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Abstract 

In this study, we propose a new multi-task 

learning approach for rumor detection and 

stance classification tasks. This neural 

network model has a shared layer and two 

task specific layers. We incorporate the 

user credibility information into the rumor 

detection layer, and we also apply 

attention mechanism in the rumor 

detection process. The attended 

information include not only the hidden 

states in the rumor detection layer, but also 

the hidden states from the stance detection 

layer.  The experiments on two datasets 

show that our proposed model 

outperforms the state-of-the-art rumor 

detection approaches. 

1 Introduction 

Social media platforms, such as Twitter, Reddit 

and Facebook,  do not always pose authentic 

information. Rumors sometimes may spread 

quickly over these platforms, and they usually 

spread fear or hate. Therefore,  rumor detection 

and verification has gained great interest 

recently. Social media platforms and government 

authorities are also taking great efforts to defeat 

the negative impacts of rumors.  

Rumor Detection: Rumor definition varies 

over different publications. The lack of 

consistency makes it difficult to do a head-to-

head comparison between existing methods. In 

this paper, a rumor is defined as a statement 

whose truth value is true, unverified or  false 

(Qazvinian et al., 2011). When a rumor’s 

veracity value is false, some studies call it “false 

rumor” or “fake news”. However, many 

previous studies give “fake news” a stricter 

definition:  fake news is a news article published 

by a news outlet  that is intentionally and 

verifiably false (Shu et al., 2017; Zubiaga et al., 

2018). The focus of this study is rumor on social 

media, not fake news. There are also different 

definitions for rumor detection. In some studies, 

rumor detection is defined as determining if a 

story or online post is a rumor or non-rumor (i.e. 

a real story, a news article), and the task of 

determining the veracity of a rumor (true, false 

or unverified) is defined as rumor verification 

(Zubiaga et al., 2016; Kochkina et al., 2018). But 

in this paper, as well as in many previous studies 

(Ma et al., 2016; Shu et al, 2017), rumor 

detection is defined as determining the veracity 

value of a rumor. This means it is the same as 

rumor verification defined in some other studies. 

Rumor detection and rumor verification will be 

used interchangeably in this paper.  

Zubiaga  et al. (2018a) consider the rumor 

resolution process as a pipeline involving four 

sub-tasks: (1) rumor identification, determining 

whether a claim is worth verifying rather than 

the expression of an opinion, i.e. checking a 

claim is rumor or non-rumor; (2) rumor tracking, 

collecting opinions on a rumor as it unfolds; (3) 

stance classification, determining the attitude of 

users towards the truthfulness of the rumor, and 

(4) rumor verification, the ultimate step where 

the veracity value of the rumor is predicted. This 

study involves  the last two tasks: stance 

classification (detection) and  rumor verification 

(i.e. rumor detection). And this paper mainly 

focuses on the final step, rumor detection.  

Problem Statement: Now we formally define 

the rumor detection problem: A story x is 

defined as a set of n pieces of related messages 

M = {m1, m2, …, mn}. m1 is the source message 

(post) that initiated the message chain, which 

could be a tree-structure having multiple 

branches. For each message mi, it has  attributes 

representing its content, such as text and image. 

Each message is also associated with a user who 

posted it. The user also has a set of attributes, 

including name, description, avatar image, past 

posts, etc.  The rumor detection task is then 

defined as follow: Given a story x with its 

message set M and user set U, the rumor 
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detection task aims to determine whether this 

story is true, false or unverified (or just true or 

false for datasets having just two labels).  This 

definition formulates the rumor detection task as 

a veracity classification task.  The definition is 

the same as the definition  used in many previous 

studies (Shu et al, 2017; Ma et al., 2016). 

There are  four stance categories: 

supporting(S), denying(D), querying(Q) and 

commenting(C), i.e. SDQC. The veracity of a 

rumor has three values: true, false, or unverified. 

For both stance detection and rumor detection, 

traditional approaches used supervised learning 

algorithms incorporating a variety of features 

generated from post content, user profiles, and 

diffusion patterns (Castillo et al., 2011; Kwon et 

al., 2013; Liu et al., 2015; Ma et al., 2015; Zhao 

et al., 2015).  Recent studies have shown that the 

sequential time-sensitive approach has benefited 

both rumor detection and stance detection tasks 

(Ma et al., 2016; Kwon et al., 2017; Ma et al., 

2017; Ma et al., 2018a; Kochkina et al., 2018). 

In this study, we also use the sequential 

classification approach on these two tasks. A 

rumor consists of a source post that makes a 

claim, and a set of replies, directly or indirectly 

towards the source post. This set of posts may 

have multiple conversation branches.  Our model 

exploits the structural information of these 

conversations. 

Multi-task learning (Caruana, 1998; Liu et al., 

2016) has been applied in many NLP tasks. In 

this study, we use a shared Long-Short Term 

Memory (LSTM) layer to learn a set of common 

features relevant to both tasks, while each task 

can also learn their task-specific features via 

their specific layer.  Compared to previous 

studies (Ma et al., 2018; Kochkina et al., 2018) 

that also use multi-task learning for stance 

detection and rumor verification, the main 

differences between ours and them are: 1. We 

incorporate features that describe user credibility 

information into the rumor detection layer. User 

credibility information, which is derived from 

user profile in this study, is critical in rumor 

detection task, as already proven in Liu et al. 

(2015) and Castillo et al. (2011). But recent 

studies using sequential classification have not 

made use of it.  To our knowledge, this is the 

first study that incorporates user 

credibility/profile information in neural network 

for sequential classification.  2. We apply 

attention mechanism in the rumor detection 

process. And  the attention includes not only the 

hidden states in the rumor detection layer, but 

also the hidden states of the stance detection 

layer. In a conversation branch, some posts, 

especially the ones with strong stance, will be 

more important than others in determining the 

rumor veracity.  No previous study has exploited 

this on rumor detection.  

Although stance detection is included in the 

multi-task learning network, in this study, we 

focus on the main task, rumor detection, so the 

experiments are conducted for evaluating the 

performance of rumor detection. Our 

experiments show that our approach outperforms 

the state-of-the-art methods.  

2 Related Studies 

Many existing algorithms (Liu et al., 2015; Wu et 

al., 2015; Yang et al., 2012) for debunking rumors 

followed the work of Castillo et al. (2011). They 

studied information credibility and various 

features. Stance classification is also an active 

research area that has been studied in previous 

work (Ranade et al., 2013; Chuang and Hsieh, 

2015; Lukasik et al., 2016; Zubiaga et al., 2016; 

Kochkina et al., 2017).  

Several studies have employed neural 

networks on rumor verification (Ma et al., 2016; 

Kochkina et al., 2017; Ma et al., 2017), and they 

mainly focus on analyzing the information 

propagation structure. Multi-task learning has 

been used in various NLP tasks, including rumor 

verification (Collobert et al., 2011; Aguilar et al., 

2017; Lan et al., 2017;  Ma et al., 2018a; 

Kochkina et al., 2018). Kochkina et al. (2018) 

proposed a multi-task method without task 

specific layer for rumor verification. MT-ES is a 

multi-task approach using Gated Recurrent Unit 

(GRU) (Cho et al., 2014) with a task specific 

layer for each task (Ma et al., 2018a).  MT-ES has 

no attention mechanism, and it does not use user 

information.  Ma et al. (2018b) proposed a model 

based on tree-structured recursive neural 

networks.  

3 The Proposed Model 

3.1 The Multi-task Network Structure 

Figure 1 presents the high-level structure of our 

proposed multi-task learning approach. The 

middle layer is a shared layer, shared by the two 

tasks. This layer  is to extract the common 

patterns between these two tasks,  via the shared 
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parameters. The upper layer is for stance 

detection, and the lower layer is for rumor 

detection.  These   two   layers   will  capture 

task 

 

Figure 1. The high-level structure of our proposed approach. The shared LSTM layer is in the middle (in the red 

dot-line rectangle). The upper layer is the stance detection specific layer, and the lower layer is for rumor 

verification task.

specific features. In this figure, we assume the 

posts are tweets, and will use tweets as examples 

in the following sections. The input to the two 

task specific layers is a claim (rumor, thread) 

branch. Take the rumor propagation path in 

Figure 2 as an example, this rumor has four 

branches, and each branch has an input sequence 

[x1, x2, …, xn], fed into the two task specific 

layers. x1 is the source tweet (post), and xn is the 

last tweet in a branch. 

Tweet Embedding (TE): We generate the 

tweet embedding through an attention-based 

LSTM network. The word embeddings were 

built from 200 million tweets using the 

word2vec model (Mikolov et al., 2013; Li et al., 

2017).  

 

Figure 2: A rumor propagation example. There are 

four branches in this rumor. 

3.2 The Stance Detection Layer 

As shown in Figure 1, the stance detection layer 

uses a standard LSTM model. The input xi is a 

concatenation of two types of features: the tweet 

embedding (TE) and a tweet feature embedding 

(FE). FE is generated using the  same list of 

features described in (Kochkina et al., 2017). 

Some FE feature examples are content length, 

presence of a URL, and if it is a source tweet or 

not. 

At each time step i, the hidden state hsi  is fed 

to a fully connected hidden layer, and a softmax 

layer is used  to predict the stance type (e.g. S, 

D, Q, C). These hidden states are also used in the 

attention step of the rumor verification task. 

3.3 The Rumor Verification Layer 

The lower layer of Figure 1 shows the structure 

of the rumor verification process. At each step, 

the input xi  is represented by two vectors, tweet 

embedding (TE) and user information 

embedding (UE). UE is to represent user 

credibility information.  

User Credibility Information: Many 

previous studies have shown that user credibility 

information is very important in rumor 

verification (Li et al., 2016; Liu et al., 2015). 

This is especially true when a rumor is debunked 

or supported by a credible user, such as a 

verified user, news agent, government agent, or a 

professional in the area of the rumor topic. But 

recent studies using sequential classification and 
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neural network have not made use of this 

information. We hypothesize that this 

information will improve rumor verification 

performance. In this study, we derive the 

credibility information from user profile. We use 

the features described in (Liu et al., 2015) to 

derive this information. Some feature examples 

are: is verified account, if profile includes 

location, if profile has description, etc.  These 

information are processed and concatenated 

together as the UE embedding, and then UE is 

concatenated with TE as input.  

Attention-based LSTM: In a conversation 

branch, different posts will have different 

impacts on the rumor veracity. For example, the 

tweets with strong support or deny stance should 

have more impact for predicting rumor veracity. 

In order to better exploit the stance information, 

we explicitly include the hidden states from the 

stance layer in the attention calculation. Besides 

the tweets with strong stance, we should also pay 

more attention to the credible users. This can be 

done through attention in the rumor-specific 

layer, since it has already encoded the user 

credibility information through UE embedding.  

Therefore, we use an attention-based LSTM to 

give more attention to the important tweets. At 

each step i, the hidden state from the upper layer 

and the state from the lower layer are actually 

concatenated and attended together. In other 

words, they use the same attention weight, i.  

Vectors in sequence hRi  and hSi are fed into a 

learnable function  a(hRi, hSi) to generate a 

probability vector ai . The vector R is then 

computed as a weighted average of (hRi, hSi), 

with weighting given by ai: 

                          
 
                      (1) 

The hidden state R is fed into a fully 

connected layer, and softmax is used for veracity 

prediction.  

4 Experiments and Results 

Datasets: Two publicly available rumor datasets 

are used: RumorEval (Derczynski et al., 2017)  

and PHEME (Zubiaga et al., 2016; Zubiaga et 

al., 2017). RumorEval was released as part of the 

SemEval-2017 Task 8 competition (Derczynski 

et al., 2017). It contains 325 rumors (4017 

branches) from Twitter. Each tweet is also 

labeled with a stance. The PHEME dataset has 

1,972 rumors. But its tweets have no stance 

label. To get their stance labels for the multi-task 

learning, following (Kochkina et al., 2018), we 

also used the stance detection algorithm 

described in (Kochkina et al., 2017) to 

automatically annotate these tweets. The 

RumorEval dataset was provided with a 

training/development/testing split. For PHEME 

dataset, we use cross validation, same as 

(Kochkina et al., 2018). Accuracy and Macro F1 

are used as the evaluation metrics. 

Regarding the stance annotation of the 

RumorEval data set (Derczynski et al., 2017), as 

the task description paper already pointed out: 

the overall inter-annotator agreement rate of 

63.7% showed the task to be challenging, and 

easier for source tweets (81.1%) than for 

replying tweets (62.2%).  This means that there 

are many conflicting or inconsistent stance 

labels. When we analyzed the training data set, 

we found many such examples.  To make the 

labels more consistent, we run an analysis to find 

the posts that are basically the same or highly 

similar, but their labels are different. We then 

mark these posts, and use the same label, the one 

labeled on the  majority of these posts, on them 

during training. The similarity between two posts 

is calculated by cosine similarity measure. The 

similarity threshold for being considered as 

similar posts is empirically set as 0.75. 

Compared Methods: We compare our 

proposed model with the following approaches, 

including the state-of-the-art algorithms: 

Majority vote: this is a strong baseline which 

results in high accuracy due to the class 

imbalance in the veracity classification task.  

NileTMRG: this is the best veracity prediction 

system from SemEval-2017 Task 8 (Enayet and 

El-Beltagy, 2017). It is based on a linear SVM 

using a bag-of-words representation of the tweet 

concatenated with selected features. 

BranchLSTM: a method based on an LSTM 

layer followed by several dense ReLU layers and 

a softmax layer (Zubiaga et al., 2018b). 

MTL2: a multi-task method without task 

specific layers (Kochkina et al., 2018). 

 

Method Accuracy Macro F1 

Majority(False) 0.438 0.304 

NileTMRG 0.57 0.539 

BranchLSTM 0.5 0.491 

MTL2 0.571 0.558 

Proposed model 0.638 0.606 
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Table 1: Rumor verification result on  RumorEval 

Ma et al. (2018a) proposed a multi-task 

approach using GRU, with a task specific layer 

for each task. It has no attention mechanism, and 

does not use user information. Our 

implementation of their approach did not achieve 

the performance reported in their paper using the 

data sets they used, so we do not compare our 

method to theirs  here.  Ma et al. (2018b) 

proposed a model based on tree-structured 

recursive neural networks . We did not include 

this model in our experiments, because it uses 

recursive network and it performs not well on 

datasets without long propagation path, which is 

the case for our datasets.   

Experimental Settings: Our model is trained 

to minimize the squared error between the 

probability distributions of the predictions and the 

ground truth, same as (Ma et al., 2018a). 

Stochastic gradient descent, shuffled mini-batch, 

AdaDelta update, back-propagation and dropout 

are used in the training process. The TE size is 

300. During training, for each branch, the stance 

task is first executed, followed by the rumor 

verification task, in order for the verification task 

to utilize the hidden states of  the stance detection 

layer in its attention step. Zero-padding and masks 

are used for handling the varying lengths of the 

input branches; they are also used in (Kochkina et 

al., 2017; Ma et al., 2018a). A rumor’s final 

veracity is based on the voting result of all its 

branches. 

 

Method Accuracy Macro F1 

Majority (True) 0.511 0.226 

NileTMRG 0.438 0.339 

BranchLSTM 0.454 0.336 

MTL2 0.441 0.376 

Proposed model 0.483 0.418 

Table 2: Rumor verification result on PHEME dataset 

Results: Table 1 shows the result on 

RumorEval dataset, and Table 2 is for the 

PHEME dataset. We can see that our proposed 

method outperforms other approaches on both 

datasets. In both cases, the performance 

improvement is statistically significant at the 

level of p=0.01 for both accuracy and F1, using 

t-test (Rice, 2006). 

Compared to other multi-task models, our 

model has three main features: 1. it incorporates 

user credibility information in the rumor 

verification task, 2. it uses attention mechanism to 

pay more attention to the important tweets, and 3. 

it integrates the stance information into the 

attention computation.   

5 Conclusion 

We proposed a multi-task learning approach for 

rumor detection and stance classification tasks. 

This model incorporates the user credibility 

information into the rumor detection layer, and 

uses attention mechanism in the rumor detection 

process. The experiments on two datasets show 

that our proposed model outperforms the state-of-

the-art rumor detection approaches. 
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