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Abstract

An arithmetic word problem typically includes
a textual description containing several con-
stant quantities. The key to solving the prob-
lem is to reveal the underlying mathematical
relations (such as addition and subtraction)
among quantities, and then generate equa-
tions to find solutions. This work presents a
novel approach, Quantity Tagger, that auto-
matically discovers such hidden relations by
tagging each quantity with a sign correspond-
ing to one type of mathematical operation. For
each quantity, we assume there exists a latent,
variable-sized quantity span surrounding the
quantity token in the text, which conveys in-
formation useful for determining its sign. Em-
pirical results show that our method achieves 5
and 8 points of accuracy gains on two datasets
respectively, compared to prior approaches.

1 Introduction

Teaching machines to automatically solve arith-
metic word problems, exemplified by two prob-
lems in Figure 1, is a long-standing Artificial Intel-
ligence (AI) task (Bobrow, 1964; Mukherjee and
Garain, 2008). Recent research (Hosseini et al.,
2014; Kushman et al., 2014; Roy and Roth, 2015;
Wang et al., 2017, 2018b,a) focused on designing
algorithms to automatically solve arithmetic word
problems. One line of prior works designed rules
(Mukherjee and Garain, 2008; Hosseini et al.,
2014) or templates (Kushman et al., 2014; Zhou
et al., 2015; Mitra and Baral, 2016) to map prob-
lems to expressions, where rules or templates are
collected from training data.

However, it would be non-trivial and expensive
to acquire a general set of rules or templates. Fur-
thermore, such approaches typically require addi-
tional annotations. The addition-subtraction prob-
lems, which constitute the most fundamental class
of arithmetic word problems, have been the focus

Problem 1: A worker at a medical lab is studying blood samples.
2 samples contained a total of 7341 blood cells. The first sample
contained 4221 blood cells. How many blood cells were in the
second sample?
Prediction: (0)×2+(+1)×7341+(−1)×4221+(−1)×x = 0
Equation: 7341− 4221− x = 0
Solution: x = 3120

Problem 2: There are 22 walnut trees currently in the park. Park
workers will plant walnut trees today. When the workers are fin-
ished there will be 55 walnut trees in the park. How many walnut
trees did the workers plant today?
Prediction: (+1)×22+ (−1)×55+ (+1)×x = 0
Equation: 22− 55 + x = 0
Solution: x = 33

Figure 1: Two examples of arithmetic word problems
described in English with answers.

for many previous works (Hosseini et al., 2014;
Mitra and Baral, 2016). We also focus on this im-
portant task in this work. Our key observation is
that essentially solving such a class of problems
can be tackled from a sequence labeling perspec-
tive. This motivates us to build a novel sequence
labeling approach, namely Quantity Tagger. The
approach tags each quantity in the text with a label
that indicates a specific mathematical operation.

Taking Problem 1 from Figure 1 as an example,
three constant quantities “2”,“7341” and “4221”
sequentially appear in the problem text. We fur-
ther introduce an unknown quantity x correspond-
ing to the question sentence. From the problem
description, one can form an equation “7341 −
4221 − x = 0”, based on which we can obtain
the solution to x. This equation is mathematically
equivalent to “0×2+(+1)×7341+(−1)×4221+
(−1)×x = 0” where “0,+1,−1,−1” are signs
associated with the quantities “2, 7341, 4221, x”.

Solving arithmetic word problem can thus be
casted as a sequence labeling problem where we
assign every quantity appearing in the problem
text a sign (in the form of a tag) from the set
{+1,0,−1}. We further assume there exists a la-
tent quantity span that needs to be learned – a se-
quence of words surrounding each quantity, based
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There are 22 walnut trees currently in the park . Park workers will plant walnut trees today . When the workers are fin-
ished there will be 55 walnut trees in the park . How many walnut trees did the workers plant today ?

Figure 2: Illustrations of assumptions made by QT, QT(S) and QT(R), with possible paths (selected nodes are
highlighted) built for the token sequence t (J=3), consisting of words from the original problem text T .

on which tagging decisions could be made.
We demonstrate through experiments on bench-

mark data that, despite its relatively simple as-
sumptions involved, our novel sequence label-
ing approach is able to yield significantly bet-
ter results than various state-of-the-art mod-
els. To the best of our knowledge, this is
the first work that tackles the problem from
a sequence labeling perspective. Our code is
publicly available at https://github.com/
zoezou2015/quantity_tagger.

2 Our Approach

2.1 A Tagging Problem

We define Q = (q1, q2, . . . , qi, x, qi+1, · · · qm)
(0<i<m, m≥2 in arithmetic word problems) as
an ordered quantity sequence for a problem text T ,
where qi ∈ Q represents a constant quantity ap-
pearing in T , and x stands for the unknown quan-
tity assigned to the question sentence. Q main-
tains the same order as the quantities appearing in
T . The goal is to construct a valid math equation
E. This research investigates such a problem by
sequentially tagging each quantity q ∈ Q with the
most likely sign from set S = {+1, 0,−1}, where
“+(−)1” means a quantity is positively (nega-
tively) related to the question, i.e., the sign of the

quantity should be +(-) when forming part of the
equation; “0” means a quantity is irrelevant to the
question and should be ignored.

Given a specific prediction of the signs to the
quantities, we can form an equation as follows:∑

qi∈Q/{x}

siqi + sxx = 0 (1)

where si ∈ {+1,0,−1} is the sign for the i-th
constant quantity qi, and sx ∈ {+1,−1} is the
sign for x. The solution can be easily obtained.

2.2 Quantity Tagger

Our primary assumption is that, for each quantity,
there exists an implicit quantity span that resides
in the problem text and can convey relevant in-
formation useful for determining the signs of the
quantities. The quantity span of a quantity is es-
sentially a contiguous token sequence from the
problem text that consists of the quantity itself and
some surrounding word tokens.

Formally, our model needs to learn how to se-
quentially assign each quantity q ∈ Q its optimal
sign s ∈ S . This is a sequence labeling problem
(Lample et al., 2016; Zou and Lu, 2019). Com-
mon sequence labeling tasks, such as NER and
POS tagging, mainly consider one sentence at a

https://github.com/zoezou2015/quantity_tagger
https://github.com/zoezou2015/quantity_tagger
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time, and tag each token in the sentence. However,
our tagging problem typically involves multiple
sentences where relatively unimportant informa-
tion may be potentially included. For instance, the
second sentence of Problem 2 in Figure 1, “Park
workers will plant walnut trees today” describes
background knowledge of the problem, but such
information may not be useful for solving prob-
lems, yet even obstructive.

For each quantity q ∈ Q, we first consider a to-
ken window consisting of q and J−1 surrounding
tokens located immediately to the left and right of
q. This gives us a window of word tokens in the
size of 2J − 1. Next, such token windows for all
quantities in Q are merged to form a new token
sequence, denoted as t. Note that t is formed by
concatenating token subsequences taken from T
and is in the length of n (1≤ n≤ N , where N is
the length of T ). We assume the quantity spans are
defined over such a token sequence t (rather than
T ), which we believe convey most relevant infor-
mation for determining the signs for the quantities.
Exemplified by Problem 2 in Figure 1, we show an
example token sequence t with J = 3 in Figure 2.

To capture quantity span information, we de-
sign 9 different labels with different semantics:
H={L+, L0, L−; N+, N0, N−; R+, R0, R−}.
• The N nodes are used to indicate that the cur-

rent token is a quantity.
• The L (R) nodes are used to indicate that the

current token appears within a quantity span
of a given quantity but to the left (right) of the
quantity.

The subscripts “+”, “0”, and “−” are used to de-
note the sign (+1, 0 and −1 respectively) associ-
ated with the quantities (and quantity spans).

All quantities are explicitly given in the problem
text. Therefore, the N node is used to tag a word
token if and only if the token represents a quan-
tity. Otherwise, L and R nodes are considered.
Furthermore, the unknown quantity is always rel-
evant to the problem. We thus tag it with either
N+ or N−, while three types of N nodes are for
all constant quantities. As illustrated in Figure 2,
only one node fromH will be selected at each po-
sition. Sequentially connecting all such nodes will
form a single path that reveals information about
quantity spans selected for all quantities.

Following CRF (Lafferty et al., 2001), we for-
mulate our method as a log-linear model with la-
tent variables. Formally, given the problem text

T , let t = (t1, t2, . . . , tn) be a token sequence as
defined above, y be the corresponding label se-
quence, and h be a latent variable that provides
specific quantity span information for the (t, y) tu-
ple, we define:

p(y|t) =
∑

h exp(w
T f(t,y,h))∑

y′,h′ exp(w
T f(t,y′,h′))

(2)

where w is the feature weight vector, i.e., model
parameters, and f is the feature vector defined over
the triple (t, y, h), f(t,y,h) returns a list of dis-
crete features (refer to supplementary materials).

During training, we would like to minimize the
negative log-likelihood of the training set:

L(w) =
∑
i

log
∑
y′,h′

exp (wT
f f(t

(i),y′,h′))

−
∑
i

log
∑
h

exp (wT
f f(t

(i),y(i),h)) (3)

where the (t(i),y(i)) is the i-th training instance.
The standard gradient-based methods can be used
to optimize the above objective, such as L-BFGS
(Liu and Nocedal, 1989). Gradients of the above
function is given by:

∂L(w)

∂wk
=

∑
i

Ep(y′,h|t(i))[fk(t
(i),y′,h)]

−
∑
i

Ep(h|t(i),y(i))[fk(t
(i),y(i),h)] (4)

where Ep[·] is the expectation under distribution p.
We can construct a lattice representation on top

of the nodes shown in Figure 2. The representa-
tion compactly encodes exponentially many paths,
where each path corresponds to one possible la-
bel sequence. Note that there exists a topologi-
cal ordering amongst all nodes. This allows us to
apply a generalized forward-backward algorithm
to perform exact marginal inference so as to cal-
culate both objective and expectation values ef-
ficiently (Li and Lu, 2017; Zou and Lu, 2018).
The MAP inference procedure can be done anal-
ogously, which is called during the decoding time.

2.3 Model Variants
We further consider two variants of our model.
Semi-Markov Variant: Our first variant, namely
QT(S), employs the semi-Markov assumption
(Sarawagi and Cohen, 2005), where N nodes are
removed. Different from QT which makes the
first-order Markov assumption, QT(S) assumes L
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Model AddSub AS CN
Hosseini et al. (2014) 77.70 -
Kushman et al. (2014) 64.00 -
Koncel-Kedziorski et al. (2015) 77.00 -
Roy and Roth (2015) 78.00 47.57
Zhou et al. (2015) 53.14 51.48
Mitra and Baral (2016) 86.07 -
Roy and Roth (2017) 60.99 47.71
Wang et al. (2017) - 20.64
Wang et al. (2018b) 78.50 -
QT(FIX) 87.73 53.19
QT 90.79 58.72
QT(S) 87.30 54.81
QT(R) 88.69 59.10
QT(-EF) 60.44 56.53
QT(S-EF) 63.49 52.62
QT(R-EF) 67.52 57.48

Table 1: Accuracy (%) on AddSub and AS CN. -EF:
without external features.

and R nodes are used to indicate the left and right
boundaries of a quantity span respectively. Thus
the model constructs edges (where non-Markovian
features can be defined) by directly connecting the
exactly first L and the last R nodes of a span.
Relaxed Variant: One assumption made by QT
is: each word in t strictly belongs to a certain
quantity span. The variant QT(R) relaxes such a
constraint. In this variant, some tokens in t may
not belong to any quantity spans. Considering the
example shown in Figure 2, the token “There” in t
may not belong to any spans.

3 Experiments

We conduct experiments on two datasets, AddSub
(Hosseini et al., 2014), consisting of 395 addition-
subtraction problems in English, and AS CN with
1,049 addition-subtraction problems in Chinese
(Wang et al., 2017). For all of our experiments,
we use the L-BFGS algorithm (Liu and Nocedal,
1989) for learning model parameters with `2 regu-
larization coefficient of 0.01. To tune the hyperpa-
rameter J , we randomly select 80% instances of
the training set for training and the rest 20% for
development. We tune J on the development set.

3.1 Analysis

Following standard evaluation procedures used in
previous works (Hosseini et al., 2014; Mitra and
Baral, 2016), we conduct 3-fold cross validation
on AddSub and AS CN, and report accuracies in
Table 1. We make comparisons with a list of recent
works1 and two baselines. Another is QT(FIX)

1Results on AS CN are obtained by running publicly re-
leased systems.

Model
AddSub AS CN

AS.S. AM.S. F+ F0 F− AS.S. AM.S. F+ F0 F−

QT 89.5 97.3 96.0 86.4 96.5 56.9 60.3 85.5 62.2 85.0
QT(S) 86.5 91.2 95.0 82.8 95.6 53.6 56.3 85.3 62.9 84.3
QT(R) 87.5 92.6 95.4 82.5 96.0 57.03 60.9 86.5 62.9 85.6

Table 2: Accuracies on two types of problems and F1
scores for three types of signs of quantities. AS.S.: ac-
curacy of single-step problems (%) ; AM.S. accuracy of
multi-step problems (%) ; F+(−/0): F1 score of sign
“+1(−1/0)” (%).

where the quantity span for each quantity is a
fixed-size token window. All of our proposed
models consistently outperform previous research
efforts. These figures confirm the capability of our
approach to provide more promising solutions to
addition-subtraction problems. We do not require
any additional annotations which can be expen-
sive, while annotations like variable-word align-
ments and formulas are necessary for works of
(Kushman et al., 2014; Mitra and Baral, 2016).

To investigate the power of features extracted by
external tools, such as ConceptNet (Liu and Singh,
2004) and Stanford CoreNLP tool (Manning et al.,
2014), we conduct additional experiments on the
afore-mentioned datasets, where we call such fea-
tures external features (see supplementary mate-
rial), indicated as “-EF”. It is expected that the per-
formance drops because such features are neces-
sary for capturing evidence across sentences. Es-
pecially, for the AddSub dataset, it affects a lot.
As discussed before (Hosseini et al., 2014; Mitra
and Baral, 2016), there exists lots of irrelevant in-
formation and information gaps in AddSub. We
thus can infer the external features support our ap-
proach to be capable of bridging information gaps
and recognizing irrelevant information for solv-
ing arithmetic problems. Poor performance shows
challenges to solve such problems in Chinese.

Which of our variants works the best? We
observe that models with variable-sized quantity
spans, namely QT, QT(S) and QT(R), generally
perform better than QT(FIX) where the quantity
spans are fixed token windows. This shows the
effectiveness of introducing the quantity span as
a latent variable. QT obtains the highest average
accuracy on the AddSub and QT(R) outperforms
other two variants on the AS CN.

How does our approach perform on different
types of problems? We divide problems into two
categories: single-step and multi-step problems.
The equation of a single-step problem contains at
most two constant quantities tagged with either
“+1” or “−1”, while the equation for a multi-
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Figure 3: Effects of J on three models (QT, QT(S) and
QT(R)) evaluated on AddSub and AS CN.

step problem has more than two constant quanti-
ties with signs of “+1” or “−1”. We report accu-
racy and F1 score in Table 2. According to em-
pirical results illustrated in Table 2, our approach
is able to give more accurate answers to multi-step
problems, while the accuracy of single-step prob-
lems is lower. On the other hand, three models
have similar patterns in terms of performance for
three types of signs. The F1 scores for signs of
“+1” and “−1” are higher than scores of “0”. Af-
ter examining outputs, we found that problem texts
of single-step problems often contain more than
two constant quantities, among which only two of
them are supposed to be labeled as “+1” or “−1”
and the rest should be tagged as “0”. However, in-
correctly labeling an irrelevant quantity with “+1”
or “−1” leads to wrong solutions to single-step
problems. This also reveals that one main chal-
lenge for automatically solving arithmetic word
problems is to recognize the irrelevant quantities.
Failures in identifying irrelevant information may
due to implicit information of problem text or the
external tool issues.

Does J really matter? We further investigate
the effects of J on the three proposed models. Fig-
ure 3 plots how performance varies with J (J ∈
{1, 2, 3, 4, 5, 6, N}2) on datasets AddSub (above)
and AS CN (below). On AddSub, three models
have similar patterns that performance tends to be
worse with a larger J . As for the AS CN dataset,
three models achieve relatively higher accuracies
with J ∈ {2, 3, 6} compared to other scenarios.
Interestingly, it seems that QT and QT(R) per-
forms better than the semi-Markov variant QT(S).
We tracked outputs from three models and found
that QT(S) made more mistakes in predictions for

2All tokens in the problem text are considered as the se-
lected token window for a quantity when J = N .

Model
AddSub AS CN

P.∗ R.∗ F.∗ P.∗ R.∗ F.∗

QT
+ 95.21∗ 96.70∗ 95.95∗ 81.86∗ 89.54∗ 85.53∗
0 88.88† 83.96∗ 86.35† 75.83∗ 52.74∗ 62.21∗
− 96.65∗ 96.38? 96.51? 88.17∗ 82.04∗ 84.99∗

QT(S)
+ 93.97∗ 96.01∗ 94.98∗ 80.74∗ 90.30∗ 85.26∗
0 81.06∗ 84.50† 82.75∗ 75.00∗ 54.22† 62.94†
− 96.97∗ 94.18∗ 95.55∗ 88.66? 80.25∗ 84.25∗

QT(R)
+ 94.37∗ 96.42∗ 95.38∗ 83.79∗ 89.39∗ 86.50∗
0 80.55∗ 84.50† 82.48∗ 78.02† 52.72∗ 62.92∗
− 97.48? 94.65∗ 96.04∗ 86.67∗ 84.61? 85.63?

Table 3: Results for three types of signs for quantities
predicted by three models. P.: Precision (%), R.: Re-
call (%), F.: F1 score (%); Highest scores are in bold
and we use ∗, † and ? to distinguish different sign types.

unknown. The fact that models with J = N per-
form do not perform well confirms our assumption
that taking token windows into account rather than
the whole text is reasonable and effective.

Evaluation on different types of signs: We in-
vestigate the capability of proposed approach to
predict three types of signs ({+1,0,−1}), as il-
lustrated in Table 3. Three models have similar
patterns on two datasets. Predictions of “+1” and
“−1” are more promising, compared to “0”. This
reveals that one main challenge for automatically
solving arithmetic word problems is to recognize
the irrelevant information that should be labeled
with “0”. Like what we discussed, failure on
detecting irrelevant knowledge could be resulted
from inevitably errors introduced by external re-
sources and the lack of presence of crucial infor-
mation in problem text.

Error Analysis The leading sources of errors
can be categorized into three types: 1) The de-
scription of the problem is incomplete and im-
plicit, which is challenging for machine to under-
stand. 2) Failing in recognizing relevant quantities
caused missing quantities or introducing irrelevant
information. 3) Incomplete information or errors
from external tools, such as ConceptNet (Liu and
Singh, 2004) and Standford CoreNLP tool (Man-
ning et al., 2014), are another source of errors
leading to wrong predictions, which are inevitable.

4 Conclusion and Future Work

This work proposes the Quantity Tagger that re-
gards solving addition-subtraction problem as a
sequence labeling task by introducing the quantity
span for each quantity. Despite its simplicity, it
yields better performance. In the future, we would
also like to investigate better models that are capa-
ble to address general arithmetic word problems,
including addition, subtraction, multiplication and
division.
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