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Abstract
Distributions of the senses of words are often
highly skewed and give a strong influence of
the domain in a document. This paper fol-
lows the assumption and presents a method for
text categorization by leveraging the predomi-
nant sense of words depending on the domain,
i.e., domain-specific senses. The key idea
is that the features learned from predominant
senses are possible to discriminate the domain
of the document and thus improve the overall
performance of text categorization. We pro-
pose a multi-task learning framework based on
the neural network model, transformer, which
trains a model to simultaneously categorize
documents and predicts a predominant sense
for each word. The experimental results us-
ing four benchmark datasets including RCV1
show that our method is comparable to the
state-of-the-art categorization approach, espe-
cially our model works well for categorization
of multi-label documents.

1 Introduction

Text categorization has been intensively studied
since neural network methods have attracted much
attention. Most of the previous work on text
categorization relies on the use of representation
learning where the words are mapped to an im-
plicit semantic space (Wang et al., 2015; Liu et al.,
2017a). The Word2Vec is a typical model related
to this representation (Mikolov et al., 2013). It
learns a vector representation for each word and
captures semantic information between words.
Pre-training by using the model shows that it im-
proves overall performance in many NLP tasks in-
cluding text categorization. However, the draw-
back in the implicit representation is that it often
does not work well on polysemous words.

The sense of a word depends on the domain in
which it is used. The same word can be used dif-
ferently in different domains. Distributions of the

senses of words are often highly skewed and a pre-
dominant sense of a word depends on the domain
of a document (McCarthy et al., 2007; Jin et al.,
2009). Suppose the noun word, “court”. The pre-
dominant sense of a word “court” would be dif-
ferent in the documents from the “judge/law” and
“sports” domains as the sense of the former would
be “an assembly (including one or more judges) to
conduct judicial business” and the latter is “a spe-
cially marked horizontal area within which a game
is played” described in the WordNet 3.1. This in-
dicates that the meaning becomes a strong clue to
assign a domain to the document. However, in the
implicit semantic space created by using the neu-
ral language model such as the Word2Vec, a word
is represented as one vector even if it has several
senses.

It is often the case that a word which is pol-
ysemous is not polysemous in a restricted sub-
ject domain. A restriction of the subject domain
makes the problem of polysemy less problem-
atic. However, even in texts from a restricted sub-
ject domain such as Wall Street Journal corpus
(Douglas and Janet, 1992), one encounters quite
a large number of polysemous words. Several
authors focused on the problem and proposed
a new type of deep contextualized word repre-
sentation such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2018) that models not only
syntax but also semantics including polysemies.
Their methods work very well in many NLP tasks
such as question answering and sentiment analy-
sis, while their methods are unsupervised manners
which they do not explicitly map each sense of
a word to its domain. Motivated by solving this
problem, we propose a method for text categoriza-
tion that complements implicit representation by
leveraging the predominant sense of a word.

We propose a multi-task learning method based
on the encoder structure of the neural network
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model, transformer (Vaswani et al., 2017). The
transformer works by relying on a self-attention
mechanism. It can directly capture the relation-
ships between two words regardless of their dis-
tance which is effective for detecting features to
discriminate predominant sense of a word in the
domain. In the model using multi-task learning,
the auxiliary predominant sense prediction task
helps text categorization by learning common fea-
ture representation of predominant senses for text
categorization. The model adopts a multi-task ob-
jective function and is trained to simultaneously
categorize texts and predicts a predominant sense
for each word. In such a way, the predominant
sense information can also help the model to learn
better sense/document representations. The exper-
imental results using four benchmark datasets sup-
port our conjecture that predominant sense identi-
fication helps to improve the overall performance
of the text categorization task.

The main contributions of our work can be sum-
marized: (1) We propose a method for text cat-
egorization that complements implicit representa-
tion by leveraging a predominant sense of a word.
(2) We introduce a multi-task learning framework
based on the neural network model, transformer.
(3) We show our hypothesis that predominant
sense identification helps to improve the overall
performance of the text categorization task, espe-
cially our model is effective for categorization of
documents with multi-label.

2 Text Categorization Framework

Our multi-task learning framework for predomi-
nant sense prediction and text categorization is il-
lustrated in Figure 1.

2.1 Text Matrix by the Transformer Encoder

As shown in Figure 1, we use the transformer en-
coder to represent the text matrix (Vaswani et al.,
2017). It is based on self-attention networks and
each word is connected to any other word in the
same sentence via self-attention which makes it
possible to get rich information to predict domain-
specific senses.

The encoder e typically stacks six identical lay-
ers. Each layer uses the multi-head attention and
two sub-layers feed-forward network, combined
with layer normalization and residual connection.
For each word within a sentence, including the
word itself, the multi-head attention computes at-

/

u�l�

u}v�Ç

��

�Z�
��vl

/v�µ���}��

��vl9íWíðWììWW

��}v}uÇ

W���]�������v��

����P}�Ç�o���o

d�µ���}u�]vr

����](]����v��

o}��

d�µ������P}�Ç

o}��

���l��}�

&����

u�l�9îWðìWìíWW

d��
v
�(}

�u
�
�

�
v
�}
�
�
�

^
�
v
��

W
��
�
]��]}

v

/

u�l�

u}v�Ç

��

�Z�

��vl d�
Æ
�

�
�
��
P
}
�]Ì�

�]}
v

/

u�l�9îWðìWìíWW

u}v�Ç

��

�Z�

��vl9íWíðWììWW

D��(

D���

&���

Figure 1: Multi-task Learning for Predominant Sense
Prediction and Text Categorization: “make” and
“bank” marked with red show the target word.
“make%2:40:01::” and “bank%1:14:00::” show sense
index obtained by the WordNet 2.0 and indicate the
predominant sense of “make” and “bank” in the econ-
omy domain, respectively.

tention weights, i.e., a softmax distribution shown
in Eq. (1).

attention(Q,K,V) = softmax(
QKT

√
dk

)V. (1)

The input are queries Q, keys K of dimension dk,
and values V of dimension dv.

√
dk refers to scal-

ing factor. The inputs are linearly projected h
times, in order to allow the model to jointly at-
tend to information from different representation,
concatinating the result,

multiHead(Q,K,V) = Concat(head1, · · · ,headh)W
O,

where headi = attention(QWQ
i ,KWK

i ,VWV
i ). (2)

with parameter matrices WQ
i ∈ Rdmodel×dk , WK

i

∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and WO ∈

Rhdv×dmodel . Here, dmodel refers to the dimension
of a word vector.

Let the output of multiHead(Q,K,V) be
Mattn. On top of the multi-head attention, there is
a feed-forward network that consists of two layers
with a ReLU activation. Each encoder layer takes
the output of the previous layer as input. It allows
making attention to all positions of the previous
layer. We obtain the output matrix Mtrf shown in
Figure 1 as an output of the encoder of the trans-
former.
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2.2 Domain-Specific Sense Prediction
Each target word vector, i.e., the word which
should be assigned a domain is extracted from the
matrix Mtrf and passed to the fully connected
layer FCdss. In Figure 1, “make” and “bank” de-
note the target words. The weighted matrix of
FCdss is indicated as Wdss ∈ Rdmodel×ddss where
ddss is the number of the dimensions in the output
which is equal to the number of domain-specific
senses in all of the target words. The predicted
sense vector y(dss) is obtained as below:

y(dss) = softmax(Mtrf ·Wdss). (3)

We compute loss function by using y(dss) and its
true domain-specific sense vector t(dss) which is
represented as a one-hot vector. The loss function
is defined by Eq. (4).

Ldss(θ) =


− 1

ndss

∑n
i=1

∑nw
w=1

∑ddss
s=1 t

(dss)
iws log(y

(dss)
iws )

(ndss ≥ 1),

0 (ndss = 0).
(4)

n refers to the minibatch size and nw shows the
number of words in a document. ndss is the num-
ber of target words within the minibatch size and θ

refers to the parameter used in the network. t(dss)iws

and y
(dss)
iws show the value of the s-th domain-

specific sense for the w-th target word in the i-th
document within the minibatch size and its true
value (1 or 0), respectively. As shown in Fig-
ure 1, we obtain text matrix Mdss by replacing
each target vector (“make” and “bank”) in the
matrix Mtrf to its domain-specific sense vector
(“make%2:40:01::” and “bank%1:14:00::”).

2.3 Text Categorization
We merged all the vectors of the matrix Mdss

per dimension and obtained one document vector
Dsum. We passed it to the fully connected layers
FCtc. The number of the dimensions of the out-
put vector dtc obtained by FCtc equals to the total
number of domains. Let the prediction vector y(tc)

be Wtc × Dsum where Wtc ∈ Rdmodel×dtc indi-
cates the weight matrix of FCtc. We applied soft-
max function for single label categorization task
which is defined by:

p̂
(tc)
ic =

exp(y
(tc)
ic )∑dtc

c′=1 exp(y
(tc′)
ic )

(5)

Similarly, we used a sigmoid function σ(x) =
1

1+e−x for multi-label categorization problem. The
training objective is to minimize the following
loss:

Ltc(θ) =



− 1
n

∑n
i=1

∑dtc
c=1 t

(tc)
ic log(p̂

(tc)
ic ).

Single-label
− 1

n

∑n
i=1

∑dtc
c=1[t

(tc)
ic log(σ(y

(tc)
ic ))+

(1− t
(tc)
ic ) log(1− σ(y

(tc)
ic ))].

Multi-label
(6)

Single-label and Multi-label in Eq. (6) denote the
loss function for single-label and multi-label pre-
diction, respectively. n refers to the minibatch size
and θ shows parameter used in the network. t

(tc)
ic

and y
(tc)
ic show the value of the c-th domain in the

i-th document within the minibatch size and its
true value (1 or 0), respectively.

In case of a single domain, a domain whose
probability score is the maximum is regarded to
the predicted domain. When the test data is the
multi-label problem, we set a threshold value λ
and domains whose probability score exceeds the
threshold value are considered for selection.

2.4 Multi-task Learning
We assume that the auxiliary predominant sense
prediction task helps the text categorization task
by learning common feature representation of pre-
dominant senses for text categorization. The
model adopts a multi-task objective function
which is shown in Eq. (7). It is trained to simul-
taneously categorize texts and predicts a predomi-
nant sense for each word.

L(multi)(θ(sh), θ(dss), θ(tc)) = L(dss)(θ(sh), θ(dss))

+L(tc)(θ(sh), θ(tc)) (7)

θ(sh) in Eq. (7) refers to a shared parameter of the
two tasks. θ(dss) and θ(tc) stand for a parameter
estimated in domain-specific sense prediction and
that of text categorization, respectively. Given a
corpus, the parameters of the network are trained
to minimize the value obtained by Eq. (7).

3 Experiments

3.1 Dataset
We performed the experiments on four benchmark
datasets having domains to evaluate the properties
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SFC RCV1
Arts Arts, Entertainment
Science Science
Politics Politics
Economy Economics
Sports Sports
Weather Weather
Politics Government
Industry Corporate
Law Law
Environment Environment
Tourism Travel
Military War
Commerce Market

Table 1: SFC and RCV1 correspondences

SFC APW
Arts Entertainment
Politics Politics
Economy Financial
Sports Sports
Weather Weather

Table 2: SFC and APW(AQUAINT) correspondences

of our framework: RCV1 (Lewis et al., 2004), 20
Newsgroups1, 1999 APW2 from the AQUAINT
corpus3, and AG’s corpus of news articles4.

The data for domain-specific sense predic-
tion is based on the senses provided by the all-
words task in SensEval-2 (Palmer et al., 2001) and
SensEval-3 (Snyder and Palmer, 2004). Magnini
et al (Magnini and Cavaglia, 2000; Magnini et al.,
2002) created a lexical resource where WordNet
2.0 synsets were annotated with Subject Field
Codes (SFC). Especially, 96% of WordNet synsets
for nouns are annotated. We assigned each do-
main described in their SFC list to the sense of
the all-words task in SensEval-2 and SensEval-3
data. Moreover, we assigned SFC labels to four
benchmark datasets having domains. The SFC
consists of 115,424 words assigning 168 domain
labels which include some of the four datasets’ do-
mains. We manually corresponded these domains
to SFC labels which are shown in Tables 1, 2, 3 5,
and 4.

The dataset statistics are summarized in Table
5 and examples of domain-specific sense-tagged

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2We did not use 1998 and 2000 APW as the domains are

not assigned to these data.
3http://catalog.ldc.upenn.edu/LDC2002T31
4https://github.com/mhjabreel/

CharCnn Keras/tree/master/data/ag news csv
5{“autos”, “motorcycles”}, and “sport” are assigned to

different SFC labels. However, we followed 20News cate-
gorization and grouped into one.

SFC 20News
Arts Rec.autos, Rec.motercycles

Rec.sport.baseball, Rec.sport.hockey
Science Sci.crypt, Sci.electronics, Sci.med, Sci.space
Politics Talk.politics.mis, Talk.politics.guns

Talk.politics.mideast

Table 3: SFC and 20News correspondences: 20News
contains seven top categories. Of these, we used three,
each of which corresponds to SFC.

SFC AG
Arts Entertainment
Science Science
Sports Sports

Table 4: SFC and AG correspondences

data are shown in Table 6. RCV1 consists of
806,701 documents, one-year corpus from Aug
20th, 1996 to Aug 19th, 1997. RCV1 is a large
volume of data compared to the other three data.
We thus reserved eight months of the RCV1 data
to learn word-embedding model. The model is
also used for the other three datasets because they
are the same genre as the RCV1, news stories. We
divided the remaining data into three. The division
is the same as the other three datasets: we reserved
60% of the data to train the models, 20% of the
data is used for tuning hyperparameters, and the
remaining 20% is used to test the models. All the
documents are tagged by using Stanford CoreNLP
Toolkit (Manning et al., 2014).

3.2 Baselines

We compared our method to three baseline meth-
ods: (i) TRF-Single which is a text categoriza-
tion based on the transformer but without domain-
specific sense prediction, (ii) TRF-Sequential, a
method first predicts domain-specific senses and
then classify documents by using the result, and
(iii) TRF-Delay-Multi, which is a model to start
learning predominant sense model at first until the
stable, and after that it adapts text categorization
simultaneously. This is a mixed method of TRF-
Sequential with fully separated training and TRF-
Multi with fully simultaneously training. We com-
pared our method with these approaches.

For multi-label text categorization by using
RCV1 data, we chose XML-CNN as a base-
line method because their method is simple but
powerful and attained at the best or second best
compared to the seven existing methods includ-
ing Bow-CNN (Johnson and Zhang, 2015) on six
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Datasets N D L W S Ŝ M M̂

RCV1 502,383 13 2.4 565 992 3,800,197 38,645 3,831
APW 46,032 5 1 397 586 877,400 9,206 1,497
20News 10,228 3 1 404 563 46,410 3,409 82
AG 95,700 3 1 390 562 124,885 31,900 222

Table 5: Data Statistics: N is the number of documents, D shows the number of domains, L is the average
number of domains per document, W refers to the number of different target words, S is the number of different
target senses, and Ŝ denotes the total number of target senses in the documents, M shows the average number of
documents per domain, and M̂ is the average number of documents per target sense.

Domain Document
Arts jonathan think there be a earlier russian film

movie%1:10:00:: on tv just say it be base on
a gogol .

Science the usaf of this program%1:10:02:: be very
open to ssato and will about 50m next year for
study%1:09:03:: .

Politics i do not think the suffering of some jew during
wwius justify the commit by the israeli govern-
ment%1:14:00:: .

Table 6: Sense-tagged training data (20News): Words
marked with “%” indicates sense index obtained by
the WordNet 2.0. Each word is lemmatized by using
CoreNLP-Toolkit.

Hyperparameter Value
The # of dimensions of a word vector (dmodel) 100
The # of epoch 100
Minibatch sizes (n) 32
Activation function ReLu
Threshold value for Multi-label learning (λ) 0.5
Gradient descent Adam

Table 7: Model settings: The hyperparameters com-
monly used in all of the method.

benchmark datasets where the label-set sizes are
up to 670K (Liu et al., 2017a). Original XML-
CNN is implemented by using Theano,6 while we
implemented our method by Chainer.7 To avoid
the influence of the difference in libraries, we im-
plemented XML-CNN by Chainer and used it as
a baseline. We followed the author-provided im-
plementation in our Chainer’s version of XML-
CNN. To make a fair comparison, we used fast-
Text (Joulin et al., 2017) as a word-embedding
tool with all of the methods.

3.3 Model settings and evaluation metrics

The hyperparameters which are commonly used in
all of the methods and their own estimated hyper-
parameters are shown in Tables 7 and 8, respec-

6https://drive.google.com/file/d/1Wwy!MNkrJRXZM3WN
ZNywa94c2-iEh 6U/view

7https://chainer.org

tively8. These hyperparameters are optimized by
using a hyperparameter optimization framework
called Optuna9. They were independently deter-
mined for each dataset. In the experiments, we
run five times for each model and obtained the av-
eraged performance. We used standard recall, pre-
cision, and F1 measures. We further computed
Macro-averaged F1 and Micro-averaged F1 and
used them through the experiments.

3.4 Results

The performance of all methods in Micro-
averaged F1 and Macro-averaged F1 on four
datasets are summarized in Tables 9, and 10,
respectively. Overall, both Micro and Macro-
averaged F1 obtained by each method were very
high except for the RCV1 data. Because these
datasets consist of at most five domains and a
single-label problem. The Micro and Macro-F1
obtained by TRF-Single were better than those
obtained by XML-CNN except for APW cor-
pus. This shows that text categorization based
on the encoder of the transformer is effective
for categorization. Sequential learning does not
work well for text categorization. Because the
average Macro-F1 obtained by TRF-Sequential
(89.41%) was slightly worse than that of TRF-
Single (89.74%), while Micro-averaged F1 ob-
tained by TRF-Sequential (90.02%) was slightly
better than TRF-Single (89.89%).

TRF-Delay-Multi was worse than TRF-
Sequential. Especially, as shown in Tables 9
and 10, the results in RCV1 were worse than
TRF-Single. One possible reason for the result
is that predominant sense identification is more
difficult task compared with text categorization.
As shown in Table 5, for example, in RCV1,
the average number of documents per target

8Our source code including Chainer’s
version of XML-CNN is available at:
https://github.com/ShimShim46/TRF Multitask

9https://github.com/pfnet/optuna
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Data XML-CNN TRF-Single TRF-Seq, TRF-Delay TRF-Multi
fr f wd h e wd h e wd ep h e wd

RCV1 2, 3, 4 128 1.00×10−4 10 1 1.00×10−4 10 2 1.00×10−4 75 10 1 1.00×10−4

APW 1, 2, 3 256 1.18×10−10 10 1 8.77×10−4 10 1 4.39×10−4 100 10 1 3.60×10−6

20News 4, 5, 6 128 3.05×10−4 5 1 1.42×10−10 5 1 9.08×10−8 75 10 1 4.39×10−8

AG 3, 4, 5 256 4.15×10−4 10 3 6.50×10−4 10 2 2.00×10−4 25 10 1 1.59×10−6

Table 8: Model settings for each method: “TRF-Seq.” and “TRF-Delay” show TRF-Sequential and TRF-Delay-
Multi, respectively. “fr” refers to filter region and “f” shows Filters. “wd” indicates Weight Decay. “h” shows
multi-attention layers and “e” is a stack of encoders. “ep” refers to the number of epochs in the predominant sense
prediction used in the baseline (iii). For instance, 75 indicates that we run predominant sense prediction task until
75 epochs, and then run multi-task learning.

Methods
Datasets XML-CNN TRF-Single TRF-Sequential TRF-Delay-Multi TRF-Multi
RCV1 70.01 70.30 70.43 62.43 71.92
APW 98.96∗ 98.23 98.53 98.80∗ 99.34
20News 88.39 91.51 91.62 91.93∗ 92.87
AG 99.07 99.52∗ 99.52∗ 99.73∗ 99.82
Average 89.10 89.89 90.02 88.22 90.98

Table 9: Micro-averaged F1 (%): Bold font shows the best result with each line. The method marked with “∗”
indicates the score is not statistically significant compared to the best one. We used a t-test, p-value < 0.05.

Methods
Datasets XML-CNN TRF-Single TRF-Sequential TRF-Delay-Multi TRF-Multi
RCV1 56.59 70.03 68.52 62.43 71.82
APW 98.19 97.13 97.70 98.05 99.14
20News 88.04 92.72 91.94 91.60 92.62∗
AG 96.61 99.08 99.51∗ 99.38∗ 99.64
Average 84.85 89.74 89.41 87.86 90.80

Table 10: Macro-averaged F1 (%): Bold font shows the best result with each line. The method marked with “∗”
indicates the score is not statistically significant compared to the best one. We used a t-test, p-value < 0.05.

Datasets TRF-Seq. TRF-Multi
TRF-Delay

RCV1 92.38 97.91
APW 95.51 98.82
20News 84.44 86.64
AG 91.26 92.03∗
Average 90.90 93.85

Table 11: Micro-averaged F1(%) of predominant sense
prediction: The method marked with “∗” indicates the
score is not statistically significant compared to the best
one. We used a t-test, p-value < 0.05.

sense is 3,831, while the average number of
documents per domain is 38,645. The training
data for predominant senses is smaller than that of
text categorization, which causes the overfitting
problem. As a result, TRF-Delay-Multi does
not work well and even worse than TRF-Single.
This shows that separately learning predominant
sense model at first until the stable, and after that,
learning predominant sense prediction and text
categorization simultaneously did not improve the
overall performance.

Datasets TRF-Seq. TRF-Multi
TRF-Delay

RCV1 78.84 83.32
APW 75.38 79.70
20News 70.13 72.76
AG 77.54 80.73
Average 75.47 78.88

Table 12: Macro-averaged F1(%) of predominant sense
prediction

Overall, the results obtained by TRF-Multi were
the best among them by both Micro and Macro-
averaged F1. This indicates that the predominant
sense information through multi-task learning can
help the model to learn better sense/document rep-
resentations. On RCV1, the overall performance
in each method was worse than those obtained by
using other data as the categorization task is more
difficult task compared with other data, i.e., multi-
label problem. However, TRF-Multi is still better
than other methods. The improvement was 1.49%
∼ 9.49% by Micro-F1 and 1.79% ∼ 15.23% by
Macro-F1.
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(c) Micro-F1 (20News)
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Figure 2: Micro-F1 against the # of epochs obtained by using the test data: Multi-task learning stability.
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(a) Macro-F1 (RCV1)
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(d) Macro-F1 (AG)

Figure 3: Macro-F1 against the # of epochs obtained by using the test data: Multi-task learning stability.

Tables 11 and 12 show the Micro and Macro-
F1 of predominant sense prediction, respectively.
The overall performance of multi-task learning
was better to those of TRF-Seq. (TRF-Delay) by
both measures except for Micro-F1 on AG data.
This confirms our conjecture: to train the data in
order to simultaneously categorize texts and pre-
dict domain-specific senses is effective for sense
prediction.

Figures 2 and 3 show Micro and Macro-F1
against the number of epochs by using each of the
four datasets. As we can see from these Figures,
on 20News and AG corpus, each model except
for XML-CNN are similar learning stability in
both Micro and Macro-F1 curves. On RCV1, we
have the same observation by Micro-F1 except for
TRF-Delay-Multi and there is no significant dif-
ference in stability between TRF-Multi and TRF-
Sequential by Macro-F1. On APW, TRF-Multi is
similar to XML-CNN as they are stable after 60
epochs. In summary, TRF-Multi gets more stable
through the datasets and in both measures.

We also examined the affection on each catego-
rization performance by the ratio of predominant-

sense tagged training data. For each domain and
each predominant-sense, we count the total num-
ber of documents and obtained 5% to 80% of the
training documents. The results by Micro and
Macro-F1 are illustrated in Figures 4, and 5, re-
spectively.

The Micro-F1 values except for 20News and for
TRF-Delay-Multi on RCV1 are not a significant
difference among methods and keep the perfor-
mance until the ratio of training data decreased at
40%. Similarly, when the ratio is larger than 20%,
the Macro-F1 on APW and AG obtained by all
the methods do not differ significantly except for
XML-CNN. The Micro and Macro-F1 curves ob-
tained by 20news and Macro-F1 curve on RCV1
shows that more training data helps the perfor-
mance. This is reasonable because the average
number of training data per domain on 20news
is 3,409 and it is extremely smaller than other
datasets. RCV1 is also a multi-label problem.

The curves obtained by TRF-Multi drop slowly
compared to other methods and it keeps the best
performance by both evaluation measures and
even in the ratio of 5%. From the observations,
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Figure 4: Micro-F1 against the ratio of training data
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Figure 5: Macro-F1 against the ratio of training data

we can conclude that TRF-Multi learning model
works well, especially in the cases that the num-
ber of training data per domain is small.

4 Related Work

Deep learning techniques have been great
successes for automatically extracting context-
sensitive features from a textual corpus. Many
authors have attempted to apply deep learning
methods including CNN (Kim, 2014; Zhang et al.,
2015; Wang et al., 2015; Zhang and Wallace,
2015; Zhang et al., 2017; Wang et al., 2017),
the attention based CNN (Yang et al., 2016),
bag-of-words based CNN (Johnson and Zhang,
2015), and the combination of CNN and recurrent
neural network (RNN) (Zhang et al., 2016) to text
categorization. Most of these approaches demon-
strated that neural network models are powerful
for learning effective features from textual input.
However, most of them for learning word vectors
only allow a single context-independent represen-
tation for each word even if it has several senses.
Peters et al. addressed the issue and proposed a
model of deep contextualized word representation

called ELMo derived from a bidirectional LSTM
(Peters et al., 2018). They reported that their
representation model significantly improves
the state-of-the-art across six NLP problems.
Similarly, Devlin proposed a model of deep
contextualized word representation called BERT
that can deal with syntax and semantics including
polysemies (Devlin et al., 2018). Their methods
attained amazing results in many NLP tasks.
However, they do not explicitly map each sense
of a word to its domain as their methods are un-
supervised manner. Moreover, their model needs
a large amount of corpus which leads to compu-
tational workload. Our model utilizes existing
domain-specific senses (Magnini and Cavaglia,
2000; Magnini et al., 2002) as pseudo rough but
explicit word representation data. It enables us to
learn feature representations for both predominant
senses and text categorization with a small amount
of data.

Similar to the text categorization task, the recent
upsurge of deep learning techniques have also con-
tributed to improving the overall performance on
Word Sense Disambiguation (WSD) (Yuan et al.,
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2016; Raganato et al., 2017; Peters et al., 2018).
Melamud et al. proposed a method called Con-
text2Vec which learns each sense annotation in
the training data by using a bidirectional LSTM
trained on an unlabeled corpus (Melamud et al.,
2016). More recently, Vaswani et al. intro-
duced the first full-attentional architecture called
Transformer. It utilizes only the self-attention
mechanism and demonstrated its effectiveness
on neural machine translation. Since then,
the transformer has been successfully applied to
many NLP tasks including semantic role label-
ing (Strubell et al., 2018) and sentiment analy-
sis (Ambartsoumian and Popowich, 2018). To the
best of our knowledge, this is the first approach
for predicting domain-specific senses based on a
transformer that is trained with multi-task learn-
ing.

In the context of predominant sense prediction,
several authors have attempted to use domain-
specific knowledge to disambiguate senses and
show that the knowledge outperforms generic
supervised WSD (Agirre and Soroa, 2009;
Faralli and Navigli, 2012; Taghipour and Ng,
2015). McCarthy et al. proposed a statistical
method for assigning predominant noun senses
(McCarthy et al., 2004, 2007). They find words
with a similar distribution to the target word from
parsed data. They tested 38 words containing
two domains of Sports and Finance from the
Reuters corpus (Rose et al., 2002). Similarly,
Lau et al. (2014) proposed a fully unsupervised
topic modeling-based approach to sense fre-
quency estimation. Faralli and Navigli (2012)
attempted to performing domain-driven WSD by a
pattern-based method with minimally-supervised
framework. While conceptually similar, our
model differs from these approaches in that
it is supervised learning by adopting existing
domain-specific sense tags for creating the data.

In the context of multi-task learning, many au-
thors have attempted to apply it to NLP tasks
(Collobert and Weston, 2008; Glorot et al., 2011;
Liu et al., 2015, 2016). Liu et al. proposed ad-
versarial multi-task learning which alleviates the
shared and private latent feature spaces from in-
terfering with each other (Liu et al., 2017b). Xiao
et al. attempted multi-task CNN which intro-
duces a gate mechanism to reduce the inter-
ference (Xiao et al., 2018). They reported that
their approach can learn selection rules automat-

ically and gain a great improvement over base-
lines through the experiments on nine text cate-
gorization datasets. Both of them focused on text
categorization task only as a multi-task and used
the word embeddings which are initialized with
Word2Vec or GloVe vectors. Aiming at text cat-
egorization with relatively small amounts of train-
ing data, we demonstrated a predominant sense
of a word is effective for text categorization in
the framework of multi-task learning with domain-
specific sense identification and text categoriza-
tion. This enabled us to obtain better explicit fea-
ture representations to classify documents.

5 Conclusion

We have presented an approach to text categoriza-
tion by leveraging a predominant sense of a word
depending on the domain. We empirically exam-
ined that predominant sense identification helps to
improve the overall performance of text catego-
rization in the framework on multi-task learning.
The comparative results with the baselines showed
that our model is competitive as the improvement
was 1.49% ∼ 9.49% by Micro-F1 and 1.79% ∼
15.23% by Macro-F1. Moreover, we found that
our model works well, especially for the catego-
rization of documents with multi-label.

Future work will include: (i) incorporating lex-
ical semantics such as named entities for further
improvement, (ii) comparing our model to other
deep contextualized word representation such as
ELMO and BERT, and (iii) applying the method
to other domains for quantitative evaluation.
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