
STRATEGIES FOR ADDING CONTROL INFORMATION

TO DECLARATIVE GRAMMARS

Hans Uszkoreit
University of Saarbrticken

and German Research Center
for Arlfficial Intelligence (DFKI)
W-6600 Saarbriicken 11, FRG

uszkoreit@coli.uni-sb.de

Abstract
Strategies are proposed for combining different kinds of
constraints in declarative grammars with a detachable
layer of control information. The added control
information is the basis for parametrized dynamically
controlled linguistic deduction, a form of linguistic
processing that permits the implementation of plausible
linguistic performance models without giving up the
declarative formulation of linguistic competence. The
information can be used by the linguistic processor for
ordering the sequence in which conjuncts and disjuncts
are processed, for mixing depth-first and breadth-first
search, for cutting off undesired derivations, and for
constraint-relaxation.

1 Introduction

Feature term formalisms (FTF) have proven extremely
useful for the declarative representation of linguistic
knowledge. The family of grammar models that are
based on such formalisms include Generalized Phrase
Structure Grammar (GPSG) [Gazdar et al. 1985],
Lexical Functional Grammar (LFG) [Bresnan 1982],
Functional Unification Grammar (bUG) [Kay 1984],
Head-Driven Phrase Structure Grammar (I-IPSG) [Pollard
and Sag 1988], and Categorial Unification Grammar
(CUG) [Karttunen 1986, Uszkoreit 1986, Zeevat et al.
1987].

Research for this paper was carried out in parts at DFKI in
the project DIsco which is funded by the German Ministry
for Research and Technology under Grant-No.: 1TW 9002.
Partial funding was also provided by the German Research
Association (DFG) through the Project BiLD in the SFB
314: Artificial Intelligence and Knowledge-Based Systems.
For fruitful discussions we would like to thank our
colleagues in the projects DISCO, BiLD and LIIX)G as well as
members of audiences at Austin, Texas, and Kyoto, Japan,
where preliminary versions were presented. Special thanks
for valuable comment and suggestions go to Gregor Erbach,
Stanley Peters, Jim Talley, and Gertjan van Noord.

The expressive means of feature term formalisms have
enabled linguists to design schemes for a very uniform
encoding of universal and language-particular linguistic
principles. The most radical approach of organizing
linguistic knowledge in a uniform way that was inspired
by proposals of Kay can be found in HPSG.

Unification grammar formalisms, or constraint-based
grammar formalisms as they are sometimes called
currently constitute the preferred paradigm for
grammatical processing in computational linguistics.

One important reason for the success of unification
grammars I in computational linguistics is their purely
declarative nature. Since these grammars are not
committed to any particular processing model, they can
be used in combination with a number of processing
strategies and algorithms. The modularity has a number
of advantages:

• freedom for experimentation with different processing
schemes,

• compatibility of the grammar with improved system
versions,

• use of the same grammar for analysis and generation,

• reusability of a grammar in different systems.

Unification grammars have been used by theoretical
linguists for describing linguistic competence. There
exist no processing models for unification grammars yet
that incorporate at least a few of the most widely
accepted observations about human linguistic
performance.

• Robustness: Human listeners can easily parse
illformed input and adapt to patterns of
ungrammaticality.

1The notion of grammar assumed here is equivalent to the
structured collection of linguistic knowledge bases
including the lexicon, different types of rule sets, linguistic
principles, etc.

237

• Syntactic disambiguation in parsing: Unlikely
derivations should be cut off or only tried after more
likely ones failed. (attachment ambiguities, garden
paths)

• Lexical disarnbiguation in parsing: Highly unlikely
readings should be suppressed or tried only if no
result can be obtained otherwise.

• Syntactic choice in generation: In generation one
derivation needs to be picked out of a potentially
infinite number of paraphrases.

• Lexical choice in generation: One item needs to be
picked out of a large number of alternatives.

• Relationship between active and passive command of
a language: The set of actively used constructions
and lexical items is a proper subset of the ones
mastered passively.

The theoretical grammarian has the option to neglect
questions of linguistic performance and fully concentrate
on the grammar as a correct and complete declarative
recursive definition of a language fragment. The
psycholinguist, on the other hand, will not accept
grammar theory and formalism if no plausible
processing models can be shown.

Computational linguists-independent of their theoretical
interests-have no choice but to worry about the
efficiency of processing. Unfortunately, as of this date,
no implementations exist that allow efficient processing
with the type of powerful unification grammars that are
currently preferred by theoretical grammarians or
grammar engineers. As soon as the grammar formalism
employs disjunction and negation, processing becomes
extremely slow. Yet the conclusion should not be to
abandon unification grammar but to search for better
processing models.

Certain effective control strategies for linguistic
deduction with unification grammars have been
suggested in the recent literature. [Shieber et al. 1990,
Gerdemarm and Hinrichs 1990] The strategies do not
allow the grammar writer to attach control information
to the constraints in the grammar. Neither can they be
used for dynamic preference assignments. The model of
control proposed in this paper can be used to implement
these strategies in combination with others. However,
the strategies are not encoded in the program but control
information and parametrization of deduction.

The claim is that unification grammar is much better
suited for the experimental and inductive development of
plausible processing models than previous grammar
models. The uniformily encoded constraints of the
grammar need to be enriched by control information.

This information serves the purpose to reduce local
indeterminism through reordering and pruning of the
search graph during linguistic deduction.

This paper discusses several strategies for adding control
information to the grammar without sacrificing its
declarative nature. One of the central hypotheses of the
paper is that-in contrast to the declarative meaning of
the grammar-the order in which subterms in
conjunctions and disjunctions are processed is of
importance for a realistic processing model. In
disjunctions, the disjuncts that have the highest
probability of success should be processed first, whereas
in conjunctions the situation is reversed.

2 Control information in conjunctions

2.1 Ordering conjuncts

In this context conjuncts are all feature subterms that are
combined explicitly or implicitly by the operation of
feature unification. The most basic kind of conjunctive
term that can be found in all FFFs is the conjunction of
feature-value pairs.

t"2" V2

Other types of conjunctive terms in the knowledge base
may occur in formalisms that allow template, type or
sort names in feature term specifications.

Verb
[Transitive]
|3raSing /
| lex : hits /
t_sem : hit'-]

If these calls are processed (expanded) at compile time,
the conjunction will also be processed at compile time
and not much can be gained by adding control
information. If, however, the type or template calls are
processed on demand at run time, as it needs to be the
case in FTFs with recursive types, these names can be
treated as regular conjuncts.

If a conjunction is unified with some other feature term,
every conjunct has to be unified. Controlling the order
in which operands are processed in conjunctions may
save time if conjuncts can be processed first that are
most likely to fail. This observation is the basis for a
reordering method proposed by Kogure [1990]. If, e.g.,
in syntactic rule applications, the value of the attribute
agreement in the representation of nominal elements

238

leads to clashes more often than the value of the
attribute definiteneness, it would in general be more
efficient to unify agreement before definiteness.

Every unification failure in processing cuts off some
unsuccessful branch in the search tree. For every piece
of information in a linguistic knowledge base we will
call the probability at which it is directly involved in
search tree pruning its failure potential. More exactly,
the failure potential of a piece of information is the
average number of times, copies of this (sub)term turn
to _1. during the processing of some input.

The failure path from the value that turns to _1_ fh'st up
to the root is determined by the logical equivalences

1 = a : _1_ (for any attribute c0
2_ = [_1. x] (for any term x)
x = {.J_ x} (for any term x)
± = {.L}
plus the appropriate associative laws.

Our experience in grammar development has shown that
it is very difficult for the linguist to make good guesses
about the relative failure potential of subterms of rules,
principles, lexical entries and other feature terms in the
grammar. However, relative rankings bases on failure
potential can be calculated by counting failures during a
training phase.

However, the failure potential, as it is defined here, may
depend on the processing scheme and on the order of
subterms in the grammar. If, e.g., the value of the
agreement feature person in the definition of the type
Verb leads to failure more often than the value of the
feature number, this may simply be due to the order in
which the two subterms are processed. Assume the
unlikely situation that the value of number would have
led to failure-if the order had been reversed-in all the
cases in which the value of person did in the oM order.

Thus for any automatic counting scheme some constant
shuffling and reshuffling of the conjunct order needs to
be applied until the order stabilizes (see also [Kogure
1990]).

There is a second criterion to consider. Some
unifications with conjuncts build a lot of structure
whereas others do not. Even if two conjuncts lead to
failure the same number of times, it may still make a
difference in which order they are processed.

Finally there might good reasons to process some
conjuncts before others simply because processing them
will bring in additional constraints that can reduce the

size of the search tree. Good examples of such strategies
are the so-called head-driven or functor-driven processing
schemes.

The model of controlled linguistic deduction allows the
marking of conjuncts derived by failure counting,
processing effort comparisons, or psyeholinguistic
observations. However, the markings do not by
themselves cause a different processing order. Only if
deduction is parametrized appropriately, the markings
will be considered by the type inference engine.

2.2 Relaxation markings

Many attempts have been made to achieve more
robustness in parsing through more or less intricate
schemes of rule relaxation. In FTFs all linguistic
knowledge is encoded in feature terms that denote
different kinds of constraints on linguistic objects. For
the processing of grammatically illformed input,
constraint relaxation techniques are needed.

Depending on the task, communication type, and many
other factors certain constraints will be singled out for
possible relaxation.

A relaxation marking is added to the control information
of any subterm c encoding a constraint that may be
relaxed. A relaxation marking consists of a function r c

from relaxation levels to relaxed constraints, i.e., a set
of ordered pairs <i, ci> where i is an integer greater than
0 denoting a relaxation level and ci is a relaxed
constraint, i.e., a term subsuming c. 2

The relaxation level is set as a global parameter for
processing. The default level is 0 for working with an
unrelaxed constraint base. Level 1 is the first level at
which constraints are weakened. More than two
relaxation levels are only needed if relaxation is
supposed to take place in several steps.

If the unification of a subterm bearing some relaxation
marking with some other term yields &, unification is
stopped without putting .L into the partial result. The
branch in the derivation is discontinued just as if a real
failure had occurred but a continuation point for
backtracking is kept on a backtracking stack. The
partial result of the unification that was interrupted is
also kept. If no result can be derived using the grammar
without relaxation, the relaxation level is increased and
backtracking to the continuation points is activated. The

2Implicitely the ordered pair <0, c> is part of the control
information for every subterm. Therefore it can be omitted.

239

subterm that is marked for relaxation is replaced by the
relaxed equivalent. Unification continues. Whenever a
(sub)term c from the grammar is encountered for which
re(i) is defined, the relaxed constraint is used.

This method also allows processing with an initial
relaxation level greater than 0 in applications or
discourse situations with a high probability of ungram-
matical inpuL

For a grammar G let Gi be the grammar G except that
every constraint is replaced by rc(i). Let L i stand for
the language generated or recognized by a grammar G i.
If constraints are always properly relaxed, i.e., if
relaxation does not take place inside the scope of
negation in FITs that provide negation, L i will always
be a subset ofLi+ 1.

Note that correctness and completeness of the declarative
grammar GO is preserved under the proposed relaxation
scheme. All that is provided is an efficient way of
jumping from processing with one grammar to
processing with another closely related grammar. The
method is based on the assumption that the relaxed
grammars axe properly relaxed and very close to the
unrelaxed grammar. Therefore all intermediate results
from a derivation on a lower relaxation level can be kept
on a higher one.

3 Control information in disjunctions

3.1 Ordering of disjuncts

In this section, it will be shown how the processing of
feature terms may be controlled through the association
of preference weights to disjuncts in disjunctions of
constraints. The preference weights determine the order
in which the disjuncts are processed. This method is the
most relevant part of controlled linguistic deduction. In
one model control information is given statically, in a
second model it is calculated dynamically.

Control information cannot be specified independent
from linguistic knowledge. For parsing some readings
in lexical entries might be preferred over others. For
generation lexical choice might be guided by preference
assignments. For both parsing and generation certain
syntactic constructions might be preferred over others at
choice points. Certain translations might receive higher
preference during the transfer phase in machine
translation.

Computational linguists have experimented with
assignments of preferences to syntax and transfer rules,
lexical entries and lexical readings. Preferences are

usually assigned through numerical preference markers
that guide lexical lookup and lexical choice as well as
the choice of rules in parsing, generation, and transfer
processes. Intricate schemes have been designed for
arithmetically calculating the preference marker of a
complex unit from the preference markers of its parts.

In a pure context-free grammar only one type of
disjunction is used which corrresponds to the choice
among rules. In some unification grammars such as
lexical functional grammars, there exist disjunction
between rules, disjunction between lexical items and
disjunction between feature-values in f-structures. In
such grammars a uniform preference strategy cannot be
achieved. In other unification grammar formalisms such
as FUG or HPSG, the phrase structure has been
incorporated into the feature terms. The only
disjunction is feature term disjunction. Our preference
scheme is based on the assumption that the formalism
permits one type of disjunction only.

For readers not familiar with such grammars, a brief
outline is presented. In HPSG grammatical knowledge
is fully encoded in feature terms. The formalism
employs conjunction (unification), disjunction,
implication, and negation as well as special data types
for lists and sets. Subterms can also be connected
through relational constraints. Linguistically relevant
feature terms are order-sorted, i.e., there is a partially
ordered set of sorts such that every feature term that
describes a linguistic object is assigned to a sort.

The grammar can be viewed as a huge disjunctive
constraint on the wellformedness of linguistic signs.
Every wellformed sign must unifiy with the grammar.
The grammar consists of a set of universal principles, a
set of language-particular principles, a set of lexical
entries (the lexicon), and a set of phrase-structure rules.

The grammar of English contains all principles of
universal grammar, all principles of English, the
English lexicon, and the phrase-structure rules of
English. A sign has to conform with all universal and
language-particular principles, therefore these principles
are combined in conjunctions. It is either a lexical sign
in which case it has to unify with at least one lexical
entry or it is a phrasal sign in which case it needs to
unify with at least one phrase-structure rule. The
lexicon and the set of rules are therefore combined in
disjunctions.

240

[Pi] UniversalGrammar= P2

['P':~]
Principles_of_English = ~P.."+

Lpo

Rules_of_English = R2

P

[U ve G mar l
Grammar o f English = [Principles__ofEnglish|

l/Rules--°f--English I]
L/Lexicon_of_English JJ

Figure 1. Organization of the Grammar of
English in HPSG

Such a grammar enables the computational linguist to
implement processing in either direction as mere type
inference. However, we claim that any attempts to
follow this elegant approach will lead to terribly
inefficient systems unless controlled linguistic deduction
or an equally powerful paramelrizable control scheme is
employed.

Controlled linguistic deduction takes advantage of the
fact that a grammar of the sort shown in Figure 1
allows a uniform characterization of possible choice
points in grammatical derivation. Every choice point in
the derivation involves the processing of a disjunction.
Thus feature disjunction is the only source of
disjunction or nondeterminism in processing. This is
easy to see in the case of lexical lookup. We assume
that a lexicon is indexed for the type of information
needed for access. By means of distributive and
associative laws, the relevant index is factored out. A
lexicon for parsing written input is indexed by a feature
with the attribute graph that encodes the graphemic
form. A lexicon with the same content might be used
for generation except that the index will be the semantic
content.

An ambiguous entry contains a disjunction of its
readings. In the following schematized entry for the
English homograph bow the disjunction contains
everything but the graphemic form. 3

graph: (bow)-
(bowl~ I?+ l
~OWkl

3 .2 Static preferences

There exist two basic strategies for dealing with
disjunctions. One is based on the concept of
backtracking. One disjunct is picked (either at random
or from the top of a stack), a continuation point is set,
and processing continues as if the picked disjtmct were
the only one, i.e., as if it were the whole term. If
processing leads to failure, the computation is set back
completely to the fixed continuation point and a
different (or next) disjunct is picked for continuation. If
the computation with the first disjunct yields success,
one has the choice of either to be satisfied with the
(first) solution or to set the computation back to the
continuation point and try the next disjunct. With
respect to the disjunction, this strategy amounts to
depth-first search for a solution.

The second strategy is based on breadth-f'wst search. All
disjuncts are used in the operation. If, e.g., a disjunction

3Additional information such as syntactic category might
also be factored out within the entry:

- ph:

-synllocallcat: n]
/

J
synllocallcat: vJ~

Ibow,+,,a

1
I]

However, all we are interested in in this context is the
observation that in any case the preferences among
readings have to be associated with disjuncts.

241

is unified with a nondisjunctive term, the term is unified
with every disjunct. The result is again a disjunction.

The strategy proposed here is to allow for combinations
of depth-first and breadth-first processing. Depth-first
search is useful if there are good reasons to believe that
the use of one disjunct will lead to the only result or to
the best result. A mix of the two basic strategies is
useful if there are several disjuncts that offer better
chances than the others.

Preference markers (or preference values) are attached to
the disjuncts of a disjunction. Assume that a preference
value is a continuous value p in 0 < p _< 10. Now a
global width factor w in 0 < w < 10 can be set that
separates the disjuncts to be tried out fast from the ones
that can only be reached through backtracking.

All disjuncts are tried out f'n-st in parallel whose values
Pi are in Praax-W <- Pi <- Pmax. If the width is set to 2,
all disjuncts would be picked that have values Pi in
Pmax - 2 <- Pi < Pmax. Purely depth-first and purely
breadth-fast search are forced by setting the threshold to
0 or 10 respectively.

3.3 Dynamic preferences

One of the major problems in working with preferences
is their contextual dependence. Although static
preference values can be very helpful in guiding the
derivation, especially for generation, transfer, or
limiting lexical ambiguity, often different preferences
apply to different contexts.

Take as an example again the reduction of lexical
ambiguity. It is clearly the context that influences the
hearers preferences in selecting a reading. 4

The astronomer marr/ed a star. vs.
The movie director married a star.

The tennis player opened the ball. vs.
The mayor opened the ball.

Preferences among syntactic constructions, that is
preferences among rules, depend on the sort of text to be

A trivial but unsatisfactory solution is to substitute the
preference values by a vector of values. Depending on
the subject matter, the context, or the approriate style or

4 The fnst example is due to Reder [1983].

register, different fields of the vector values might be
considered for controlling the processing.

However, there are several reasons that speak against
such a simple extension of the preference mechanism.
First of all, the number of fields that would be needed is
much too large. For lexical disambiguation, a mere
classification of readings according to a small set of
subject domains as it can be found in many dictionaries
is much too coarse.

Take, e.g., the English word line. The word is highly
ambiguous. We can easily imagine appropriate preferred
readings in the subject domains of telecommunication,
geometry, genealogy, and drug culture. However, even
in a single computer manual the word may, depending
on the context, refer to a terminal line, to a line of
characters on the screen, to a horizontal separation line
between editing windows, or to many other things. (In
each case there is a different translation into German.)

A second reason comes from the fact that preferences are
highly dynamic, i.e., they can change at any time during
processing. Psycholinguistic experiments strongly
suggest that the mere perception of a word totally out of
context already primes the subject, i.e., influences his
preferences in lexical choice. [Swinney 1979]

The third reason to be mentioned here is the
multifactorial dependency of preferences. Preferences
can be the result of a combination of factors such as the
topic of the text or discourse, previous occurrence of
priming words, register, style, and many more.

In order to model the dynamics of preferences, a
processing model is proposed that combines techniques
from connectionist research with the declarative
grammar formalisms through dynamic preference values.

Instead of assigning permanent preference values or
value vectors to disjuncts, the values are dynamically
calculated by a spreading-activation net. So far the
potentials of neural nets for learning (e.g.
backpropagation schemes) have not been exploited.
Every other metaphor for setting up weighted
connections between constraints in disjunctions would
serve our purpose equally well. 5

5For an introduction to connectionist nets see Rumelhart,
Hinton, and McCleUand [1986]. For an overview of
different connectionist models see Feldman and Ballard
[1982] and Kemke [1988].

242

The type of net employed for our purposes is extremely
simple. 6 Every term in the linguistic knowledge bases
whose activation may influence a preference and every
term whose preference value may be influenced is
associated with a unit. These sets are not disjoint since
the selection of one disjunct may influence other
preferences. In addition there can be units for
extralinguistic influences on preferences. Units are
connected by unidirectional weighted finks. They have
an input value i, an activation value a, a resting value r,
and a preservation function f . The input value is the
sum of incoming activation. The resting value is the
minimal activation value, i.e., the degree of activation
that is independent from current or previous input. The
activation value is either equal to the sum of input and
some fraction of the previous activation, which is
determined by the preservation function or it is equal to
the resting value, whichever is greater.

ai+ 1 = max{r, i i +f(a/)}.

In this simple model the output is equal to the
activation. The weights of the links l are factors such
that 0 < l < 1. If a link goes from unit Ul to unit u2,
it contributes an activation of l*aul to the input of u2.

4 Conclus ion an d f u t u r e resea rch

Strategies are proposed for combining declarative
linguistic knowledge bases with an additional layer of
control information. The unification grammar itself
remains declarative. The grammar also retains
completeness. It is the processing model that uses the
control information for ordering and pruning the search
graph. However, if the control information is neglected
or if all solutions are demanded and sought by
backtracking, the same processing model can be used to
obtain exactly those results derived without control
information.

Yet, if control is used to prune the search tree in such a
way that the number of solutions is reduced, many
observations about human linguistic performance some
of which are mentioned in Section 1 can be simulated.

6The selected simple model is sufficient for illustrating the
basic idea. Certainly more sophisticated eormectionist
models will have to be employed for eognitively plausible
simulation. One reason for the simple design of the net is
the lack of a learning. Kt this time, no learning model has
been worked out yet for the proposed type of spreading-
activation nets. For the time being it is assumed that the
weights are set by hand using linguistic knowledge,
corpora, and association dictionaries.

Criteria for selection among alternatives can be encoded.
The smaller set of actively used constructions and
lexemes is simply explained by the fact that for all the
items in the knowledge base that are not actively used
there are alternatives that have a higher preference.

The controlled linguistic deduction approach offers a
new view of the competence-performance distinction,
which plays an important r61e in theoretical linguistics.
Uncontrolled deduction cannot serve as a plausible
performance model. On the other hand, the performance
model extends beyond the processing model, it also
includes the structuring of the knowledge base and
control information that influence processing.

Linguistic Processing Linguistic Knowledge

° °l
• 5 ~ arametrizatio control

°°t J
.~_ ,= of deduction information
-'#.

° 1 ~ J linguistic declarative
'5~a. L deduction j grammar
5Eo • 0

Figure 2. A new view of the competence-
performance distinction

Since this paper reports about the first results from a
new line of research, many questions remain open and
demand further research.

Other types of control need to be investigated in relation
with the strategies proposed in this paper. Uszkoreit
[1990], e.g., argues that functional uncertainty needs to
be controlled in order to reduce the search space and at
the same time simulate syntactic preferences in human
processing.

Unification grammar formalisms may be viewed as
constraint languages in the spirit of constraint logic
programming (CLP). Efficiency can be gained through
appropriate strategies for delaying the evaluation of
different constraint types. Such schemes for delayed
evaluation of constraints have been implemented for
LFG. They play an even greater role in the processing
of Constraint Logic Grammars (CLG) [Balari et al.
1990]. The delaying scheme is a more sophisticated

243

method for the ordering of conjuncts. More research is
needed in this area before the techniques of CLP/CLG
can be integrated in a general model of controlled
(linguistic) deduction.

So far the weight of the links for preference assignment
can only be assigned on the basis of association
dictionaries as they have been compiled by psy-
chologists. For nonlexieal links the grammar writer has
to rely on a trial and error method.

A training method for inducing the best conjunct order
on the basis of failure potential was described in Section
2.1. The training problem, .ie., the problem of
automatic induction of the best control information is
much harder for disjunctions. Parallel to the method for
conjunctions, during the training phase the success
potential of a disjunct needs to be determined, i.e., the
average number of contributions to successful
derivations for a given number of inputs. The problem
is much harder for assigning weights to links in the
spreading-activation net employed for dynamic
preference assignment.

Hirst [1988] uses the structure of a semantic net for
dynamic lexical disambiguation. Corresponding to their
marker passing method a strategy should be developed
that activates all supertypes of an activated type in
decreasing quantity. Wherever activations meet, a
mutual reinforcement of the paths, that is of the
hypotheses occurs.

Another topic for future research is the relationship
betwccn control information and feature logic. What
happens if, for instance, a disjunction is transformed
into a conjunction using De Morgans law?

The immediate reply is that control structures are only
valid on a certain formulation of the grammar and not
on its logically eqtfivalent syntactic variants. However,
assume that a fraction of a statically or dynamically
calculated fraction involving success potential sp and
failure potentialfp is attached to every subterm. For
disjuncts, sp is ¢fivided by fp, for conjuncts fp is divided
bysp.

De Morgans law yields an intuitive result if we assume
that negation of a term causes the attached fraction to be
inverted. More research needs to be carried out before
one can even start to argue for or against a preservation
of control information under logical equivalences.

Head-driven or functor-driven deduction has proven very
useful. In this approach the order of processing
conjuncts has been fixed in order to avoid the logically
perfect but much less effcient orderings in which the
complement conjuncts in the phrase structure (e.g., in
the value of the daughter feature) are processed before the
head conjunct. This strategy could not be induced or
learned using the simple ordering criteria that are merely
based on failure and success. In order to induce the
strategy from experience, the relative computational
effort needs to be measured and compared for the
logically equivalent orderings. Ongoing work is
dedicated to the task of formulating well-known
processing algorithms such as the Earley algorithm for
parsing or the functor-driven approach for generation
purely in terms of preferences among conjuncts and
disjuncts.

244

R e f e r e n c e s

Balari, S. and L. Damas (1990) CLG(n): Constraint
Logic Grammars. In COLING 90.

Bresnan, J. (Ed.) (1982) The Mental Representation of
Grammatical Relations. MIT Press, Cambridge,
Mass.

Feldman, LA. and D.H. Ballard (1982) Connectionist
models and their Properties. In Cognitive Science,
6:205-254.

Gazdar, G., E. Klein, G. K. Pullum, and I. A. Sag
(1985) Generalized Phrase Structure Grammar.
Harvard University Press, Cambridge, Mass.

Gerdemann, D. and E. W. Hinrichs (1990) Functor-
Driven Natural Language Generation with Categorial-
Unification Grammars. In COLING 90.

Hirst, G. (1988) Resolving Lexical Ambiguity Compu-
tationaUy with Spreading Activation and Polaroid
Words. In S.I. Small, G.W. Cottrell and M.K. Tanen-
haus (eds.), Lexical Ambiguity Resolution, pp.73-
107. San Mateo: Morgan Kaufmann Publishers.

Karttunen, L. (1986) Radical Lexicalism.Technical
Report CSLI-86-66, CSLI - Stanford University.

Kasper, R. and W. Rounds (1986) A Logical Semantics
for Feature Structures. In Proceedings of the 24th
ACL.

Kay, M. (1984) Functional Unification Grammar: A
Formalism for Machine Translation. In COLING 84.

Kemke, C. (1988) Der Neuere Konnektionismus - Ein
Uberblick. lmformatik-Spektrum, 11:143-162.

Kogure, K. (1990) Strategic Lazy Incremental Copy
Graph Unification. In COLING 90.

Pollard, C. and I. A. Sag (1988) An Information-Based
Syntax and Semantics, Volumed Fundamentals,
CSLI Lecture Notes 13, CSLI, Stanford, CA.

Reder, L.M., (1983) What kind of pitcher can a catcher
f'dl? Effects of priming in sentence comprehension. In
Journal of Verbal Learning and Verbal Behavior 22
(2):189-202.

Rumelhart, D.E., G.E. Hinton and J.L. McClelland
(1986) A general framework for parallel distributed
processing. In Rumelhart, D.E., McClelland, J.L.,
and the PDP Research Group, editors, Parallel
Distributed Processing, Explorations in the
Microstructure of Cognition: Foundations, volume 1
pages 45-76. Cambridge, MA: MIT Press.

Shieber, S. (1984) The Design of a Computer Language
for Linguistic Information. In S. Shieber, L.
Karttunen, and F. Pereira (Eds.) Notes from the
Unification Underground. SRI Technical Note 327,
SRI International, Menlo Park, CA.

Shieber, S. M. (1986) An Introduction to Unification-
Based Approaches to Grammar. CSLI Lecture Notes
4. CSLI, Stanford, CA.

Shieber, S., H. Uszkoreit, J. Robinson, and M. Tyson
(1983) The Formalism and Implementation of PATR-
II. In Research on Interactive Acquisition and Use of
Knowledge. SRI International, Menlo Park, CA.

Shieber, S., G. van Noord, R.C. Moore, and F.C.N.
Pereira (1990) Semantic-Head-Driven Generation In
Computational Linguistics 16(1).

Smolka, G. (1988) A Feature Logic with Subsorts.
LILOG Report 33, IBM Germany, Stuttgart.

Smolka, G., and H. AYt-Kaci (1987) Inheritance
Hierarchies: Semantics and Unification. MCC Report
AI-057-87, MCC Austin, TX.

Swinney, D.A. (1979) Lexical Access during sentence
comprehension: (Re)Consideration of context effects.
In Journal of Verbal Learning and Verbal Behavior
18(6):645-659.

Uszkoreit, H. (1986) Categorial Unification Grammars.
In COLING 86, Bonn.

Uszkoreit, H. (1988) From Feature Bundles to Abstract
Data Types: New Directions in the Representation and
Processing of Linguistic Knowledge. In A. Blaser
(Ed.) Natural Language at the Computer. Springer,
Berlin, Heidelberg, New York.

Uszkoreit, H. (1990) ,Extraposition and Adjunct
Attachment in Categorial Unification Grammar" In
W. Bahner (Hrsg.) Proceedings of the XIVth
International Congress of Linguists, August 1987,
Akademie Verlag Berlin, DDR, 1990.

7_~evat, H., E. Klein, and J. Calder (1987) Unification
Categorial Grammar. In Haddock, Klein, and Morrill
(Eds.) Categorial Grammar, Unification Grammar, and
Parsing. Edinburgh Working Papers in Cognitive
Science, Vol.1. Centre for Cognitive Science, Univer-
sity of Edinburgh, Edinburgh.

245

