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Abstract 
Strategies are proposed for combining different kinds of 
constraints in declarative grammars with a detachable 
layer of control information. The added control 
information is the basis for parametrized dynamically 
controlled linguistic deduction, a form of linguistic 
processing that permits the implementation of plausible 
linguistic performance models without giving up the 
declarative formulation of linguistic competence. The 
information can be used by the linguistic processor for 
ordering the sequence in which conjuncts and disjuncts 
are processed, for mixing depth-first and breadth-first 
search, for cutting off undesired derivations, and for 
constraint-relaxation. 

1 Introduction 

Feature term formalisms (FTF) have proven extremely 
useful for the declarative representation of linguistic 
knowledge. The family of grammar models that are 
based on such formalisms include Generalized Phrase 
Structure Grammar (GPSG) [Gazdar et al. 1985], 
Lexical Functional Grammar (LFG) [Bresnan 1982], 
Functional Unification Grammar (bUG) [Kay 1984], 
Head-Driven Phrase Structure Grammar (I-IPSG) [Pollard 
and Sag 1988], and Categorial Unification Grammar 
(CUG) [Karttunen 1986, Uszkoreit 1986, Zeevat et al. 
1987]. 

Research for this paper was carried out in parts at DFKI in 
the project DIsco which is funded by the German Ministry 
for Research and Technology under Grant-No.: 1TW 9002. 
Partial funding was also provided by the German Research 
Association (DFG) through the Project BiLD in the SFB 
314: Artificial Intelligence and Knowledge-Based Systems. 
For fruitful discussions we would like to thank our 
colleagues in the projects DISCO, BiLD and LIIX)G as well as 
members of audiences at Austin, Texas, and Kyoto, Japan, 
where preliminary versions were presented. Special thanks 
for valuable comment and suggestions go to Gregor Erbach, 
Stanley Peters, Jim Talley, and Gertjan van Noord. 

The expressive means of feature term formalisms have 
enabled linguists to design schemes for a very uniform 
encoding of universal and language-particular linguistic 
principles. The most radical approach of organizing 
linguistic knowledge in a uniform way that was inspired 
by proposals of Kay can be found in HPSG. 

Unification grammar formalisms, or constraint-based 
grammar formalisms as they are sometimes called 
currently constitute the preferred paradigm for 
grammatical processing in computational linguistics. 

One important reason for the success of unification 
grammars I in computational linguistics is their purely 
declarative nature. Since these grammars are not 
committed to any particular processing model, they can 
be used in combination with a number of processing 
strategies and algorithms. The modularity has a number 
of advantages: 

• freedom for experimentation with different processing 
schemes, 

• compatibility of the grammar with improved system 
versions, 

• use of the same grammar for analysis and generation, 

• reusability of a grammar in different systems. 

Unification grammars have been used by theoretical 
linguists for describing linguistic competence. There 
exist no processing models for unification grammars yet 
that incorporate at least a few of the most widely 
accepted observations about human linguistic 
performance. 

• Robustness: Human listeners can easily parse 
illformed input and adapt to patterns of  
ungrammaticality. 

1The notion of grammar assumed here is equivalent to the 
structured collection of linguistic knowledge bases 
including the lexicon, different types of rule sets, linguistic 
principles, etc. 
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• Syntactic disambiguation in parsing: Unlikely 
derivations should be cut off or only tried after more 
likely ones failed. (attachment ambiguities, garden 
paths) 

• Lexical disarnbiguation in parsing: Highly unlikely 
readings should be suppressed or tried only if no 
result can be obtained otherwise. 

• Syntactic choice in generation: In generation one 
derivation needs to be picked out of a potentially 
infinite number of paraphrases. 

• Lexical choice in generation: One item needs to be 
picked out of a large number of alternatives. 

• Relationship between active and passive command of 
a language: The set of actively used constructions 
and lexical items is a proper subset of the ones 
mastered passively. 

The theoretical grammarian has the option to neglect 
questions of linguistic performance and fully concentrate 
on the grammar as a correct and complete declarative 
recursive definition of a language fragment. The 
psycholinguist, on the other hand, will not accept 
grammar theory and formalism if no plausible 
processing models can be shown. 

Computational linguists-independent of their theoretical 
interests-have no choice but to worry about the 
efficiency of processing. Unfortunately, as of this date, 
no implementations exist that allow efficient processing 
with the type of powerful unification grammars that are 
currently preferred by theoretical grammarians or 
grammar engineers. As soon as the grammar formalism 
employs disjunction and negation, processing becomes 
extremely slow. Yet the conclusion should not be to 
abandon unification grammar but to search for better 
processing models. 

Certain effective control strategies for linguistic 
deduction with unification grammars have been 
suggested in the recent literature. [Shieber et al. 1990, 
Gerdemarm and Hinrichs 1990] The strategies do not 
allow the grammar writer to attach control information 
to the constraints in the grammar. Neither can they be 
used for dynamic preference assignments. The model of 
control proposed in this paper can be used to implement 
these strategies in combination with others. However, 
the strategies are not encoded in the program but control 
information and parametrization of deduction. 

The claim is that unification grammar is much better 
suited for the experimental and inductive development of 
plausible processing models than previous grammar 
models. The uniformily encoded constraints of the 
grammar need to be enriched by control information. 

This information serves the purpose to reduce local 
indeterminism through reordering and pruning of the 
search graph during linguistic deduction. 

This paper discusses several strategies for adding control 
information to the grammar without sacrificing its 
declarative nature. One of the central hypotheses of the 
paper is that-in contrast to the declarative meaning of 
the grammar-the order in which subterms in 
conjunctions and disjunctions are processed is of 
importance for a realistic processing model. In 
disjunctions, the disjuncts that have the highest 
probability of success should be processed first, whereas 
in conjunctions the situation is reversed. 

2 Control information in conjunctions 

2.1 Ordering conjuncts 

In this context conjuncts are all feature subterms that are 
combined explicitly or implicitly by the operation of 
feature unification. The most basic kind of conjunctive 
term that can be found in all FFFs is the conjunction of 
feature-value pairs. 

t"2" V2 

Other types of conjunctive terms in the knowledge base 
may occur in formalisms that allow template, type or 
sort names in feature term specifications. 

Verb 
[Transitive] 
|3raSing / 
| lex : hits / 
t_sem : hit'-] 

If these calls are processed (expanded) at compile time, 
the conjunction will also be processed at compile time 
and not much can be gained by adding control 
information. If, however, the type or template calls are 
processed on demand at run time, as it needs to be the 
case in FTFs with recursive types, these names can be 
treated as regular conjuncts. 

If a conjunction is unified with some other feature term, 
every conjunct has to be unified. Controlling the order 
in which operands are processed in conjunctions may 
save time if conjuncts can be processed first that are 
most likely to fail. This observation is the basis for a 
reordering method proposed by Kogure [1990]. If, e.g., 
in syntactic rule applications, the value of the attribute 
agreement in the representation of nominal elements 
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leads to clashes more often than the value of the 
attribute definiteneness, it would in general be more 
efficient to unify agreement before definiteness. 

Every unification failure in processing cuts off some 
unsuccessful branch in the search tree. For every piece 
of information in a linguistic knowledge base we will 
call the probability at which it is directly involved in 
search tree pruning its failure potential. More exactly, 
the failure potential of a piece of information is the 
average number of times, copies of this (sub)term turn 
to _1. during the processing of some input. 

The failure path from the value that turns to _1_ fh'st up 
to the root is determined by the logical equivalences 

_1_ = a : _1_ (for any attribute c0 
2_ = [_1. x] (for any term x) 
x = {.J_ x} (for any term x) 
± = {.L} 
plus the appropriate associative laws. 

Our experience in grammar development has shown that 
it is very difficult for the linguist to make good guesses 
about the relative failure potential of subterms of rules, 
principles, lexical entries and other feature terms in the 
grammar. However, relative rankings bases on failure 
potential can be calculated by counting failures during a 
training phase. 

However, the failure potential, as it is defined here, may 
depend on the processing scheme and on the order of 
subterms in the grammar. If, e.g., the value of the 
agreement feature person in the definition of the type 
Verb leads to failure more often than the value of the 
feature number, this may simply be due to the order in 
which the two subterms are processed. Assume the 
unlikely situation that the value of number would have 
led to failure-if the order had been reversed-in all the 
cases in which the value of person did in the oM order. 

Thus for any automatic counting scheme some constant 
shuffling and reshuffling of the conjunct order needs to 
be applied until the order stabilizes (see also [Kogure 
1990]). 

There is a second criterion to consider. Some 
unifications with conjuncts build a lot of structure 
whereas others do not. Even if two conjuncts lead to 
failure the same number of times, it may still make a 
difference in which order they are processed. 

Finally there might good reasons to process some 
conjuncts before others simply because processing them 
will bring in additional constraints that can reduce the 

size of the search tree. Good examples of such strategies 
are the so-called head-driven or functor-driven processing 
schemes. 

The model of controlled linguistic deduction allows the 
marking of conjuncts derived by failure counting, 
processing effort comparisons, or psyeholinguistic 
observations. However, the markings do not by 
themselves cause a different processing order. Only if 
deduction is parametrized appropriately, the markings 
will be considered by the type inference engine. 

2.2  Relaxation markings 

Many attempts have been made to achieve more 
robustness in parsing through more or less intricate 
schemes of rule relaxation. In FTFs all linguistic 
knowledge is encoded in feature terms that denote 
different kinds of constraints on linguistic objects. For 
the processing of grammatically illformed input, 
constraint relaxation techniques are needed. 

Depending on the task, communication type, and many 
other factors certain constraints will be singled out for 
possible relaxation. 

A relaxation marking is added to the control information 
of any subterm c encoding a constraint that may be 
relaxed. A relaxation marking consists of a function r c 

from relaxation levels to relaxed constraints, i.e., a set 
of ordered pairs <i, ci> where i is an integer greater than 
0 denoting a relaxation level and ci is a relaxed 
constraint, i.e., a term subsuming c. 2 

The relaxation level is set as a global parameter for 
processing. The default level is 0 for working with an 
unrelaxed constraint base. Level 1 is the first level at 
which constraints are weakened. More than two 
relaxation levels are only needed if relaxation is 
supposed to take place in several steps. 

If the unification of a subterm bearing some relaxation 
marking with some other term yields &, unification is 
stopped without putting .L into the partial result. The 
branch in the derivation is discontinued just as if a real 
failure had occurred but a continuation point for 
backtracking is kept on a backtracking stack. The 
partial result of the unification that was interrupted is 
also kept. If no result can be derived using the grammar 
without relaxation, the relaxation level is increased and 
backtracking to the continuation points is activated. The 

2Implicitely the ordered pair <0, c> is part of the control 
information for every subterm. Therefore it can be omitted. 
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subterm that is marked for relaxation is replaced by the 
relaxed equivalent. Unification continues. Whenever a 
(sub)term c from the grammar is encountered for which 
re(i) is defined, the relaxed constraint is used. 

This method also allows processing with an initial 
relaxation level greater than 0 in applications or 
discourse situations with a high probability of ungram- 
matical inpuL 

For a grammar G let Gi be the grammar G except that 
every constraint is replaced by rc(i). Let L i stand for 
the language generated or recognized by a grammar G i. 
If constraints are always properly relaxed, i.e., if 
relaxation does not take place inside the scope of 
negation in FITs that provide negation, L i will always 
be a subset ofLi+ 1. 

Note that correctness and completeness of the declarative 
grammar GO is preserved under the proposed relaxation 
scheme. All that is provided is an efficient way of 
jumping from processing with one grammar to 
processing with another closely related grammar. The 
method is based on the assumption that the relaxed 
grammars axe properly relaxed and very close to the 
unrelaxed grammar. Therefore all intermediate results 
from a derivation on a lower relaxation level can be kept 
on a higher one. 

3 Control information in disjunctions 

3.1 Ordering of disjuncts 

In this section, it will be shown how the processing of 
feature terms may be controlled through the association 
of preference weights to disjuncts in disjunctions of 
constraints. The preference weights determine the order 
in which the disjuncts are processed. This method is the 
most relevant part of controlled linguistic deduction. In 
one model control information is given statically, in a 
second model it is calculated dynamically. 

Control information cannot be specified independent 
from linguistic knowledge. For parsing some readings 
in lexical entries might be preferred over others. For 
generation lexical choice might be guided by preference 
assignments. For both parsing and generation certain 
syntactic constructions might be preferred over others at 
choice points. Certain translations might receive higher 
preference during the transfer phase in machine 
translation. 

Computational linguists have experimented with 
assignments of preferences to syntax and transfer rules, 
lexical entries and lexical readings. Preferences are 

usually assigned through numerical preference markers 
that guide lexical lookup and lexical choice as well as 
the choice of rules in parsing, generation, and transfer 
processes. Intricate schemes have been designed for 
arithmetically calculating the preference marker of a 
complex unit from the preference markers of its parts. 

In a pure context-free grammar only one type of 
disjunction is used which corrresponds to the choice 
among rules. In some unification grammars such as 
lexical functional grammars, there exist disjunction 
between rules, disjunction between lexical items and 
disjunction between feature-values in f-structures. In 
such grammars a uniform preference strategy cannot be 
achieved. In other unification grammar formalisms such 
as FUG or HPSG, the phrase structure has been 
incorporated into the feature terms. The only 
disjunction is feature term disjunction. Our preference 
scheme is based on the assumption that the formalism 
permits one type of disjunction only. 

For readers not familiar with such grammars, a brief 
outline is presented. In HPSG grammatical knowledge 
is fully encoded in feature terms. The formalism 
employs conjunction (unification), disjunction, 
implication, and negation as well as special data types 
for lists and sets. Subterms can also be connected 
through relational constraints. Linguistically relevant 
feature terms are order-sorted, i.e., there is a partially 
ordered set of sorts such that every feature term that 
describes a linguistic object is assigned to a sort. 

The grammar can be viewed as a huge disjunctive 
constraint on the wellformedness of linguistic signs. 
Every wellformed sign must unifiy with the grammar. 
The grammar consists of a set of universal principles, a 
set of language-particular principles, a set of lexical 
entries (the lexicon), and a set of phrase-structure rules. 

The grammar of English contains all principles of 
universal grammar, all principles of English, the 
English lexicon, and the phrase-structure rules of 
English. A sign has to conform with all universal and 
language-particular principles, therefore these principles 
are combined in conjunctions. It is either a lexical sign 
in which case it has to unify with at least one lexical 
entry or it is a phrasal sign in which case it needs to 
unify with at least one phrase-structure rule. The 
lexicon and the set of rules are therefore combined in 
disjunctions. 
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[Pi] UniversalGrammar= P2 

['P':~] 
Principles_of_English = ~P.."+ 

Lpo 

Rules_of_English = R2 

P 

[U ve  G  mar l 
Grammar o f  English = [Principles__ofEnglish| 

l/Rules--°f--English I] 
L/Lexicon_of_English JJ 

Figure 1. Organization of the Grammar of 
English in HPSG 

Such a grammar enables the computational linguist to 
implement processing in either direction as mere type 
inference. However, we claim that any attempts to 
follow this elegant approach will lead to terribly 
inefficient systems unless controlled linguistic deduction 
or an equally powerful paramelrizable control scheme is 
employed. 

Controlled linguistic deduction takes advantage of the 
fact that a grammar of the sort shown in Figure 1 
allows a uniform characterization of possible choice 
points in grammatical derivation. Every choice point in 
the derivation involves the processing of a disjunction. 
Thus feature disjunction is the only source of 
disjunction or nondeterminism in processing. This is 
easy to see in the case of lexical lookup. We assume 
that a lexicon is indexed for the type of information 
needed for access. By means of distributive and 
associative laws, the relevant index is factored out. A 
lexicon for parsing written input is indexed by a feature 
with the attribute graph that encodes the graphemic 
form. A lexicon with the same content might be used 
for generation except that the index will be the semantic 
content. 

An ambiguous entry contains a disjunction of its 
readings. In the following schematized entry for the 
English homograph bow the disjunction contains 
everything but the graphemic form. 3 

graph: (bow)- 
(bowl~ I?+ l 
~OWkl 

3 .2  Static preferences 

There exist two basic strategies for dealing with 
disjunctions. One is based on the concept of 
backtracking. One disjunct is picked (either at random 
or from the top of a stack), a continuation point is set, 
and processing continues as if the picked disjtmct were 
the only one, i.e., as if it were the whole term. If 
processing leads to failure, the computation is set back 
completely to the fixed continuation point and a 
different (or next) disjunct is picked for continuation. If 
the computation with the first disjunct yields success, 
one has the choice of either to be satisfied with the 
(first) solution or to set the computation back to the 
continuation point and try the next disjunct. With 
respect to the disjunction, this strategy amounts to 
depth-first search for a solution. 

The second strategy is based on breadth-f'wst search. All 
disjuncts are used in the operation. If, e.g., a disjunction 

3Additional information such as syntactic category might 
also be factored out within the entry: 

-  ph: 

-synllocallcat: n] 
/ 

J 
synllocallcat: vJ~ 

Ibow,+,,a 

1 
I ] 

However, all we are interested in in this context is the 
observation that in any case the preferences among 
readings have to be associated with disjuncts. 
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is unified with a nondisjunctive term, the term is unified 
with every disjunct. The result is again a disjunction. 

The strategy proposed here is to allow for combinations 
of depth-first and breadth-first processing. Depth-first 
search is useful if there are good reasons to believe that 
the use of one disjunct will lead to the only result or to 
the best result. A mix of the two basic strategies is 
useful if there are several disjuncts that offer better 
chances than the others. 

Preference markers (or preference values) are attached to 
the disjuncts of a disjunction. Assume that a preference 
value is a continuous value p in 0 < p _< 10. Now a 
global width factor w in 0 < w < 10 can be set that 
separates the disjuncts to be tried out fast from the ones 
that can only be reached through backtracking. 

All disjuncts are tried out f'n-st in parallel whose values 
Pi are in Praax-W <- Pi <- Pmax. If the width is set to 2, 
all disjuncts would be picked that have values Pi in 
Pmax - 2  <- Pi < Pmax. Purely depth-first and purely 
breadth-fast search are forced by setting the threshold to 
0 or 10 respectively. 

3.3 Dynamic preferences 

One of the major problems in working with preferences 
is their contextual dependence. Although static 
preference values can be very helpful in guiding the 
derivation, especially for generation, transfer, or 
limiting lexical ambiguity, often different preferences 
apply to different contexts. 

Take as an example again the reduction of lexical 
ambiguity. It is clearly the context that influences the 
hearers preferences in selecting a reading. 4 

The astronomer marr/ed a star. vs. 
The movie director married a star. 

The tennis player opened the ball. vs. 
The mayor opened the ball. 

Preferences among syntactic constructions, that is 
preferences among rules, depend on the sort of text to be 

A trivial but unsatisfactory solution is to substitute the 
preference values by a vector of values. Depending on 
the subject matter, the context, or the approriate style or 

4 The fnst example is due to Reder [1983]. 

register, different fields of the vector values might be 
considered for controlling the processing. 

However, there are several reasons that speak against 
such a simple extension of the preference mechanism. 
First of all, the number of fields that would be needed is 
much too large. For lexical disambiguation, a mere 
classification of readings according to a small set of 
subject domains as it can be found in many dictionaries 
is much too coarse. 

Take, e.g., the English word line. The word is highly 
ambiguous. We can easily imagine appropriate preferred 
readings in the subject domains of telecommunication, 
geometry, genealogy, and drug culture. However, even 
in a single computer manual the word may, depending 
on the context, refer to a terminal line, to a line of 
characters on the screen, to a horizontal separation line 
between editing windows, or to many other things. (In 
each case there is a different translation into German.) 

A second reason comes from the fact that preferences are 
highly dynamic, i.e., they can change at any time during 
processing. Psycholinguistic experiments strongly 
suggest that the mere perception of a word totally out of 
context already primes the subject, i.e., influences his 
preferences in lexical choice. [Swinney 1979] 

The third reason to be mentioned here is the 
multifactorial dependency of preferences. Preferences 
can be the result of a combination of factors such as the 
topic of the text or discourse, previous occurrence of 
priming words, register, style, and many more. 

In order to model the dynamics of preferences, a 
processing model is proposed that combines techniques 
from connectionist research with the declarative 
grammar formalisms through dynamic preference values. 

Instead of assigning permanent preference values or 
value vectors to disjuncts, the values are dynamically 
calculated by a spreading-activation net. So far the 
potentials of  neural nets for learning (e.g. 
backpropagation schemes) have not been exploited. 
Every other metaphor for setting up weighted 
connections between constraints in disjunctions would 
serve our purpose equally well. 5 

5For an introduction to connectionist nets see Rumelhart, 
Hinton, and McCleUand [1986]. For an overview of 
different connectionist models see Feldman and Ballard 
[1982] and Kemke [1988]. 
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The type of net employed for our purposes is extremely 
simple. 6 Every term in the linguistic knowledge bases 
whose activation may influence a preference and every 
term whose preference value may be influenced is 
associated with a unit. These sets are not disjoint since 
the selection of one disjunct may influence other 
preferences. In addition there can be units for 
extralinguistic influences on preferences. Units are 
connected by unidirectional weighted finks. They have 
an input value i, an activation value a, a resting value r, 
and a preservation function f .  The input value is the 
sum of incoming activation. The resting value is the 
minimal activation value, i.e., the degree of activation 
that is independent from current or previous input. The 
activation value is either equal to the sum of input and 
some fraction of the previous activation, which is 
determined by the preservation function or it is equal to 
the resting value, whichever is greater. 

ai+ 1 = max{r, i i +f(a/)}. 

In this simple model the output is equal to the 
activation. The weights of  the links l are factors such 
that 0 < l < 1. If a link goes from unit Ul to unit u2, 
it contributes an activation of l*aul to the input of u2. 

4 Conclus ion  an d  f u t u r e  resea rch  

Strategies are proposed for combining declarative 
linguistic knowledge bases with an additional layer of 
control information. The unification grammar itself 
remains declarative. The grammar also retains 
completeness. It is the processing model that uses the 
control information for ordering and pruning the search 
graph. However, if the control information is neglected 
or if all solutions are demanded and sought by 
backtracking, the same processing model can be used to 
obtain exactly those results derived without control 
information. 

Yet, if control is used to prune the search tree in such a 
way that the number of solutions is reduced, many 
observations about human linguistic performance some 
of which are mentioned in Section 1 can be simulated. 

6The selected simple model is sufficient for illustrating the 
basic idea. Certainly more sophisticated eormectionist 
models will have to be employed for eognitively plausible 
simulation. One reason for the simple design of the net is 
the lack of a learning. Kt this time, no learning model has 
been worked out yet for the proposed type of spreading- 
activation nets. For the time being it is assumed that the 
weights are set by hand using linguistic knowledge, 
corpora, and association dictionaries. 

Criteria for selection among alternatives can be encoded. 
The smaller set of actively used constructions and 
lexemes is simply explained by the fact that for all the 
items in the knowledge base that are not actively used 
there are alternatives that have a higher preference. 

The controlled linguistic deduction approach offers a 
new view of the competence-performance distinction, 
which plays an important r61e in theoretical linguistics. 
Uncontrolled deduction cannot serve as a plausible 
performance model. On the other hand, the performance 
model extends beyond the processing model, it also 
includes the structuring of the knowledge base and 
control information that influence processing. 

Linguistic Processing Linguistic Knowledge 

° °l 
• 5 ~ arametrizatio control 

°°t J 
.~_ ,= of deduction information 
-'#. 

° 1 ~ J linguistic declarative 
'5~a. L deduction j grammar 
5Eo • 0 

Figure 2. A new view of the competence- 
performance distinction 

Since this paper reports about the first results from a 
new line of research, many questions remain open and 
demand further research. 

Other types of control need to be investigated in relation 
with the strategies proposed in this paper. Uszkoreit 
[1990], e.g., argues that functional uncertainty needs to 
be controlled in order to reduce the search space and at 
the same time simulate syntactic preferences in human 
processing. 

Unification grammar formalisms may be viewed as 
constraint languages in the spirit of constraint logic 
programming (CLP). Efficiency can be gained through 
appropriate strategies for delaying the evaluation of  
different constraint types. Such schemes for delayed 
evaluation of constraints have been implemented for 
LFG. They play an even greater role in the processing 
of Constraint Logic Grammars (CLG) [Balari et al. 
1990]. The delaying scheme is a more sophisticated 
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method for the ordering of conjuncts. More research is 
needed in this area before the techniques of CLP/CLG 
can be integrated in a general model of controlled 
(linguistic) deduction. 

So far the weight of the links for preference assignment 
can only be assigned on the basis of association 
dictionaries as they have been compiled by psy- 
chologists. For nonlexieal links the grammar writer has 
to rely on a trial and error method. 

A training method for inducing the best conjunct order 
on the basis of failure potential was described in Section 
2.1. The training problem, .ie., the problem of 
automatic induction of the best control information is 
much harder for disjunctions. Parallel to the method for 
conjunctions, during the training phase the success 
potential of a disjunct needs to be determined, i.e., the 
average number of contributions to successful 
derivations for a given number of inputs. The problem 
is much harder for assigning weights to links in the 
spreading-activation net employed for dynamic 
preference assignment. 

Hirst [1988] uses the structure of a semantic net for 
dynamic lexical disambiguation. Corresponding to their 
marker passing method a strategy should be developed 
that activates all supertypes of an activated type in 
decreasing quantity. Wherever activations meet, a 
mutual reinforcement of the paths, that is of the 
hypotheses occurs. 

Another topic for future research is the relationship 
betwccn control information and feature logic. What 
happens if, for instance, a disjunction is transformed 
into a conjunction using De Morgans law? 

The immediate reply is that control structures are only 
valid on a certain formulation of the grammar and not 
on its logically eqtfivalent syntactic variants. However, 
assume that a fraction of a statically or dynamically 
calculated fraction involving success potential sp and 
failure potentialfp is attached to every subterm. For 
disjuncts, sp is ¢fivided by fp, for conjuncts fp is divided 
bysp. 

De Morgans law yields an intuitive result if we assume 
that negation of a term causes the attached fraction to be 
inverted. More research needs to be carried out before 
one can even start to argue for or against a preservation 
of control information under logical equivalences. 

Head-driven or functor-driven deduction has proven very 
useful. In this approach the order of processing 
conjuncts has been fixed in order to avoid the logically 
perfect but much less effcient orderings in which the 
complement conjuncts in the phrase structure (e.g., in 
the value of the daughter feature) are processed before the 
head conjunct. This strategy could not be induced or 
learned using the simple ordering criteria that are merely 
based on failure and success. In order to induce the 
strategy from experience, the relative computational 
effort needs to be measured and compared for the 
logically equivalent orderings. Ongoing work is 
dedicated to the task of formulating well-known 
processing algorithms such as the Earley algorithm for 
parsing or the functor-driven approach for generation 
purely in terms of preferences among conjuncts and 
disjuncts. 
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