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Abstract

We present an efficient incremental top-
down parsing method for preordering
based on Bracketing Transduction Gram-
mar (BTG). The BTG-based preordering
framework (Neubig et al., 2012) can be
applied to any language using only par-
allel text, but has the problem of compu-
tational efficiency. Our top-down parsing
algorithm allows us to use the early up-
date technique easily for the latent vari-
able structured Perceptron algorithm with
beam search, and solves the problem.

Experimental results showed that the top-
down method is more than 10 times faster
than a method using the CYK algorithm.
A phrase-based machine translation sys-
tem with the top-down method had statis-
tically significantly higher BLEU scores
for 7 language pairs without relying on
supervised syntactic parsers, compared to
baseline systems using existing preorder-
ing methods.

1 Introduction

The difference of the word order between source
and target languages is one of major problems in
phrase-based statistical machine translation. In or-
der to cope with the issue, many approaches have
been studied. Distortion models consider word re-
ordering in decoding time using such as distance
(Koehn et al., 2003) and lexical information (Till-
man, 2004). Another direction is to use more com-
plex translation models such as hierarchical mod-
els (Chiang, 2007). However, these approaches
suffer from the long-distance reordering issue and
computational complexity.

Preordering (reordering-as-preprocessing) (Xia
and McCord, 2004; Collins et al., 2005) is another
approach for tackling the problem, which modifies

the word order of an input sentence in a source lan-
guage to have the word order in a target language
(Figure 1(a)).

Various methods for preordering have been
studied, and a method based on Bracketing Trans-
duction Grammar (BTG) was proposed by Neubig
et al. (2012). It reorders source sentences by han-
dling sentence structures as latent variables. The
method can be applied to any language using only
parallel text. However, the method has the prob-
lem of computational efficiency.

In this paper, we propose an efficient incremen-
tal top-down BTG parsing method which can be
applied to preordering. Model parameters can
be learned using latent variable Perceptron with
the early update technique (Collins and Roark,
2004), since the parsing method provides an easy
way for checking the reachability of each parser
state to valid final states. We also try to use
forced-decoding instead of word alignment based
on Expectation Maximization (EM) algorithms in
order to create better training data for preorder-
ing. In experiments, preordering using the top-
down parsing algorithm was faster and gave higher
BLEU scores than BTG-based preordering using
the CYK algorithm. Compared to existing pre-
ordering methods, our method had better or com-
parable BLEU scores without using supervised
parsers.

2 Previous Work

2.1 Preordering for Machine Translation

Many preordering methods which use syntactic
parse trees have been proposed, because syntac-
tic information is useful for determining the word
order in a target language, and it can be used to
restrict the search space against all the possible
permutations. Preordering methods using manu-
ally created rules on parse trees have been stud-
ied (Collins et al., 2005; Xu et al., 2009), but
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Figure 1: An example of preordering.

linguistic knowledge for a language pair is nec-
essary to create such rules. Preordering methods
which automatically create reordering rules or uti-
lize statistical classifiers have also been studied
(Xia and McCord, 2004; Li et al., 2007; Gen-
zel, 2010; Visweswariah et al., 2010; Yang et al.,
2012; Miceli Barone and Attardi, 2013; Lerner
and Petrov, 2013; Jehl et al., 2014). These meth-
ods rely on source-side parse trees and cannot be
applied to languages where no syntactic parsers
are available.

There are preordering methods that do not need
parse trees. They are usually trained only on auto-
matically word-aligned parallel text. It is possible
to mine parallel text from the Web (Uszkoreit et
al., 2010; Antonova and Misyurev, 2011), and the
preordering systems can be trained without man-
ually annotated language resources. Tromble and
Eisner (2009) studied preordering based on a Lin-
ear Ordering Problem by defining a pairwise pref-
erence matrix. Khalilov and Sima’an (2010) pro-
posed a method which swaps adjacent two words
using a maximum entropy model. Visweswariah
et al. (2011) regarded the preordering problem as
a Traveling Salesman Problem (TSP) and applied
TSP solvers for obtaining reordered words. These
methods do not consider sentence structures.

DeNero and Uszkoreit (2011) presented a pre-
ordering method which builds a monolingual pars-
ing model and a tree reordering model from par-
allel text. Neubig et al. (2012) proposed to train
a discriminative BTG parser for preordering di-
rectly from word-aligned parallel text by handling
underlying parse trees with latent variables. This
method is explained in detail in the next subsec-
tion. These two methods can use sentence struc-
tures for designing feature functions to score per-
mutations.

Figure 2: Bracketing transduction grammar.

2.2 BTG-based Preordering

Neubig et al. (2012) proposed a BTG-based pre-
ordering method. Bracketing Transduction Gram-
mar (BTG) (Wu, 1997) is a binary synchronous
context-free grammar with only one non-terminal
symbol, and has three types of rules (Figure 2):
Straight which keeps the order of child nodes,
Inverted which reverses the order, and Terminal
which generates a terminal symbol.1

BTG can express word reordering. For exam-
ple, the word reordering in Figure 1(a) can be rep-
resented with the BTG parse tree in Figure 1(b).2

Therefore, the task to reorder an input source sen-
tence can be solved as a BTG parsing task to find
an appropriate BTG tree.

In order to find the best BTG tree among all
the possible ones, a score function is defined. Let
Φ(m) denote the vector of feature functions for
the BTG tree node m, and Λ denote the vector of
feature weights. Then, for a given source sentence
x, the best BTG tree ẑ and the reordered sentence
x′ can be obtained as follows:

ẑ = argmax
z∈Z(x)

∑
m∈Nodes(z)

Λ · Φ(m), (1)

x′ = Proj(ẑ), (2)

where Z(x) is the set of all the possible BTG trees
for x, Nodes(z) is the set of all the nodes in the
tree z, and Proj(z) is the function which gener-
ates a reordered sentence from the BTG tree z.

The method was shown to improve transla-
tion performance. However, it has a problem of
processing speed. The CYK algorithm, whose
computational complexity is O(n3) for a sen-

1Although Terminal produces a pair of source and target
words in the original BTG (Wu, 1997), the target-side words
are ignored here because both the input and the output of pre-
ordering systems are in the source language. In (Wu, 1997),
(DeNero and Uszkoreit, 2011) and (Neubig et al., 2012), Ter-
minal can produce multiple words. Here, we produce only
one word.

2There may be more than one BTG tree which repre-
sents the same word reordering (e.g., the word reordering
C3B2A1 to A1B2C3 has two possible BTG trees), and there
are permutations which cannot be represented with BTG
(e.g., B2D4A1C3 to A1B2C3D4, which is called the 2413
pattern).
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Figure 3: Top-down BTG parsing.

(0) ⟨[[0, 5)], [], 0⟩
(1) ⟨[[0, 2), [2, 5)], [(2, S)], v1⟩
(2) ⟨[[0, 2), [3, 5)], [(2, S), (3, I)], v2⟩
(3) ⟨[[0, 2)], [(2, S), (3, I), (4, I)], v3⟩
(4) ⟨[], [(2, S), (3, I), (4, I), (1, S)], v4⟩

Table 1: Parser states in top-down parsing.

tence of length n, is used to find the best parse
tree. Furthermore, due to the use of a complex
loss function, the complexity at training time is
O(n5) (Neubig et al., 2012). Since the compu-
tational cost is prohibitive, some techniques like
cube pruning and cube growing have been applied
(Neubig et al., 2012; Na and Lee, 2013). In this
study, we propose a top-down parsing algorithm
in order to achieve fast BTG-based preordering.

3 Preordering with Incremental
Top-Down BTG Parsing

3.1 Parsing Algorithm

We explain an incremental top-down BTG parsing
algorithm using Figure 3, which illustrates how a
parse tree is built for the example sentence in Fig-
ure 1. At the beginning, a tree (span) which covers
all the words in the sentence is considered. Then,
a span which covers more than one word is split
in each step, and the node type (Straight or In-
verted) for the splitting point is determined. The
algorithm terminates after (n − 1) iterations for a
sentence with n words, because there are (n − 1)
positions which can be split.

We consider that the incremental parser has a
parser state in each step, and define the state
as a triple ⟨P, C, v⟩. P is a stack of unre-
solved spans. A span denoted by [p, q) covers
the words xp · · ·xq−1 for an input word sequence
x = x0 · · ·x|x|−1. C is a list of past parser ac-
tions. A parser action denoted by (r, o) represents
the action to split a span at the position between
xr−1 and xr with the node type o ∈ {S, I}, where
S and I indicate Straight and Inverted respectively.
v is the score of the state, which is the sum of the

Input: Sentence x, feature weights Λ, beam width k.
Output: BTG parse tree.

1: S0 ← {⟨[[0, |x|)], [], 0⟩ } // Initial state.
2: for i := 1, · · · , |x| − 1 do
3: S ← {} // Set of the next states.
4: foreach s ∈ Si−1 do
5: S ← S ∪ τx,Λ(s) // Generate next states.
6: Si ← Topk(S) // Select k-best states.
7: ŝ = argmaxs∈S|x|−1

Score(s)

8: return Tree(ŝ)

9: function τx,Λ(⟨P, C, v⟩)
10: [p, q)← P.pop()
11: S ← {}
12: for r := p + 1, · · · , q do
13: P ′ ← P
14: if r − p > 1 then
15: P ′.push([p, r))
16: if q − r > 1 then
17: P ′.push([r, q))
18: vS ← v + Λ · Φ(x, C, p, q, r, S)
19: vI ← v + Λ · Φ(x, C, p, q, r, I)
20: CS ← C; CS.append((r, S))
21: CI ← C; CI.append((r, I))
22: S ← S ∪ {⟨P ′, CS, vS⟩, ⟨P ′, CI, vI⟩}
23: return S

Figure 4: Top-down BTG parsing with beam
search.

scores for the nodes constructed so far. Parsing
starts with the initial state ⟨[[0, |x|)], [], 0⟩, because
there is one span covering all the words at the be-
ginning. In each step, a span is popped from the
top of the stack, and a splitting point in the span
and its node type are determined. The new spans
generated by the split are pushed onto the stack if
their lengths are greater than 1, and the action is
added to the list. On termination, the parser has
the final state ⟨[], [c0, · · · , c|x|−2], v⟩, because the
stack is empty and there are (|x| − 1) actions in
total. The parse tree can be obtained from the list
of actions. Table 1 shows the parser state for each
step in Figure 3.

The top-down parsing method can be used with
beam search as shown in Figure 4. τx,Λ(s) is a
function which returns the set of all the possi-
ble next states for the state s. Topk(S) returns
the top k states from S in terms of their scores,
Score(s) returns the score of the state s, and
Tree(s) returns the BTG parse tree constructed
from s. Φ(x,C, p, q, r, o) is the feature vector for
the node created by splitting the span [p, q) at r
with the node type o, and is explained in Sec-
tion 3.3.

3.2 Learning Algorithm

Model parameters Λ are estimated from training
examples. We assume that each training example
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consists of a sentence x and its word order in a
target language y = y0 · · · y|x|−1, where yi is the
position of xi in the target language. For exam-
ple, the example sentence in Figure 1(a) will have
y = 0, 1, 4, 3, 2. y can have ambiguities. Multiple
words can be reordered to the same position on
the target side. The words whose target positions
are unknown are indicated by position −1, and we
consider such words can appear at any position.3

For example, the word alignment in Figure 5 gives
the target side word positions y = −1, 2, 1, 0, 0.

Statistical syntactic parsers are usually trained
on tree-annotated corpora. However, corpora an-
notated with BTG parse trees are unavailable, and
only the gold standard permutation y is available.
Neubig et al. (2012) proposed to train BTG parsers
for preordering by regarding BTG trees behind
word reordering as latent variables, and we use
latent variable Perceptron (Sun et al., 2009) to-
gether with beam search. In latent variable Percep-
tron, among the examples whose latent variables
are compatible with a gold standard label, the one
with the highest score is picked up as a positive
example. Such an approach was used for pars-
ing with multiple correct actions (Goldberg and
Elhadad, 2010; Sartorio et al., 2013).

Figure 6 describes the training algorithm.4

Φ(x, s) is the feature vector for all the nodes in
the partial parse tree at the state s, and τx,Λ,y(s)
is the set of all the next states for the state s.
The algorithm adopts the early update technique
(Collins and Roark, 2004) which terminates incre-
mental parsing if a correct state falls off the beam,
and there is no possibility to obtain a correct out-
put. Huang et al. (2012) proposed the violation-
fixing Perceptron framework which is guaranteed
to converge even if inexact search is used, and
also showed that early update is a special case
of the framework. We define that a parser state
is valid if the state can reach a final state whose
BTG parse tree is compatible with y. Since this
is a latent variable setting in which multiple states
can reach correct final states, early update occurs
when all the valid states fall off the beam (Ma et
al., 2013; Yu et al., 2013). In order to use early up-
date, we need to check the validity of each parser

3In (Neubig et al., 2012), the positions of such words were
fixed by heuristics. In this study, the positions are not fixed,
and all the possibilities are considered by latent variables.

4Although the simple Perceptron algorithm is used for ex-
planation, we actually used the Passive Aggressive algorithm
(Crammer et al., 2006) with the parameter averaging tech-
nique (Freund and Schapire, 1999).

state. We extend the parser state to the four tu-
ple ⟨P, A, v, w⟩, where w ∈ {true, false} is the
validity of the state. We remove training exam-
ples which cannot be represented with BTG be-
forehand and set w of the initial state to true. The
function V alid(s) in Figure 6 returns the validity
of state s. One advantage of the top-down pars-
ing algorithm is that it is easy to track the validity
of each state. The validity of a state can be cal-
culated using the following property, and we can
implement the function τx,Λ,y(s) by modifying the
function τx,Λ(s) in Figure 4.

Lemma 1. When a valid state s, which has [p, q)
in the top of the stack, transitions to a state s′ by
the action (r, o), s′ is also valid if and only if the
following condition holds:

∀i ∈ {p, · · · , r − 1} yi = −1 ∨
∀i ∈ {r, · · · , q − 1} yi = −1 ∨(

o = S ∧ max
i=p,··· ,r−1

yi ̸=−1

yi ≤ min
i=r,··· ,q−1

yi ̸=−1

yi

)
∨

(
o = I ∧ max

i=r,··· ,q−1
yi ̸=−1

yi ≤ min
i=p,··· ,r−1

yi ̸=−1

yi

)
. (3)

Proof. Let πi denote the position of xi after re-
ordering by BTG parsing. If Condition (3) does
not hold, there are i and j which satisfy πi <
πj ∧ yi > yj ∧ yi ̸= −1∧ yj ̸= −1, and πi and πj

are not compatible with y. Therefore, s′ is valid
only if Condition (3) holds.

When Condition (3) holds, a valid permutation
can be obtained if the spans [p, r) and [r, q) are
BTG-parsable. They are BTG-parsable as shown
below. Let us assume that y does not have am-
biguities. The class of the permutations which
can be represented by BTG is known as separable
permutations in combinatorics. It can be proven
(Bose et al., 1998) that a permutation is a sepa-
rable permutation if and only if it contains nei-
ther the 2413 nor the 3142 patterns. Since s is
valid, y is a separable permutation. y does not con-
tain the 2413 nor the 3142 patterns, and any sub-
sequence of y also does not contain the patterns.
Thus, [p, r) and [r, q) are separable permutations.
The above argument holds even if y has ambigui-
ties (duplicated positions or unaligned words). In
such a case, we can always make a word order y′

which specializes y and has no ambiguities (e.g.,
y′ = 2, 1.0, 0.0, 0.1, 1.1 for y = −1, 1, 0, 0, 1),
because s is valid, and there is at least one BTG
parse tree which licenses y. Any subsequence in
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Figure 5: An example of word reordering with am-
biguities.

y′ is a separable permutation, and [p, r) and [r, q)
are separable permutations. Therefore, s′ is valid
if Condition (3) holds.

For dependency parsing and constituent pars-
ing, incremental bottom-up parsing methods have
been studied (Yamada and Matsumoto, 2003;
Nivre, 2004; Goldberg and Elhadad, 2010; Sagae
and Lavie, 2005). Our top-down approach is
contrastive to the bottom-up approaches. In the
bottom-up approaches, spans which cover individ-
ual words are considered at the beginning, then
they are merged into larger spans in each step, and
a span which covers all the words is obtained at
the end. In the top-down approach, a span which
covers all the words is considered at the begin-
ning, then spans are split into smaller spans in
each step, and spans which cover individual words
are obtained at the end. The top-down BTG pars-
ing method has the advantage that the validity of
parser states can be easily tracked.

The computational complexity of the top-down
parsing algorithm is O(kn2) for sentence length n
and beam width k, because in Line 5 of Figure 4,
which is repeated at most k(n − 1) times, at most
2(n − 1) parser states are generated, and their
scores are calculated. The learning algorithm uses
the same decoding algorithm as in the parsing
phase, and has the same time complexity. Note
that the validity of a parser state can be calculated
in O(1) by pre-calculating mini=p,··· ,r∧yi ̸=−1 yi,
maxi=p,··· ,r∧yi ̸=−1 yi, mini=r,··· ,q−1∧yi ̸=−1 yi,
and maxi=r,··· ,q−1∧yi ̸=−1 yi for all r for the span
[p, q) when it is popped from the stack.

3.3 Features

We assume that each word xi in a sentence has
three attributes: word surface form xw

i , part-of-
speech (POS) tag xp

i and word class xc
i (Sec-

tion 4.1 explains how xp
i and xc

i are obtained).
Table 2 lists the features generated for the node

which is created by splitting the span [p, q) with
the action (r, o). o’ is the node type of the par-
ent node, d ∈ {left, right} indicates whether this
node is the left-hand-side or the right-hand-side
child of the parent node, and Balance(p, q, r) re-

Input: Training data {⟨xl, yl⟩}L−1
l=0 ,

number of iterations T , beam width k.
Output: Feature weights Λ.

1: Λ← 0
2: for t := 0, · · · , T − 1 do
3: for l := 0, · · · , L− 1 do
4: S0 ← {⟨[[0, |xl|)], [], 0, true⟩}
5: for i := 1, · · · , |xl| − 1 do
6: S ← {}
7: foreach s ∈ Si−1 do
8: S ← S ∪ τxl,Λ,yl(s)
9: Si ← Topk(S)

10: ŝ ← argmaxs∈S Score(s)
11: s∗ ← argmaxs∈S∧V alid(s) Score(s)

12: if s∗ /∈ Si then
13: break // Early update.
14: if ŝ ̸= s∗ then
15: Λ← Λ + Φ(xl, s∗)− Φ(xl, ŝ)
16: return Λ

Figure 6: A training algorithm for latent variable
Perceptron with beam search.

turns a value among {‘<’, ‘=’, ‘>’} according to
the relation of the lengths of [p, r) and [r, q). The
baseline feature templates are those used by Neu-
big et al. (2012), and the additional feature tem-
plates are extended features that we introduce in
this study. The top-down parser is fast, and allows
us to use a larger number of features.

In order to make the feature generation efficient,
the attributes of all the words are converted to their
64-bit hash values beforehand, and concatenating
the attributes is executed not as string manipula-
tion but as faster integer calculation to generate a
hash value by merging two hash values. The hash
values are used as feature names. Therefore, when
accessing feature weights stored in a hash table
using the feature names as keys, the keys can be
used as their hash values. This technique is differ-
ent from the hashing trick (Ganchev and Dredze,
2008) which directly uses hash values as indices,
and no noticeable differences in accuracy were ob-
served by using this technique.

3.4 Training Data for Preordering

As described in Section 3.2, each training example
has y which represents correct word positions after
reordering. However, only word alignment data is
generally available, and we need to convert it to
y. Let Ai denote the set of indices of the target-
side words which are aligned to the source-side
word xi. We define an order relation between two
words:

xi ≤ xj ⇔ ∀a ∈ Ai \Aj , ∀b ∈ Aj a ≤ b ∧
∀a ∈ Ai, ∀b ∈ Aj \Ai a ≤ b. (4)
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Baseline Feature Template
o(q − p), oBalance(p, q, r),
oxw

p−1, ox
w
p , oxw

r−1, ox
w
r , oxw

q−1, ox
w
q , oxw

p xw
q−1, ox

w
r−1x

w
r ,

oxp
p−1, ox

p
p, oxp

r−1, ox
p
r , oxp

q−1, ox
p
q , oxp

pxp
q−1, ox

p
r−1x

p
r ,

oxc
p−1, ox

c
p, oxc

r−1, ox
c
r, ox

c
q−1, ox

c
q, ox

c
pxc

q−1, ox
c
r−1x

c
r.

Additional Feature Template
o min(r − p, 5)min(q − r, 5), oo′, oo′d,
oxw

p−1x
w
p , oxw

p xw
r−1, ox

w
p xw

r , oxw
r−1x

w
q−1, ox

w
r xw

q−1, ox
w
q−1x

w
q ,

oxw
r−2x

w
r−1x

w
r , oxw

p xw
r−1x

w
r , oxw

r−1x
w
r xw

q−1, ox
w
r−1x

w
r xw

r+1,
oxw

p xw
r−1x

w
r xw

q−1,
oo′dxw

p , oo′dxw
r−1, oo

′dxw
r , oo′dxw

q−1, oo
′dxw

p xw
q−1,

oxp
p−1x

p
p, oxp

pxp
r−1, ox

p
pxp

r , oxp
r−1x

p
q−1, ox

p
rxp

q−1, ox
p
q−1x

p
q ,

oxp
r−2x

p
r−1x

p
r , oxp

pxp
r−1x

p
r , oxp

r−1x
p
rxp

q−1, ox
p
r−1x

p
rxp

r+1,
oxp

pxp
r−1x

p
rxp

q−1,
oo′dxp

p, oo′dxp
r−1, oo

′dxp
r , oo′dxp

q−1, oo
′dxp

pxp
q−1,

oxc
p−1x

c
p, oxc

pxc
r−1, ox

c
pxc

r, ox
c
r−1x

c
q−1, ox

c
rx

c
q−1, ox

c
q−1x

c
q,

oxc
r−2x

c
r−1x

c
r, ox

c
pxc

r−1x
c
r, ox

c
r−1x

c
rx

c
q−1, ox

c
r−1x

c
rx

c
r+1,

oxc
pxc

r−1x
c
rx

c
q−1,

oo′dxc
p, oo′dxc

r−1, oo
′dxc

r, oo
′dxc

q−1, oo
′dxc

pxc
q−1.

Table 2: Feature templates.

Then, we sort x using the order relation and as-
sign the position of xi in the sorted result to yi.
If there are two words xi and xj in x which sat-
isfy neither xi ≤ xj nor xj ≤ xi (that is, x does
not make a totally ordered set with the order rela-
tion), then x cannot be sorted, and the example is
removed from the training data. −1 is assigned to
the words which do not have aligned target words.
Two words xi and xj are regarded to have the same
position if xi ≤ xj and xj ≤ xi.

The quality of training data is important to
make accurate preordering systems, but automat-
ically word-aligned data by EM algorithms tend
to have many wrong alignments. We use forced-
decoding in order to make training data for pre-
ordering. Given a parallel sentence pair and a
phrase table, forced-decoding tries to translate the
source sentence to the target sentence, and pro-
duces phrase alignments. We train the parameters
for forced-decoding using the same parallel data
used for training the final translation system. In-
frequent phrase translations are pruned when the
phrase table is created, and forced-decoding does
not always succeed for the parallel sentences in the
training data. Forced-decoding tends to succeed
for shorter sentences, and the phrase-alignment
data obtained by forced-decoding is biased to con-
tain more shorter sentences. Therefore, we apply
the following processing for the output of forced-
decoding to make training data for preordering:

1. Remove sentences which contain less than 3
or more than 50 words.

2. Remove sentences which contain less than 3
phrase alignments.

3. Remove sentences if they contain word 5-
grams which appear in other sentences in or-
der to drop boilerplates.

4. Lastly, randomly resample sentences from
the pool of filtered sentences to make the
distribution of the sentence lengths follow a
normal distribution with the mean of 20 and
the standard deviation of 8. The parame-
ters were determined from randomly sampled
sentences from the Web.

4 Experiments

4.1 Experimental Settings

We conduct experiments for 12 language pairs:
Dutch (nl)-English (en), en-nl, en-French (fr), en-
Japanese (ja), en-Spanish (es), fr-en, Hindi (hi)-en,
ja-en, Korean (ko)-en, Turkish (tr)-en, Urdu (ur)-
en and Welsh (cy)-en.

We use a phrase-based statistical machine trans-
lation system which is similar to (Och and Ney,
2004). The decoder adopts the regular distance
distortion model, and also incorporates a maxi-
mum entropy based lexicalized phrase reordering
model (Zens and Ney, 2006). The distortion limit
is set to 5 words. Word alignments are learned
using 3 iterations of IBM Model-1 (Brown et al.,
1993) and 3 iterations of the HMM alignment
model (Vogel et al., 1996). Lattice-based mini-
mum error rate training (MERT) (Macherey et al.,
2008) is applied to optimize feature weights. 5-
gram language models trained on sentences col-
lected from various sources are used.

The translation system is trained with parallel
sentences automatically collected from the Web.
The parallel data for each language pair consists
of around 400 million source and target words. In
order to make the development data for MERT and
test data (3,000 and 5,000 sentences respectively
for each language), we created parallel sentences
by randomly collecting English sentences from the
Web, and translating them by humans into each
language.

As an evaluation metric for translation quality,
BLEU (Papineni et al., 2002) is used. As intrin-
sic evaluation metrics for preordering, Fuzzy Re-
ordering Score (FRS) (Talbot et al., 2011) and
Kendall’s τ (Kendall, 1938; Birch et al., 2010;
Isozaki et al., 2010) are used. Let ρi denote the po-
sition in the input sentence of the (i+1)-th token in
a preordered word sequence excluding unaligned
words in the gold-standard evaluation data. For
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en-ja ja-en
Training Preordering FRS τ Training Preordering FRS τ
(min.) (sent./sec.) (min.) (sent./sec.)

Top-Down (EM-100k) 63 87.8 77.83 87.78 81 178.4 74.60 83.78
Top-Down (Basic Feat.) (EM-100k) 9 475.1 75.25 87.26 9 939.0 73.56 83.66
Lader (EM-100k) 1562 4.3 75.41 86.85 2087 12.3 74.89 82.15

Table 3: Speed and accuracy of preordering.

en-ja ja-en
FRS τ BLEU FRS τ BLEU

Top-Down (Manual-8k) 81.57 90.44 18.13 79.26 86.47 14.26
(EM-10k) 74.79 85.87 17.07 72.51 82.65 14.55

(EM-100k) 77.83 87.78 17.66 74.60 83.78 14.84
(Forced-10k) 76.10 87.45 16.98 75.36 83.96 14.78

(Forced-100k) 78.76 89.22 17.88 76.58 85.25 15.54
Lader (EM-100k) 75.41 86.85 17.40 74.89 82.15 14.59
No-Preordering 46.17 65.07 13.80 59.35 65.30 10.31
Manual-Rules 80.59 90.30 18.68 73.65 81.72 14.02
Auto-Rules 64.13 84.17 16.80 60.60 75.49 12.59
Classifier 80.89 90.61 18.53 74.24 82.83 13.90

Table 4: Performance of preordering for various training data. Bold BLEU scores indicate no statistically
significant difference at p < 0.05 from the best system (Koehn, 2004).

example, the preordering result “New York I to
went” for the gold-standard data in Figure 5 has
ρ = 3, 4, 2, 1. Then FRS and τ are calculated as
follows:

FRS =
B

|ρ|+ 1
, (5)

B =
|ρ|−2∑
i=0

δ(yρi=yρi+1 ∨ yρi+1=yρi+1) +

δ(yρ0=0) + δ(yρ|ρ|−1
= max

i
yi), (6)

τ =

∑|ρ|−2
i=0

∑|ρ|−1
j=i+1 δ(yρi ≤ yρj )

1
2 |ρ|(|ρ| − 1)

, (7)

where δ(X) is the Kronecker’s delta function
which returns 1 if X is true or 0 otherwise. These
scores are calculated for each sentence, and are av-
eraged over all sentences in test data. As above,
FRS can be calculated as the precision of word bi-
grams (B is the number of the word bigrams which
exist both in the system output and the gold stan-
dard data). This formulation is equivalent to the
original formulation based on chunk fragmenta-
tion by Talbot et al. (2011). Equation (6) takes
into account the positions of the beginning and the
ending words (Neubig et al., 2012). Kendall’s τ is
equivalent to the (normalized) crossing alignment
link score used by Genzel (2010).

We prepared three types of training data for
learning model parameters of BTG-based pre-
ordering:

Manual-8k Manually word-aligned 8,000 sen-

tence pairs.
EM-10k, EM-100k These are the data obtained

with the EM-based word alignment learn-
ing. From the word alignment result
for phrase translation extraction described
above, 10,000 and 100,000 sentence pairs
were randomly sampled. Before the sam-
pling, the data filtering procedure 1 and 3
in Section 3.4 were applied, and also sen-
tences were removed if more than half of
source words do not have aligned target
words. Word alignment was obtained by
symmetrizing source-to-target and target-to-
source word alignment with the INTERSEC-
TION heuristic.5

Forced-10k, Forced-100k These are 10,000 and
100,000 word-aligned sentence pairs ob-
tained with forced-decoding as described in
Section 3.4.

As test data for intrinsic evaluation of preordering,
we manually word-aligned 2,000 sentence pairs
for en-ja and ja-en.

Several preordering systems were prepared in
order to compare the following six systems:

No-Preordering This is a system without pre-
ordering.

Manual-Rules This system uses the preordering
method based on manually created rules (Xu

5In our preliminary experiments, the UNION and GROW-
DIAG-FINAL heuristics were also applied to generate the
training data for preordering, but INTERSECTION per-
formed the best.
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No- Manual- Auto- Classifier Lader Top-Down Top-Down
Preordering Rules Rules (EM-100k) (EM-100k) (Forced-100k)

nl-en 34.01 - 34.24 35.42 33.83 35.49 35.51
en-nl 25.33 - 25.59 25.99 25.30 25.82 25.66
en-fr 25.86 - 26.39 26.35 26.50 26.75 26.81
en-ja 13.80 18.68 16.80 18.53 17.40 17.66 17.88
en-es 29.50 - 29.63 30.09 29.70 30.26 30.24
fr-en 32.33 - 32.09 32.28 32.43 33.00 32.99
hi-en 19.86 - - - 24.24 24.98 24.97
ja-en 10.31 14.02 12.59 13.90 14.59 14.84 15.54
ko-en 14.13 - 15.86 19.46 18.65 19.67 19.88
tr-en 18.26 - - - 22.80 23.91 24.18
ur-en 14.48 - - - 16.62 17.65 18.32
cy-en 41.68 - - - 41.79 41.95 41.86

Table 5: BLEU score comparison.

Distortion No- Manual- Auto- Classifier Lader Top-Down Top-Down
Limit Preordering Rules Rules (EM-100k) (EM-100k) (Forced-100k)

en-ja 5 13.80 18.68 16.80 18.53 17.40 17.66 17.88
en-ja 0 11.99 18.34 16.87 18.31 16.95 17.36 17.88
ja-en 5 10.31 14.02 12.59 13.90 14.59 14.84 15.54
ja-en 0 10.03 12.43 11.33 13.09 14.38 14.72 15.34

Table 6: BLEU scores for different distortion limits.

et al., 2009). We made 43 precedence rules
for en-ja, and 24 for ja-en.

Auto-Rules This system uses the rule-based pre-
ordering method which automatically learns
the rules from word-aligned data using the
Variant 1 learning algorithm described in
(Genzel, 2010). 27 to 36 rules were automat-
ically learned for each language pair.

Classifier This system uses the preordering
method based on statistical classifiers (Lerner
and Petrov, 2013), and the 2-step algorithm
was implemented.

Lader This system uses Latent Derivation Re-
orderer (Neubig et al., 2012), which is a
BTG-based preordering system using the
CYK algorithm.6 The basic feature templates
in Table 2 are used as features.

Top-Down This system uses the preordering sys-
tem described in Section 3.

Among the six systems, Manual-Rules, Auto-
Rules and Classifier need dependency parsers for
source languages. A dependency parser based
on the shift-reduce algorithm with beam search
(Zhang and Nivre, 2011) is used. The dependency
parser and all the preordering systems need POS
taggers. A supervised POS tagger based on condi-
tional random fields (Lafferty et al., 2001) trained
with manually POS annotated data is used for nl,
en, fr, ja and ko. For other languages, we use a
POS tagger based on POS projection (Täckström

6lader 0.1.4. http://www.phontron.com/lader/

et al., 2013) which does not need POS annotated
data. Word classes in Table 2 are obtained by us-
ing Brown clusters (Koo et al., 2008) (the number
of classes is set to 256). For both Lader and Top-
Down, the beam width is set to 20, and the number
of training iterations of online learning is set to 20.

The CPU time shown in this paper is measured
using Intel Xeon 3.20GHz with 32GB RAM.

4.2 Results

4.2.1 Training and Preordering Speed
Table 3 shows the training time and preordering
speed together with the intrinsic evaluation met-
rics. In this experiment, both Top-Down and Lader
were trained using the EM-100k data. Compared
to Lader, Top-Down was faster: more than 20
times in training, and more than 10 times in pre-
ordering. Top-down had higher preordering ac-
curacy in FRS and τ for en-ja. Although Lader
uses sophisticated loss functions, Top-Down uses
a larger number of features.

Top-Down (Basic feats.) is the top-down
method using only the basic feature templates in
Table 2. It was much faster but less accurate
than Top-Down using the additional features. Top-
Down (Basic feats.) and Lader use exactly the
same features. However, there are differences in
the two systems, and they had different accuracies.
Top-Down uses the beam search-based top-down
method for parsing and the Passive-Aggressive al-
gorithm for parameter estimation, and Lader uses
the CYK algorithm with cube pruning and an on-
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line SVM algorithm. Especially, Lader optimizes
FRS in the default setting, and it may be the reason
that Lader had higher FRS.

4.2.2 Performance of Preordering for
Various Training Data

Table 4 shows the preordering accuracy and BLEU
scores when Top-Down was trained with various
data. The best BLEU score for Top-Down was ob-
tained by using manually annotated data for en-
ja and 100k forced-decoding data for ja-en. The
performance was improved by increasing the data
size.

4.2.3 End-to-End Evaluation for Various
Language Pairs

Table 5 shows the BLEU score of each system for
12 language pairs. Some blank fields mean that
the results are unavailable due to the lack of rules
or dependency parsers. For all the language pairs,
Top-Down had higher BLEU scores than Lader.
For ja-en and ur-en, using Forced-100k instead
of EM-100k for Top-Down improved the BLEU
scores by more than 0.6, but it did not always im-
proved.

Manual-Rules performed the best for en-ja, but
it needs manually created rules and is difficult
to be applied to many language pairs. Auto-
Rules and Classifier had higher scores than No-
Preordering except for fr-en, but cannot be applied
to the languages with no available dependency
parsers. Top-Down (Forced-100k) can be applied
to any language, and had statistically significantly
better BLEU scores than No-Preordering, Manual-
Rules, Auto-Rules, Classifier and Lader for 7 lan-
guage pairs (en-fr, fr-en, hi-en, ja-en, ko-en, tr-en
and ur-en), and similar performance for other lan-
guage pairs except for en-ja, without dependency
parsers trained with manually annotated data.

In all the experiments so far, the decoder was
allowed to reorder even after preordering was car-
ried out. In order to see the performance without
reordering after preordering, we conducted exper-
iments by setting the distortion limit to 0. Table 6
shows the results. The effect of the distortion lim-
its varies for language pairs and preordering meth-
ods. The BLEU scores of Top-Down were not af-
fected largely even when relying only on preorder-
ing.

5 Conclusion

In this paper, we proposed a top-down BTG pars-
ing method for preordering. The method in-
crementally builds parse trees by splitting larger
spans into smaller ones. The method provides an
easy way to check the validity of each parser state,
which allows us to use early update for latent vari-
able Perceptron with beam search. In the exper-
iments, it was shown that the top-down parsing
method is more than 10 times faster than a CYK-
based method. The top-down method had better
BLEU scores for 7 language pairs without relying
on supervised syntactic parsers compared to other
preordering methods. Future work includes devel-
oping a bottom-up BTG parser with latent vari-
ables, and comparing the results to the top-down
parser.
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