality
in the structural description. To that end we assume
that every node in the parse forest u has associated
with it a variable Xv that is used for constraining the
(partial) semantic structure of u. The semantics of
a leaf node # is hence given as a constraint ¢ , (X ,) ,
called a leaf constraint.

A final assumption that we adopt concerns the na-
ture of the 'semantic rules'. The process of semantics
construction shall be a completely monotonous pro-
cess of gathering constraints that never leads to fail-
ure. We assume that any associated (instantiated)
semantic rule r(u) of a local tree (AND-branching)
u(ul , . . . ,u~) determines u's semantics Z(u) as fol-
lows from those of its children:

Z(,,) = 3X, , , . . . 3X~, (¢~(,,)(X,,, X , , , , . . . , X,,,) A
Z(I."I) A . . . A E(Uk)).

The constraint Cr(v)(Xv, X v l , . . . , X ~) is called the
rule constraint for ~,. It is required to only depend
on the variables X~, X~I , . . . , X~,. Note that if the
same rule is to be applied at another node, we have
a different rule constraint.

Note that any F,(~,) depends only on Xv and can
be thought of as a unary predicate. Now, let us con-
sider semantics construction for a single parse tree
for the moment. The leaf constraints together with
the rules define a semantics constraint Z(~,) for ev-
ery node u, and the semantics of the full sentence
is described by the T-constraint of the root node,
~,(root). In the T-constraints, we actually can sup-
press the existential quantifiers by adopting the con-
vention that any variable other than the one of the
current node is implicitly existentially bound on the
formula toplevel. Name conflicts, that would force
variable renaming, cannot occur. Therefore ~(root)
is (equivalent to) just a big conjunction of all rule
constraints for the inner nodes and all leaf con-
straints.

Moving to parse forests, the semantics of an OR-
node u(~,l,. . . , uk) is to be defined as

z(,.,) = 3x~, . . . 3x ,~ (z (, ,~) ^ x ~ = x ~ , v . . .
v z(~k) ^ x~=x~),

4DCG shall refer in this paper to a logically pure ver-
sion, Definite Clause Grammars based on pure PROLOC,
involving no nonlogical devices like Cut, var/1, etc.

specifying that the set of possible (partial) semantic
representations for u is the union of those of u's chil-
dren. However, we can simplify this formula once and
for all by assuming that for every OR-node there is
only one variable Xu that is associated with it and all
of its children. Using the same variable for ul . . . uk
is unproblematic, because no two of these nodes can
ever occur in a tree reading. Hence, the definition we
get is

~"](IJ) : Z(I] I) V . . . V Z(lYk).
Now, in the same way as in the single-tree case, we
can directly "read off" the T-constraint for the whole
parse forest representing the semantics of all read-
ings. Although this constraint is only half the way
to the packed semantic representation we are aim-
ing at, it is nevertheless worthwhile to consider its
structure a little more closely. Fig. 3 shows the struc-
ture of the F,-constraint for the OR-node B in the
example parse forest.

In a way the structure of this constraint directly
mirrors the structure of the parse forest. However,
by writing out the constraint, we loose the sharings
present in the forest. A subformula coming from a
shared subtree (as Z(18) in Fig. 3) has to be stated
as many times as the subtree appears in an unfolding
of the forest graph. In our PP-attachment example
the blowup caused by this is in fact exponential.

On the other hand, looking at a T-constraint as a
piece of syntax, we can represent this piece of syntax
in the same manner in which trees are represented in
the parse forest, i.e. we can have a representation of
Z(root) with a structure isomorphic to the forest's
graph structure, s In practice this difference becomes
a question of whether we have full control over the
representations the constraint solver employs (or any
other process that receives this constraint as input).
If not, we cannot contend ourselves with the possi-
bility of compact representation of constraints, but
rather need a means to enforce this compactness on
the constraint level. This means that we have to in-
troduce some form of functional abstraction into the
constraint language (or anything equivalent that al-
lows giving names to complex constraints and refer-
encing to them via their names). Therefore we en-
hance the constraint language as follows. We allow
to our disposition a second set of variables, called
names, and two special forms of constraints

1. def(<name>, <constraint>)
name definition

2. <name> name use

with the requirements, that a name may only be
used, if it is defined and that its definition is unique.
Thus, the constraint Z(B) above can be written as

(¢r(6) A . . . A ¢26 A N
V ¢~(7) A . . . A ¢26 A N)

A def(N, ¢r(18) A¢27 A ¢r(21) A¢2S A¢29)

5The packed QLFs in the Core Language Engine (A1-
shawl 92) are an example of such a representation.

389

6r(6) A 623 A d)r(10) A 024 A 6r(12i A (~25 A Cr(lS) A 626 A ~r(IS} A ~27 A (~r(21) A 628 A ~29

. z(s)

~(6)
v
6r(7) A ~r(14) A 623 A Or(17) A 624 A 6r(20) A 625 A 626/~ ~r(18) A ~27 A 6r(21) A 628 A 629

E(181

Figure 3: Constraint E(B) of example parse forest

The packed semantic representation as con-
structed by the method described so far still calls
for an obvious improvement. Very often the dif-
ferent branches of disjunctions contain constraints
that have large parts in common. However, although
these overlaps are efficiently handled on the rep-
resentational level, they are invisible at the logical
level. Hence, what we need is an algorithm that fac-
tores out common parts of the constraints on the
logical level, pushing disjunctions down. 6 There are
two routes that we can take to do this efficiently.

In the first we consider only the structure of the
parse forest, however ignore the content of (rule or
leaf) constraints. I.e. we explore the fact that the
parts of the E-constraints in a disjunction that stem
from nodes shared by all disjuncts must be identical,
and hence can be factored o u t / More precisely, we
can compute for every node v the set must-occur(v)
of nodes (transitively) dominated by v that must oc-
cur in a tree of the forest, whenever u occurs. We can
then use this information, when building the disjunc-
tion E(u) to factor out the constraints introduced
by nodes in mus t -occur (v) , i.e., we build the fac-
tor • = Av'emust-occur(v) Z(u') and a ' remainder '
constraint E(ui)\~ for each disjunct.

The other route goes one step further and takes
into account the content of rule and leaf constraints.
For it we need an operation g e n e r a l i s e that can be
characterised informally as follows.

For two satisfiable constraints ¢ and ~,
g e n e r a l i s e (¢ , !b) yields the triple ~, ¢' , ~3',
such that ~ contains the 'common part ' of
¢ and 19 and ¢' represents the 'remainder '
6\~ and likewise 19' represents 19\~.

6Actually, in the E(B) example such a factoring
makes the use of the name N superfluous. In general,
however, use of names is actually necessary to avoid ex-
ponentially large constraints. Subtrees may be shared
by quite different parts of the structure, not only by dis-
juncts of the same disjunction. In the PP-attachment ex-
ample, a compression of the E-constraint to polynomial
size cannot be achieved with factoring alone.

7(Maxwell IIIKaplan 93) exploit the same idea for
efficiently solving the functional constraints that an LFG
grammar associates with a parse forest.

The exact definition of what the 'common part ' or
the 'remainder ' shall be, naturally depends on the
actual constraint system chosen. For our purpose it
is sufficient to require the following properties:

If g e n e r a l i s e (~ . 19) ~-~ (~, ~', ~b'), then ~ I-
a n d O f - ~ a n d o = ~ A ¢ ' a n d ~ b - = ~ A ~ b ' .

We shall call such a generalisation operation sim-
plifying if the normal form of ~ is not larger than
any of the input constraints' normal form.

E x a m p l e : An example for such a generalisa-
tion operation for PROLOG'S constraint system
(equations over first-order terms) is the so-called
anti-unify operation, the dual of unification, that
some PROLOG implementations provide as a library
predicate, s Two terms T1 and T2 'anti-unify' to T,
iff T is the (unique) most specific term that sub-
sumes both T1 and T2. The 'remainder constraints'
in this case are the residual substitutions al and a2
that transform T into T1 or T2, respectively.

Let us now state the method informally. We use
g e n e r a l i s e to factor out the common parts of dis-
junctions. This is, however, not as trivial as it might
appear at first sight. G e n e r a l i s e should operate
on solved forms, but when we try to eliminate the
names introduced for subtree constraints in order
to solve the corresponding constraints, we end up
with constraints that are exponential in size. In the
following section we describe an algorithm that cir-
cumvents this problem.

3 T h e A l g o r i t h m

We call an order < on the nodes of a directed
acyclic graph G = (N, E) with nodes N and edges E
bottom-up, iff whenever (i, j) E E ("i is a predecessor
to j ") , then j < i.

For the sake of simplicity let us assume that
any nonterminal node in the parse forest is binary
branching. Furthermore, we leave implicit, when
conjunctions of constraints are normalised by the
constraint solver. Recall that for the generalisation
operation it is usually meaningful to operate on

Santi_unify in Quintus Prolog , term_subsumer in
Sicstus Prolog.

390

I n p u t : • parse'forest, leaf and rule constraints as described above
• array of variables X~ indexed by node s.t. if v is a child of OR-node v', then Xv = Xv,

D a t a s t ruc tu res : • an array SEM of constraints and an array D of names, both indexed by node
• a stack E N V of def constraints

O u t p u t : a constraint representing a packed semantic representation

M e t h o d : ENV := nil
process nodes in a bottom-up order
doing with node u:
if u is a leaf then

SEM[v] := ¢ ,
D[v] : : t r u e

eiseif v is AND(v1, v2) then
SEIVlIv] := Cr(,) A SEM[vl] A SEM[v2]
if D[vl] = t r u e then D[v] := D[u2]
elseif Dive] = t r u e then D[v] := D[vl]
else D[v] := newname

push def(D[v], D[vl] A D[v2]) onto E N V
end

elseif v is OR(v1, v2) then
let GEN, REM1, REM2 such that

generalise(SEM[vl], SEM[v2]) ~-+ (GEN, REM1, REM2)
SEM[v] := GEN
D[v] := newname
push def(D[v], REM1 A D[v l] V REM2 A D[v2]) onto E N V

end return SEM[root] A D[root] A E N V

Figure 4: Packed Semantics Construction Algorithm

solved forms. However, at least the simplifications
t r u e A ¢ -- ¢ and ¢ A t r u e =-- ¢ should be assumed.

The Packed Semantics Construction Algorithm is
given in Fig. 4. It enforces the following invariants,
which can easily be shown by induction.

1. Every name used has a unique definition.

2. For any node v we have the equivalence ~(v) -
SEM[u] A [D[v]], where [D[u]] shall denote the
constraint obtained from D[v] when recursively
replacing names by the constraints they are
bound to in ENV.

3. For any node u the constraint SEM[v] is never
larger than the ~-constraint of any single tree
in the forest originating in u.

Hence. the returned constraint correctly represents
the semantic representation for all readings.

4 C o m p l e x i t y

The complexity of this abstract algorithm depends
primarily on the actual constraint system and gen-
eralisation operation employed. But note also that
the influence of the actual semantic operations pre-
scribed by the grammar can be vast, even for the
simplest constraint systems. E.g., we can write a
DCGs that produce abnormal large "semantic struc-
tures" of sizes growing exponentially with sentence

length (for a single reading). For meaningful gram-
mars we expect this size function to be linear. There-
fore, let us abstract away this size by employing
a function fa(n) that bounds the size of semantic
structures (respectively the size of its describing con-
straint system in normal form) that grammar G as-
signs to sentences of length n.

Finally, we want to assume that generalisation is
simplifying and can be performed within a bound of
g(m) steps, where m is the to ta l size of the input
constraint systems.

With these assumptions in place, the time com-
plexity for the algorithm can be estimated to be (n
= sentence length, N = number of forest nodes)

O(g(f c (n)) " N) <_ O(g (fa (n)) . n3),

since every program step other than the generali-
sation operation can be done in constant time per
node. Observe that because of Invariant 3. the input
constraints to generalise are bounded by fc as any
constraint in SEM.

In the case of a DCG the generalisation oper-
ation is an t i _un i fy , which can be performed in
o(n. log(n)) time and space (for acyclic s t r u c -
tures). Hence, together with the assumption that
the semantic structures the DCG computes can
be bounded linearly in sentence length (and are
acyclic), we obtain a O(n. log(n). N) < O(n41og(n))
total time complexity.

391

SEM[top]:
[itop : xl,
anchor(xl,'Speaker')
ii : see(el,xl,x2),
it(12,1top),
it(ll,12),
12 : x2,
12 : man(x2),
A : on(B,x3),
it(13,1top),
It(A,15),
14 : x3,
13 : every(14,15),
14 : hill(x3),
C : with(D,x4),
it(16,1top),
it(C,16),
16 : x4,
16 : tele(x4)]

D[top] (a Prolog goal):
dEnv(509,1 ,[B,A,D,C])

ENV (as Prolog predicates):
deny(506, i, A)

(A=[e{,ll]
i A= [x2, 12]

dEnv(339, i, A) :-
(A= [C,B,C,B]
; A= Ix3,14]
)

dEnv(509, 2, A) :-
(A= [el, ll,x3,14]
; A= Ix2,12,C,B],

dEny(339, I, [C,B,x2,12])
)

dEnv(509, i, A) :-
(A=[G,F,eI,II],

deny(506, i, [G,F])
A= [E,D,C,B] ,
dEny(509, 2, [E,D,C,B])

Figure 5: Packed UDRS: conjunctive part (left column) and disjunctive binding environment

5 I m p l e m e n t a t i o n a n d E x p e r i m e n t a l

R e s u l t s

The algorithm has been implemented for the PRO-
LOG (or DCG) constraint system, i.e., constraints
are equations over first-order terms. Two implemen-
tations have been done. One in the concurrent con-
straint language OZ (SmolkaTreinen 96) and one in
Sicstus Prolog. 9 The following results relate to the
Prolog implementation, l°

Fig. 5 shows the resulting packed UDRS for the
example forest in Fig. 2. Fig. 6 displays the SEM
part as a graph. The disjunctive binding environ-
ment only encodes what the variable referents B and
D (in conjunction with the corresponding labels A
and C) may be bound to to: one of el , x2, or x3 (and
likewise the corresponding label). Executing the goal
deny (509,1 , [B, A, D, C]) yields the five solutions:
A = ii, B = e l , C = ii, D = e l ? ;

A = 12, B = x2, C = ii, D = el ? ;

A = 11, B = el, C = 14, D = x3 ? ;

A = 12, B = x2. C = 12, D = x2 ? ;

A = 12, B = x2, C = 14, D = x3 ? ;

n o

I ?-

Table 1 gives execution times used for semantics
construction of sentences of the form I saw a man
(on a hill) n for different n. The machine used for

°The OZ implementation has the advantage that fea-
ture structure constraint solving is built-in. Our imple-
mentation actually represents the DCG terms as a fea-
ture structures. Unfortunately it is an order of magni-
tude slower than the Prolog version. The reason for this
presumably lies in the fact that meta-logical operations
the algorithm needs, like generalise and copy_term
have been modeled in OZ and not on the logical level
were they properly belong, namely the constraint solver.

1°This implementation is available from
http://www.ims.uni-stuttgart.de/'jochen/CBSem.

12 ~
x2 14 15 I
man(x2) I x 3

' [hill¢x3) x ~ I

11 ' A /
I see(el'x l'x2) l °n(B'x3) J

ltop
anchor(x 1 ,' Speaker')

I.
C
I with(D,x4)

Figure 6: Conjunctive part of UDRS, graphically

n

2
4
6
8
10
12
14
16

Readings
5 35
42 91
429 183
4862 319
58786 507
742900 755
9694845 1071
129Mio. 1463

AND- + OR-nodes Time
4 msec
16 msec
48 msec
l l 4 msec
220 msec
430 msec
730 msec
i140 msec

Table 1: Execution times

the experiment was a Sun Ultra-2 (168MHz), run-
ning Sicstus 3.0~3. In a further experiment an n-ary
a n t i _ u n i f y operation was implemented, which im-
proved execution times for the larger sentences, e.g.,
the 16 PP sentence took 750 msec. These results ap-
proximately fit the expectations from the theoretical
complexity bound.

392

6 D i s c u s s i o n

Our algorithm and its implementation show that it
is not only possible in theory, but also feasible in
practice to construct packed semantical representa-
tions directly from parse forests for sentence that ex-
hibit massive syntactic ambiguity. The algorithm is
both in asymptotic complexity and in real numbers
dramatically faster than an earlier approach, that
also tries to provide an underspecified semantics for
syntactic ambiguities. The algorithm has been pre-
sented abstractly from the actual constraint system
and can be 2dapted to any constraint-based gram-
mar formalism.

A critical assumption for the method has been
that semantic rules never fail, i.e., no search is in-
volved in semantics construction. This is required
to guarantee that the resulting constraint is a kind
of 'solved form' actually representing so-to-speak the
free combination of choices it contains. Nevertheless,
our method (modulo small changes to handle failure)
may still prove useful, when this restriction is not
fulfilled, since it focuses on computing the common
information of disjunctive branches. The conjunctive
part of the output constraint of the algorithm can
then be seen as an approximation of the actual re-
sult, if the output constraint is satisfiable. Moreover,
the disjunctive parts are reduced, so that a subse-
quent full-fledged search will have considerably less
work than when directly trying to solve the original
constraint system.

R e f e r e n c e s

H. Alshawi (Ed.). The Core Language Engine.
ACL-MIT Press Series in Natural Languages Pro-
cessing. MIT Press, Cambridge, Mass., 1992.

S. Billot and B. Lang. The Structure of Shared
Forests in Ambiguous Parsing. In Proceedings of
the 27th Annual Meeting of the A CL, University of
British Columbia, pp. 143-151, Vancouver, B.C.,
Canada, 1989.

B. Carpenter. ALE: The Attribute Logic Engine
User's Guide. Laboratory for Computational Lin-
guistics, Philosophy Department, Carnegie Mellon
University, Pittsburgh PA 15213, December 1992.

J. DSrre and M. Dorna. CUF - - A Formalism for
Linguistic Knowledge Representation. In J. DSrre
(Ed.), Computational Aspects of Constraint-Based
Linguistic Description I, DYANA-2 deliverable
R1.2.A. ESPRIT, Basic Research Project 6852,
July 1993.

J. Earley. An Efficient Context-Free Parsing Algo-
rithm. Communications of the ACM, 13(2):94-
102, 1970.

M. Egg and K. Lebeth. Semantic Underspeci-
fication and Modifier Attachment Ambiguities.

In J. Kilbury and R. Wiese (Eds.), Integra-
tive Ansiitze in der Computerlinguistik. Beitriige
zur 5. Fachtagung der Sektion Computerlinguis-
tik der Deutschen Gesellschaft fiir Spraehwis-
senschaft (DGfS), pp. 19-24. Dfisseldorf, Ger-
many, 1995.

H. Kamp and U. Reyle. From Discourse to Logic. In-
troduction to Modeltheoretic Semantics of Natural
Language, Formal Logic and Discourse Represen-
tation Theory. Studies in Linguistics and Philoso-
phy 42. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1993.

J. T. Maxwell III and R. M. Kaplan. The Inter-
face between Phrasal and Functional Constraints.
Computational Linguistics, 19(4):571-590, 1993.

F. C. Pereira and D. H. Warren. Definite Clause
Grammars for Language Analysis--A Survey of
the Formalism and a Comparison with Aug-
mented Transition Networks. Artificial Intelli-
gence, 13:231-278, 1980.

M. Pinkai. Radical Underspecification. In Pro-
ceedings of the lOth Amsterdam Colloquium, pp.
587-606, Amsterdam, Holland, December 1995.
ILLC/Department of Philosophy, University of
Amsterdam.

C. Pollard and I. A. Sag. Head Driven Phrase
Structure Grammar. University of Chicago Press,
Chicago, 1994.

U. Reyle. Dealing with Ambiguities by Underspecifi-
cation: Construction, Representation, and Deduc-
tion. Journal of Semantics, 10(2):123-179, 1993.

M. Schiehlen. Semantic Construction from Parse
Forests. In Proceedings of the 16th International
Conference on Computational Linguistics, Copen-
hagen, Denmark, 1996.

G. Smolka and R. Treinen (Eds.). DFKI Oz Doc-
umentation Series. German Research Center
for Artificial Intelligence (DFKI), Stuhlsatzen-
hausweg 3, D-66123 Saarbriicken, Germany, 1996.
http://www.ps.uni-sb.de/oz.

M. Tomita. Efficient Parsing for Natural Languages.
Kluwer Academic Publishers, Boston, 1986.

393

