
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 285–290,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

A Dependency-Based Neural Network for Relation Classification

Yang Liu1,2∗ Furu Wei3 Sujian Li1,2 Heng Ji4 Ming Zhou3 Houfeng Wang1,2

1Key Laboratory of Computational Linguistics, Peking University, MOE, China
2Collaborative Innovation Center for Language Ability, Xuzhou, Jiangsu, China

3Microsoft Research, Beijing, China
4Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY, USA

{cs-ly, lisujian, wanghf}@pku.edu.cn
{furu, mingzhou}@microsoft.com jih@rpi.edu

Abstract

Previous research on relation classification
has verified the effectiveness of using de-
pendency shortest paths or subtrees. In
this paper, we further explore how to make
full use of the combination of these de-
pendency information. We first propose
a new structure, termed augmented de-
pendency path (ADP), which is composed
of the shortest dependency path between
two entities and the subtrees attached to
the shortest path. To exploit the semantic
representation behind the ADP structure,
we develop dependency-based neural net-
works (DepNN): a recursive neural net-
work designed to model the subtrees, and
a convolutional neural network to capture
the most important features on the shortest
path. Experiments on the SemEval-2010
dataset show that our proposed method
achieves state-of-art results.

1 Introduction

Relation classification aims to classify the seman-
tic relations between two entities in a sentence. It
plays a vital role in robust knowledge extraction
from unstructured texts and serves as an interme-
diate step in a variety of natural language process-
ing applications. Most existing approaches follow
the machine learning based framework and focus
on designing effective features to obtain better
classification performance.

The effectiveness of using dependency relation-
s between entities for relation classification has
been reported in previous approaches (Bach and
Badaskar, 2007). For example, Suchanek et al.
(2006) carefully selected a set of features from
tokenization and dependency parsing, and extend-
ed some of them to generate high order features

∗Contribution during internship at Microsoft Research.

in different ways. Culotta and Sorensen (2004)
designed a dependency tree kernel and attached
more information including Part-of-Speech tag,
chunking tag of each node in the tree. Interesting-
ly, Bunescu and Mooney (2005) provided an im-
portant insight that the shortest path between two
entities in a dependency graph concentrates most
of the information for identifying the relation be-
tween them. Nguyen et al. (2007) developed these
ideas by analyzing multiple subtrees with the guid-
ance of pre-extracted keywords. Previous work
showed that the most useful dependency informa-
tion in relation classification includes the shortest
dependency path and dependency subtrees. These
two kinds of information serve different functions
and their collaboration can boost the performance
of relation classification (see Section 2 for detailed
examples). However, how to uniformly and ef-
ficiently combine these two components is still
an open problem. In this paper, we propose a
novel structure named Augmented Dependency
Path (ADP) which attaches dependency subtrees
to words on a shortest dependency path and focus
on exploring the semantic representation behind
the ADP structure.

Recently, deep learning techniques have been
widely used in exploring semantic representation-
s behind complex structures. This provides us
an opportunity to model the ADP structure in a
neural network framework. Thus, we propose a
dependency-based framework where two neural
networks are used to model shortest dependency
paths and dependency subtrees separately. One
convolutional neural network (CNN) is applied
over the shortest dependency path, because CNN
is suitable for capturing the most useful features in
a flat structure. A recursive neural network (RN-
N) is used for extracting semantic representations
from the dependency subtrees, since RNN is good
at modeling hierarchical structures. To connect
these two networks, each word on the shortest

285



A thief who tried to steal the truck broke the ignition with screwdriver.
det rcmod

nsubj

xcomp

aux

dobj

det

dobj

nsubj

det

prep-with

On the Sabbath the priests broke the commandment with priestly work.
det

prep-on

det nsubj

det

prep-with

amod

dobj

S1:

S2:

Figure 1: Sentences and their dependency trees.

broke prep-with screwdriver

ignition 

dobj

nsubjthief

det

the

A

det

(a) Augmented dependency path in S1.

the

broke prep-with work

commandment

dobj

det

nsubjpriests 

Sabbath 

prep-on

det

the

the

det

 priestly

amod

(b) Augmented dependency path in S2.

Figure 2: Augmented dependency paths.

path is combined with a representation generated
from its subtree, strengthening the semantic rep-
resentation of the shortest path. In this way, the
augmented dependency path is represented as a
continuous semantic vector which can be further
used for relation classification.

2 Problem Definition and Motivation

The task of relation classification can be defined
as follows. Given a sentence S with a pair of
entities e1 and e2 annotated, the task is to identify
the semantic relation between e1 and e2 in ac-
cordance with a set of predefined relation classes
(e.g., Content-Container, Cause-Effect). For ex-
ample, in Figure 2, the relation between two en-
tities e1=thief and e2=screwdriver is Instrument-
Agency.

Bunescu and Mooney (2005) first used short-
est dependency paths between two entities to
capture the predicate-argument sequences (e.g.,
“thief←broke→screwdriver” in Figure 2), which
provide strong evidence for relation classification.
As we observe, the shortest paths contain more
information and the subtrees attached to each node
on the shortest path are not exploited enough. For
example, Figure 2a and 2b show two instances
which have similar shortest dependency paths but
belong to different relation classes. Methods only
using the path will fail in this case. However, we

can distinguish these two paths by virtue of the
attached subtrees such as “dobj→commandment”
and “dobj→ignition”. Based on many observa-
tions like this, we propose the idea that combines
the subtrees and the shortest path to form a more
precise structure for classifying relations. This
combined structure is called “augmented depen-
dency path (ADP)”, as illustrated in Figure 2.

Next, our goal is to capture the semantic repre-
sentation of the ADP structure between two enti-
ties. We first adopt a recursive neural network to
model each word according to its attached depen-
dency subtree. Based on the semantic information
of each word, we design a convolutional neural
network to obtain salient semantic features on the
shortest dependency path.

3 Dependency-Based Neural Networks

In this section, we will introduce how we use neu-
ral network techniques and dependency informa-
tion to explore the semantic connection between
two entities. We dub our architecture of model-
ing ADP structures as dependency-based neural
networks (DepNN). Figure 3 illustrates DepNN
with a concrete example. First, we associate each
word w and dependency relation r with a vector
representation xw, xr ∈ Rdim. For each word
w on the shortest dependency path, we develop
an RNN from its leaf words up to the root to
generate a subtree embedding cw and concatenate
cw with xw to serve as the final representation of
w. Next, a CNN is designed to model the shortest
dependency path based on the representation of
its words and relations. Finally our framework
can efficiently represent the semantic connection
between two entities with consideration of more
comprehensive dependency information.

3.1 Modeling Dependency Subtree

The goal of modeling dependency subtrees is to
find an appropriate representation for the words on
the shortest path. We assume that each word w
can be interpreted by itself and its children on the
dependency subtree. Then, for each word w on the
subtree, its word embedding xw ∈ Rdim and sub-
tree representation cw ∈ Rdimc are concatenated
to form its final representation pw ∈ Rdim+dimc .
For a word that does not have a subtree, we set
its subtree representation as cLEAF . The subtree
representation of a word is derived through trans-
forming the representations of its children words.

286



Wdet

priests nsubj broke prep_with work

the
comman-

dament
Sabbath

the

priestly

Max Over Time

Subtree 
Embeddings

Window 

Processing

Recursive

Neural Network

Convolutional

Neural Network

Shortest 
Path

Wdet Wdobj
Wamod

W1

Word 
Embedding

Subtree 
Embedding

Wprep-on

Wdet

the

Figure 3: Illustration of Dependency-based Neural
Networks.

During the bottom-up construction of the subtree,
each word is associated with a dependency rela-
tion such as dobj as in Figure 3. For each depen-
dency relation r, we set a transformation matrix
Wr ∈ Rdimc×(dim+dimc) which is learned during
training. Then we can get,

cw = f(
∑

q∈Children(w)

WR(w,q)
· pq + b) (1)

pq = [xq, cq] (2)

where R(w,q) denotes the dependency relation be-
tween word w and its child word q. This process
continues recursively up to the root word on the
shortest path.

3.2 Modeling Shortest Dependency Path
To classify the semantic relation between two en-
tities, we further explore the semantic representa-
tion behind their shortest dependency path, which
can be seen as a sequence of words and dependen-
cy relations as the bold-font part in Figure 2. As
the convolutional neural network (CNN) is good
at capturing the salient features from a sequence
of objects, we design a CNN to tackle the shortest
dependency path.

A CNN contains a convolution operation over
a window of object representations, followed by
a pooling operation. As we know, a word w
on the shortest path is associated with the repre-
sentation pw through modeling the subtree. For
a dependency relation r on the shortest path,
we set its representation as a vector xr ∈
Rdim. As a sliding window is applied on the

sequence, we set the window size as k. For
example, when k = 3, the sliding windows of
a shortest dependency path with n words are:
{[rs w1 r1], [r1 w2 r2], . . . , [rn−1 wn re]} where
rs and re are used to denote the beginning and
end of a shortest dependency path between two
entities.

We concatenate k neighboring words (or de-
pendency relations) representations into a new
vector. Assume Xi ∈ Rdim·k+dimc·nw as the
concatenated representation of the i-th window,
where nw is the number of words in one window.
A convolution operation involves a filter W1 ∈
Rl×(dim·k+dimc·nw), which operates on Xi to pro-
duce a new feature vector Li with l dimensions,

Li = W1Xi (3)

where the bias term is ignored for simplicity.
Then W1 is applied to each possible window

in the shortest dependency path to produce a
feature map: [L0, L1, L2, · · · ]. Next, we adop-
t the widely-used max-over-time pooling opera-
tion (Collobert et al., 2011), which can retain
the most important features, to obtain the final
representation L from the feature map. That is,
L = max(L0, L1, L2, . . . ).

3.3 Learning
Like other relation classification systems, we al-
so incorporate some lexical level features such
as named entity tags and WordNet hypernyms,
which prove useful to this task. We concatenate
them with the ADP representation L to produce
a combined vector M . We then pass M to a
fully connected softmax layer whose output is
the probability distribution y over relation labels.

M = [L, LEX] (4)

y = softmax(W2M + b2) (5)

Then, the optimization objective is to minimize
the cross-entropy error between the ground-truth
label vector and the softmax output. Pa-
rameters are learned using the back-propagation
method (Rumelhart et al., 1988).

4 Experiments

We compare DepNN against multiple baselines on
SemEval-2010 dataset (Hendrickx et al., 2010).

The training set includes 8000 sentences, and
the test set includes 2717 sentences. There are 9

287



relation types, and each type has two directions.
Instances which don’t fall in any of these classes
are labeled as Other. The official evaluation metric
is the macro-averaged F1-score (excluding Other)
and the direction is considered. We use dependen-
cy trees generated by the Stanford Parser (Klein
and Manning, 2003) with the collapsed option.

4.1 Contributions of different components
We first show the contributions from different
components of DepNN. Two different kinds of
word embeddings for initialization are used in the
experiments. One is the 50-d embeddings pro-
vided by SENNA (Collobert et al., 2011). The
second is the 200-d embeddings used in (Yu et
al., 2014), trained on Gigaword with word2vec1.
All the hyperparameters are set with 5-fold cross-
validation.

Model
F1

50-d 200-d
baseline (Path words) 73.8 75.5
+Depedency relations 80.3 81.8
+Attached subtrees 81.2 82.8
+Lexical features 82.7 83.6

Table 1: Performance of DepNN with different
components.

We start with a baseline model using a CNN
with only the words on the shortest path. We then
add dependency relations and attached subtrees.
The results indicate that both parts are effective
for relation classification. The rich linguistic in-
formation embedded in the dependency relations
and subtrees can on one hand, help distinguish dif-
ferent functions of the same word, and on the other
hand infer an unseen word’s role in the sentence.
Finally, the lexical features are added and DepNN
achieves state-of-the-art results.

4.2 Comparison with Baselines
In this subsection, we compare DepNN with sev-
eral baseline relation classification approaches.
Here, DepNN and the baselines are all based on
the 200-d embeddings trained on Gigaword due to
the larger corpus and higher dimensions.

SVM (Rink and Harabagiu, 2010): This is the
top performed system in SemEval-2010. It utilizes
many external corpora to extract features from the
sentence to build an SVM classifier.

1https://code.google.com/p/word2vec/

Model Additional Features F1

SVM
POS, PropBank, morphological

82.2WordNet, TextRunner, FrameNet
dependency parse, etc.

MV-RNN POS, NER, WordNet 81.82

CNN WordNet 82.7
FCM NER 83.0
DT-RNN NER 73.1

DepNN WordNet 83.0
NER 83.6

Table 2: Results on SemEval-2010 dataset with
Gigaword embeddings.

MV-RNN (Socher et al., 2012): This model
finds the path between the two entities in the con-
stituent parse tree and then learns the distributed
representation of its highest node with a matrix for
each word to make the compositions specific.

CNN: Zeng et al. (2014) build a convolutional
model over the tokens of a sentence to learn the
sentence level feature vector. It uses a special
position vector that indicates the relative distances
of current input word to two marked entities.

FCM (Yu et al., 2014): FCM decomposes the
sentence into substructures and extracts features
for each of them, forming substructure embed-
dings. These embeddings are combined by sum-
pooling and input into a softmax classifier.

DT-RNN (Socher et al., 2014) : This is an
RNN for modeling dependency trees. It combines
node’s word embedding with its children through
a linear combination but not a subtree embedding.
We adapt the augmented dependency path into a
dependency subtree and apply DT-RNN.

As shown in Table 2, DepNN achieves the best
result (83.6) using NER features. WordNet fea-
tures can also improve the performance of DepN-
N, but not as obvious as NER. Yu et al. (2014)
had similar observations, since the larger number
of WordNet tags may cause overfitting. SVM
achieves a comparable result, though the quality
of feature engineering highly relies on human ex-
perience and external NLP resources. MV-RNN
models the constituent parse trees with a recursive
procedure and its F1-score is about 1.8 percent
lower than DepNN. Meanwhile, MVR-NN is very
slow to train, since each word is associated with a
matrix. Both CNN and FCM use features from the
whole sentence and achieve similar performance.
DT-RNN is the worst of all baselines, though it

2MV-RNN achieves a higher F1-score (82.7) on SENNA
embeddings reported in the original paper.

288



also considers the information from shortest de-
pendency paths and attached subtrees. As we ana-
lyze, shortest dependency paths and subtrees play
different roles in relation classification. However,
we can see that DT-RNN does not distinguish the
modeling processes of shortest paths and subtrees.
This phenomenon is also seen in a kernel-based
method (Wang, 2008), where the tree kernel per-
forms worse than the shortest path kernel. We also
look into the DepNN model and find it can identify
different patterns of words and the dependency
relations. For example, in the Instrument-Agency
relation, the word “using” and the dependency re-
lation “prep with” are found playing a major role.

5 Conclusion

In this paper, we propose to classify relations
between entities by modeling the augmented de-
pendency path in a neural network framework.
We present a novel approach, DepNN, to taking
advantages of both convolutional neural network
and recursive neural network to model this struc-
ture. Experiment results demonstrate that DepNN
achieves state-of-the-art performance.

Acknowledgments

We thank all the anonymous reviewers for their
insightful comments. This work was partially sup-
ported by National Key Basic Research Program
of China (No. 2014CB340504), National Natural
Science Foundation of China (No. 61273278 and
61370117), and National Social Science Fund of
China (No: 12&ZD227). The correspondence
author of this paper is Sujian Li.

References
Nguyen Bach and Sameer Badaskar. 2007. A survey

on relation extraction. Language Technologies Insti-
tute, Carnegie Mellon University.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
A Shortest Path Dependency Kernel for Relation
Extraction. In North American Chapter of the As-
sociation for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Aron Culotta and Jeffrey S. Sorensen. 2004. De-
pendency Tree Kernels for Relation Extraction. In

Meeting of the Association for Computational Lin-
guistics, pages 423–429.

Iris Hendrickx, Zornitsa Kozareva, Preslav Nakov, Se-
bastian Pad ok, Marco Pennacchiotti, Lorenza Ro-
mano, and Stan Szpakowicz. 2010. SemEval-2010
Task 8: Multi-Way Classification of Semantic Rela-
tions Between Pairs of Nominals.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate Unlexicalized Parsing. In Meeting of the As-
sociation for Computational Linguistics, pages 423–
430.

Dat PT Nguyen, Yutaka Matsuo, and Mitsuru Ishizuka.
2007. Relation extraction from wikipedia using
subtree mining. In Proceedings of the National Con-
ference on Artificial Intelligence, volume 22, page
1414. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999.

Bryan Rink and Sanda Harabagiu. 2010. Utd: Clas-
sifying semantic relations by combining lexical and
semantic resources. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
256–259, Uppsala, Sweden, July. Association for
Computational Linguistics.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1988. Learning representations by back-
propagating errors. Cognitive modeling, 5.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
1201–1211, Jeju Island, Korea, July. Association for
Computational Linguistics.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014. Ground-
ed compositional semantics for finding and describ-
ing images with sentences. Transactions of the
Association for Computational Linguistics, 2:207–
218.

Fabian M Suchanek, Georgiana Ifrim, and Gerhard
Weikum. 2006. Combining linguistic and statistical
analysis to extract relations from web documents.
In Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pages 712–717. ACM.

Mengqiu Wang. 2008. A re-examination of dependen-
cy path kernels for relation extraction. In IJCNLP,
pages 841–846.

Mo Yu, Matthew Gormley, and Mark Dredze. 2014.
Factor-based compositional embedding models. In
NIPS Workshop on Learning Semantics.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via
convolutional deep neural network. In Proceedings

289



of COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers,
pages 2335–2344, Dublin, Ireland, August. Dublin
City University and Association for Computational
Linguistics.

290


