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Abstract

ScoutBot is a dialogue interface to phys-
ical and simulated robots that supports
collaborative exploration of environments.
The demonstration will allow users to is-
sue unconstrained spoken language com-
mands to ScoutBot. ScoutBot will prompt
for clarification if the user’s instruction
needs additional input. It is trained
on human-robot dialogue collected from
Wizard-of-Oz experiments, where robot
responses were initiated by a human wiz-
ard in previous interactions. The demon-
stration will show a simulated ground
robot (Clearpath Jackal) in a simulated en-
vironment supported by ROS (Robot Op-
erating System).

1 Introduction

We are engaged in a long-term project to create
an intelligent, autonomous robot that can collab-
orate with people in remote locations to explore
the robot’s surroundings. The robot’s capabili-
ties will enable it to effectively use language and
other modalities in a natural manner for dialogue
with a human teammate. This demo highlights the
current stage of the project: a data-driven, auto-
mated system, ScoutBot, that can control a simu-
lated robot with verbally issued, natural language
instructions within a simulated environment, and
can communicate in a manner similar to the in-
teractions observed in prior Wizard-of-Oz experi-
ments. We used a Clearpath Jackal robot (shown
in Figure 1a), a small, four-wheeled unmanned
ground vehicle with an onboard CPU and iner-
tial measurement unit, equipped with a camera and
light detection and ranging (LIDAR) mapping that

∗Contributions were primarily performed during an in-
ternship at the Institute for Creative Technologies.

readily allows for automation. The robot’s task is
to navigate through an urban environment (e.g.,
rooms in an apartment or an alleyway between
apartments), and communicate discoveries to a hu-
man collaborator (the Commander). The Com-
mander verbally provides instructions and guid-
ance for the robot to navigate the space.

The reasons for an intelligent robot collabora-
tor, rather than one teleoperated by a human, are
twofold. First, the human resources needed for
completely controlling every aspect of robot mo-
tion (including low-level path-planning and nav-
igation) may not be available. Natural language
allows for high-level tasking, specifying a desired
plan or end-point, such that the robot can figure
out the details of how to execute these natural lan-
guage commands in the given context and report
back to the human as appropriate, requiring less
time and cognitive load on humans. Second, the
interaction should be robust to low-bandwidth and
unreliable communication situations (common in
disaster relief and search-and-rescue scenarios),
where it may be impossible or impractical to ex-
ercise real-time control or see full video streams.
Natural language interaction coupled with low-
bandwidth, multimodal updates addresses both
of these issues and provides less need for high-
bandwidth, reliable communication and full atten-
tion of a human controller.

We have planned the research for developing
ScoutBot as consisting of five conceptual phases,
each culminating in an experiment to validate the
approach and collect evaluation data to inform
the development of the subsequent phase. These
phases are:

1. Typed wizard interaction in real-world environment
2. Structured wizard interaction in real environment
3. Structured wizard interaction in simulated environment
4. Automated interaction in simulated environment
5. Automated interaction in real environment
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(a) Real-World Jackal (b) Simulated Jackal

Figure 1: Jackal Robot

The first two phases are described in Marge
et al. (2016) and Bonial et al. (2017), respec-
tively. Both consist of Wizard-of-Oz settings in
which participants believe that they are interact-
ing with an autonomous robot, a common tool in
Human-Robot Interaction for supporting not-yet
fully realized algorithms (Riek, 2012). In our two-
wizard design, one wizard (the Dialogue Man-
ager or DM-Wizard) handles the communication
aspects, while another (the Robot Navigator or
RN-Wizard) handles robot navigation. The DM-
Wizard acts as an interpreter between the Com-
mander and robot, passing simple and full instruc-
tions to the RN-Wizard for execution based on the
Commander instruction (e.g., the Commander in-
struction, Now go and make a right um 45 degrees
is passed to the RN-Wizard for execution as, Turn
right 45 degrees). In turn, the DM-Wizard informs
the Commander of instructions the RN-Wizard
successfully executes or of problems that arise
during execution. Unclear instructions from the
Commander are clarified through dialogue with
the DM-Wizard (e.g., How far should I turn?).
Additional discussion between Commander and
DM-Wizard is allowed at any time. Note that be-
cause of the aforementioned bandwidth and relia-
bility issues, it is not feasible for the robot to start
turning or moving and wait for the Commander to
tell it when to stop - this may cause the robot to
move too far, which could be dangerous in some
circumstances and confusing in others. In the first
phase, the DM-Wizard uses unconstrained texting
to send messages to both the Commander and RN-
Wizard. In the second phase, the DM-Wizard
uses a click-button interface that facilitates faster
messaging. The set of DM-Wizard messages in
this phase were constrained based on the messages
from the first phase.

This demo introduces ScoutBot automation of
the robot to be used in the upcoming phases: a
simulated robot and simulated environment to sup-
port the third and fourth project phases, and initial
automation of DM and RN roles, to be used in the

fourth and fifth phases. Simulation and automa-
tion were based on analyses from data collected in
the first two phases. Together, the simulated envi-
ronment and robot allow us to test the automated
system in a safe environment, where people, the
physical robot, and the real-world environment are
not at risk due to communication or navigation er-
rors.

2 System Capabilities

ScoutBot engages in collaborative exploration di-
alogues with a human Commander, and controls a
robot to execute instructions and navigate through
and observe an environment. The real-world
Jackal robot measures 20in x 17in x 10in, and
weights about 37lbs (pictured in Figure 1a). Both
it and its simulated counterpart (as seen in Fig-
ure 1b) can drive around the environment, but can-
not manipulate objects or otherwise interact with
the environment. While navigating, the robot uses
LIDAR to construct a map of its surroundings as
well as to indicate its position in the map. The
Commander is shown this information, as well as
static photographs of the robot’s frontal view in the
environment (per request) and dialogue responses
in a text interface.

Interactions with ScoutBot are collaborative in
that ScoutBot and the Commander exchange in-
formation through dialogue. Commanders issue
spoken navigation commands to the robot, request
photos, or ask questions about its knowledge and
perception. ScoutBot responds to indicate when
commands are actionable, and gives status feed-
back on its processing, action, or inability to act.
When ScoutBot accepts a command, it is carried
out in the world.

Figure 2 shows a dialogue between a Comman-
der and ScoutBot. The right two columns show
how the Commander’s language was interpreted,
and the action the robot takes. In this dialogue, the
Commander begins by issuing a single instruction,
Move forward (utterance #1), but the end-point is
underspecified, so ScoutBot responds by request-
ing additional information (#2). The Commander
supplies the information in #3, and the utterance
is understood as an instruction to move forward 3
feet. ScoutBot provides feedback to the Comman-
der as the action is begins (#4) and upon comple-
tion (#5). Another successful action is executed in
#6-8. Finally, the Commander’s request to know
what the robot sees in #9 is interpreted as a re-
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Move forward

You can tell me to move a 
certain distance or to move 

to an object.

1.

2. 

3. move forward 3 feet Go forward 3 feet

Moving… 4. (starts moving)

Done. 5. (stops moving)

6. turn right 45 degreesPivot right about 45 degrees

Turning… 7. (starts turning)

Done. 8. (stops turning)

9. send image (takes and sends image)What do you see?

Commander ScoutBot Interpreted Action Robot Action

Figure 2: Dialogue between a Commander and ScoutBot

quest for a picture from the robot’s camera, which
is taken and sent to the Commander.

ScoutBot accepts unconstrained spoken lan-
guage, and uses a statistical text classifier trained
on annotated data from the first two phases of
the project for interpreting Commander instruc-
tions. Dialogue management policies are used to
generate messages to both the Commander and
interpreted actions for automated robot naviga-
tion. Our initial dialogue management policies are
fairly simple, yet are able to handle a wide range
of phenomena seen in our domain.

3 System Overview

ScoutBot consists of several software systems,
running on multiple machines and operating sys-
tems, using two distributed agent platforms. The
architecture utilized in simulation is shown in Fig-
ure 3. A parallel architecture exists for a real-
world robot and environment. Components pri-
marily involving language processing use parts
of the Virtual Human (VH) architecture (Hartholt
et al., 2013), and communicate using the Virtual
Human Messaging (VHMSG), a thin layer on top
of the publicly available ActiveMQ message pro-
tocol1. Components primarily involving the real
or simulated world, robot locomotion, and sens-
ing are embedded in ROS2. To allow the VHMSG
and ROS modules to interact with each other, we
created ros2vhmsg, software that bridges the two
messaging architectures. The components are de-
scribed in the remainder of this section.

The system includes several distinct worksta-

1http://activemq.apache.org
2http://www.ros.org
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Figure 3: ScoutBot architecture interfacing with
a simulated robot and environment: Solid arrows
represent communications over a local network;
dashed arrows indicate connections with external
resources. Messaging for the spoken language in-
terface is handled via VHMSG, while robot mes-
sages are facilitated by ROS. A messaging bridge,
ros2vhmsg, connects the components.

tion displays for human participants. The Com-
mander display is the view of the collaborative
partner for the robot (lower left corner of Fig-
ure 3). This display shows a map of the robot’s lo-
cal surroundings, the most recent photo the robot
has sent, and a chat log showing text utterances
from the robot. The map is augmented as new
areas are explored, and updated according to the
robot’s position and orientation. There are also
displays for experimenters to monitor (and in the
case of Wizards-of-Oz, engage in) the interaction.
These displays show real-time video updates of
what the robot can see, as well as internal com-
munication and navigation aids.

http://activemq.apache.org
http://www.ros.org
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3.1 VHMSG Components

VHMSG includes several protocols that imple-
ment parts of the Virtual Human architecture. We
use the protocols for speech recognition, as well as
component monitoring and logging. The NPCEd-
itor and other components that use these proto-
cols are available as part of the ICT Virtual Hu-
man Toolkit (Hartholt et al., 2013). These proto-
cols have also been used in systems, as reported by
Hill et al. (2003) and Traum et al. (2012, 2015).
In particular, we used the adaptation of Google’s
Automated Speech Recognition (ASR) API used
in Traum et al. (2015). The NPCEditor (Leuski
and Traum, 2011) was used for Natural Language
Understanding (NLU) and dialogue management.
The new ros2vhmsg component for bridging the
messages was used to send instructions from the
NPCEditor to the automated RN.

3.1.1 NPCEditor

We implemented NLU using the statistical text
classifier included in the NPCEditor. The classi-
fier learns a mapping from inputs to outputs from
training data using cross-language retrieval mod-
els (Leuski and Traum, 2011). The dialogues
collected from our first two experimental phases
served as training data, and consisted of 1,500
pairs of Commander (user) utterances and the
DM-Wizard’s responses. While this approach lim-
its responses to the set that were seen in the train-
ing data, in practice it works well in our domain,
achieving accuracy on a held out test set of 86%.
The system is particularly effective at translat-
ing actionable commands to the RN for execu-
tion (e.g., Take a picture). It is robust at handling
commands that include pauses, fillers, and other
disfluent features (e.g., Uh move um 10 feet). It
can also handle simple metric-based motion com-
mands (e.g., Turn right 45 degrees, Move forward
10 feet) as well as action sequences (e.g., Turn 180
degrees and take a picture every 45). The system
can interpret some landmark-based instructions re-
quiring knowledge of the environment (e.g., Go to
the orange cone), but the automated RN compo-
nent does not yet have the capability to generate
the low-level, landmark-based instructions for the
robot.

Although the NPCEditor supports simultane-
ous participation in multiple conversations, exten-
sions were needed for ScoutBot to support multi-
floor interaction (Traum et al., 2018), in which

two conversations are linked together. Rather than
just responding to input in a single conversation,
the DM-Wizard in our first project phases often
translates input from one conversational floor to
another (e.g., from the Commander to the RN-
Wizard, or visa versa), or responds to input with
messages to both the Commander and the RN.
These responses need to be consistent (e.g. trans-
lating a command to the RN should be accom-
panied by positive feedback to the Commander,
while a clarification to the commander should not
include an RN action command). Using the di-
alogue relation annotations described in Traum
et al. (2018), we trained a hybrid classifier, includ-
ing translations to RN if they existed, and negative
feedback to the Commander where they did not.
We also created a new dialogue manager policy
that would accompany RN commands with appro-
priate positive feedback to the commander, e.g.,
response of “Moving..” vs “Turning...” as seen in
#4 and #7 in Figure 2.

3.1.2 ros2vhmsg

ros2vhmsg is a macOS application to bridge the
VHMSG and ROS components of ScoutBot. It
can be run from a command line or using a graph-
ical user interface that simplifies the configura-
tion of the application. Both VHMSG and ROS
are publisher-subscriber architectures with a cen-
tral broker software. Each component connects to
the broker. They publish messages by delivering
them to the broker and receive messages by telling
the broker which messages they want to receive.
When the broker receives a relevant message, it is
delivered to the subscribers.

ros2vhmsg registers itself as a client for both
VHMSG and ROS brokers, translating and reissu-
ing the messages. For example, when ros2vhmsg
receives a message from the ROS broker, it con-
verts the message into a compatible VHMSG for-
mat and publishes it with the VHMSG broker.
Within ros2vhmsg, the message names to translate
along with the corresponding ROS message types
must be specified. Currently, the application sup-
ports translation for messages carrying either text
or robot navigation commands. The application is
flexible and easily extendable with additional mes-
sage conversion rules. ros2vhmsg annotates its
messages with a special metadata symbol and uses
that information to avoid processing messages that
it already published.
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Figure 4: Real-world and simulated instances of
the same environment.

3.2 ROS Components

ROS provides backend support for robots to oper-
ate in both real-world and simulated environments.
Here, we describe our simulated testbed and auto-
mated navigation components. Developing auto-
mated components in simulation allows for a safe
test space before software is transitioned to the
real-world on a physical robot.

3.2.1 Environment Simulator
Running operations under ROS makes the tran-
sition between real-world and simulated testing
straightforward. Gazebo3 is a software package
compatible with ROS for rendering high-fidelity
virtual simulations, and supports communications
in the same manner as one would in real-world en-
vironments. Simulated environments were mod-
eled in Gazebo after their real-world counterparts
as shown in Figure 4. Replication took into con-
sideration the general dimensions of the physical
space, and the location and size of objects that
populate the space. Matching the realism and fi-
delity of the real-world environment in simulation
comes with a rendering trade-off: objects requir-
ing a higher polygon count due to their natural ge-
ometries results in slower rendering in Gazebo and
a lag when the robot moves in the simulation. As a
partial solution, objects were constructed starting
from their basic geometric representations, which
could be optimized accordingly, e.g., the illusion
of depth was added with detailed textures or shad-
ing on flat-surfaced objects. Environments ren-
dered in Gazebo undergo a complex workflow to
support the aforementioned requirements. Objects
and their vertices are placed in an environment,
and properties about collisions and gravity are en-
coded in the simulated environment.

3.2.2 Jackal Simulator
Clearpath provides a ROS package with a simu-
lated model of the Jackal robot (Figure 1b) and

3http://gazebosim.org/

customizable features to create different simu-
lated configurations. We configured our simulated
Jackal to have the default inertial measurement
unit, a generic camera, and a Hokuyo LIDAR laser
scanner.

As the simulated Jackal navigates through the
Gazebo environment, data from the sensors is re-
layed to the workstation views through rviz4, a vi-
sualization tool included with ROS that reads and
displays sensor data in real-time. Developers can
select the data to display by adding a panel, se-
lecting the data type, and then selecting the spe-
cific ROS data stream. Both physical and simu-
lated robot sensors are supported by the same rviz
configuration, since rviz only processes the data
sent from these sensors; this means that an rviz
configuration created for data from a simulated
robot will also work for a physical robot if the data
stream types remain the same.

3.2.3 Automated Robot Navigator

Automated robot navigation is implemented with a
python script and the ROSPY package5. The script
runs on a ROS-enabled machine running the sim-
ulation. The script subscribes to messages from
NPCEditor, which are routed through ros2vhmsg.
These messages contain text output from the NLU
classifier that issue instructions to the robot based
on the user’s unconstrained speech.

A mapping of pre-defined instructions was cre-
ated, with keys matching the strings passed from
NPCEditor via ros2vhmsg (e.g., Turn left 90 de-
grees). For movement, the map values are a ROS
TWIST message that specifies the linear motion
and angular rotation payload for navigation. These
TWIST messages are the only way to manipulate
the robot; measures in units of feet and degrees
cannot be directly translated. The mapping is
straightforward to define for metric instructions.
Included is basic coverage of moving forward or
backward between 1 and 10 feet, and turning right
and left 45, 90, 180, or 360 degrees. Pictures from
the robot’s simulated camera can be requested by
sending a ROS IMAGE message. The current map-
ping does not yet support collision avoidance or
landmark-based instructions that require knowl-
edge of the surrounding environment (e.g., Go to
the nearby chair).

4http://wiki.ros.org/rviz
5http://wiki.ros.org/rospy

http://gazebosim.org/
http://wiki.ros.org/rviz
http://wiki.ros.org/rospy
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4 Demo Summary

In the demo, visitors will see the simulated robot
dynamically move in the simulated environment,
guided by natural language interaction. Visitors
will be able to speak instructions to the robot
to move in the environment. Commands can be
given in metric terms (e.g., #3 and #6 in Figure 2),
and images requested (e.g., #9). Undecipherable
or incomplete instructions will result in clarifica-
tion subdialogues rather than robot motion (e.g.,
#1). A variety of command formulations can be
accommodated by the NLU classifier based on
the training data from our experiments. Visual-
izations of different components can be seen in:
http://people.ict.usc.edu/˜traum/
Movies/scoutbot-acl2018demo.wmv.

5 Summary and Future Work

ScoutBot serves as a research platform to support
experimentation. ScoutBot components will be
used in our upcoming third through fifth develop-
ment phases. We are currently piloting phase 3
using ScoutBot’s simulated environment, with hu-
man wizards. Meanwhile, we are extending the
automated dialogue and navigation capabilities.

This navigation task holds potential for collab-
oration policies to be studied, such as the amount
and type of feedback given, how to negotiate to
successful outcomes when an initial request was
underspecified or impossible to carry out, and the
impact of miscommunication. More sophisticated
NLU methodologies can be tested, including those
that recognize specific slots and values or more de-
tailed semantics of spatial language descriptions.
The use of context, particularly references to rel-
ative landmarks, can be tested by either using
the assumed context as part of the input to the
NLU classifier, transforming the input before clas-
sifying, or deferring the resolution and requiring
the action interpreter to handle situated context-
dependent instructions (Kruijff et al., 2007).

Some components of the ScoutBot architecture
may be substituted for different needs, such as dif-
ferent physical or simulated environments, robots,
or tasks. Training new DM and RN components
can make use of this general architecture, and the
resulting components aligned back with ScoutBot.
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