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Abstract

We study question answering as a ma-
chine learning problem, and induce a func-
tion that maps open-domain questions to
queries over a database of web extrac-
tions. Given a large, community-authored,
question-paraphrase corpus, we demon-
strate that it is possible to learn a se-
mantic lexicon and linear ranking func-
tion without manually annotating ques-
tions. Our approach automatically gener-
alizes a seed lexicon and includes a scal-
able, parallelized perceptron parameter es-
timation scheme. Experiments show that
our approach more than quadruples the re-
call of the seed lexicon, with only an 8%
loss in precision.

1 Introduction

Open-domain question answering (QA) is a long-
standing, unsolved problem. The central challenge
is to automate every step of QA system construc-
tion, including gathering large databases and an-
swering questions against these databases. While
there has been significant work on large-scale in-
formation extraction (IE) from unstructured text
(Banko et al., 2007; Hoffmann et al., 2010; Riedel
et al., 2010), the problem of answering questions
with the noisy knowledge bases that IE systems
produce has received less attention. In this paper,
we present an approach for learning to map ques-
tions to formal queries over a large, open-domain
database of extracted facts (Fader et al., 2011).

Our system learns from a large, noisy, question-
paraphrase corpus, where question clusters have
a common but unknown query, and can span
a diverse set of topics. Table 1 shows exam-
ple paraphrase clusters for a set of factual ques-
tions. Such data provides strong signal for learn-
ing about lexical variation, but there are a number

Who wrote the Winnie the Pooh books?
Who is the author of winnie the pooh?
What was the name of the authur of winnie the pooh?
Who wrote the series of books for Winnie the poo?
Who wrote the children’s storybook ‘Winnie the Pooh’?
Who is poohs creator?
What relieves a hangover?
What is the best cure for a hangover?
The best way to recover from a hangover?
Best remedy for a hangover?
What takes away a hangover?
How do you lose a hangover?
What helps hangover symptoms?
What are social networking sites used for?
Why do people use social networking sites worldwide?
Advantages of using social network sites?
Why do people use social networks a lot?
Why do people communicate on social networking sites?
What are the pros and cons of social networking sites?
How do you say Santa Claus in Sweden?
Say santa clause in sweden?
How do you say santa clause in swedish?
How do they say santa in Sweden?
In Sweden what is santa called?
Who is sweden santa?

Table 1: Examples of paraphrase clusters from the
WikiAnswers corpus. Within each cluster, there is
a wide range of syntactic and lexical variations.

of challenges. Given that the data is community-
authored, it will inevitably be incomplete, contain
incorrectly tagged paraphrases, non-factual ques-
tions, and other sources of noise.

Our core contribution is a new learning ap-
proach that scalably sifts through this para-
phrase noise, learning to answer a broad class
of factual questions. We focus on answer-
ing open-domain questions that can be answered
with single-relation queries, e.g. all of the para-
phrases of “Who wrote Winnie the Pooh?” and
“What cures a hangover?” in Table 1. The
algorithm answers such questions by mapping
them to executable queries over a tuple store
containing relations such as authored(milne,

winnie-the-pooh) and treat(bloody-mary,

hangover-symptoms).
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The approach automatically induces lexical
structures, which are combined to build queries for
unseen questions. It learns lexical equivalences for
relations (e.g., wrote, authored, and creator), en-
tities (e.g., Winnie the Pooh or Pooh Bear), and
question templates (e.g., Who r the e books? and
Who is the r of e?). Crucially, the approach
does not require any explicit labeling of the ques-
tions in our paraphrase corpus. Instead, we use
16 seed question templates and string-matching to
find high-quality queries for a small subset of the
questions. The algorithm uses learned word align-
ments to aggressively generalize the seeds, pro-
ducing a large set of possible lexical equivalences.
We then learn a linear ranking model to filter the
learned lexical equivalences, keeping only those
that are likely to answer questions well in practice.

Experimental results on 18 million paraphrase
pairs gathered from WikiAnswers1 demonstrate
the effectiveness of the overall approach. We
performed an end-to-end evaluation against a
database of 15 million facts automatically ex-
tracted from general web text (Fader et al., 2011).
On known-answerable questions, the approach
achieved 42% recall, with 77% precision, more
than quadrupling the recall over a baseline system.

In sum, we make the following contributions:

• We introduce PARALEX, an end-to-end open-
domain question answering system.

• We describe scalable learning algorithms that
induce general question templates and lexical
variants of entities and relations. These algo-
rithms require no manual annotation and can
be applied to large, noisy databases of rela-
tional triples.

• We evaluate PARALEX on the end-task of an-
swering questions from WikiAnswers using a
database of web extractions, and show that it
outperforms baseline systems.

• We release our learned lexicon and
question-paraphrase dataset to the
research community, available at
http://openie.cs.washington.edu.

2 Related Work

Our work builds upon two major threads of re-
search in natural language processing: informa-
tion extraction (IE), and natural language inter-
faces to databases (NLIDB).

1http://wiki.answers.com/

Research in IE has been moving towards the
goal of extracting facts from large text corpora,
across many domains, with minimal supervision
(Mintz et al., 2009; Hoffmann et al., 2010; Riedel
et al., 2010; Hoffmann et al., 2011; Banko et al.,
2007; Yao et al., 2012). While much progress
has been made in converting text into structured
knowledge, there has been little work on an-
swering natural language questions over these
databases. There has been some work on QA over
web text (Kwok et al., 2001; Brill et al., 2002), but
these systems do not operate over extracted rela-
tional data.

The NLIDB problem has been studied for
decades (Grosz et al., 1987; Katz, 1997). More
recently, researchers have created systems that
use machine learning techniques to automatically
construct question answering systems from data
(Zelle and Mooney, 1996; Popescu et al., 2004;
Zettlemoyer and Collins, 2005; Clarke et al., 2010;
Liang et al., 2011). These systems have the abil-
ity to handle questions with complex semantics
on small domain-specific databases like GeoQuery
(Tang and Mooney, 2001) or subsets of Freebase
(Cai and Yates, 2013), but have yet to scale to the
task of general, open-domain question answering.
In contrast, our system answers questions with
more limited semantics, but does so at a very large
scale in an open-domain manner. Some work has
been made towards more general databases like
DBpedia (Yahya et al., 2012; Unger et al., 2012),
but these systems rely on hand-written templates
for question interpretation.

The learning algorithms presented in this pa-
per are similar to algorithms used for paraphrase
extraction from sentence-aligned corpora (Barzi-
lay and McKeown, 2001; Barzilay and Lee, 2003;
Quirk et al., 2004; Bannard and Callison-Burch,
2005; Callison-Burch, 2008; Marton et al., 2009).
However, we use a paraphrase corpus for extract-
ing lexical items relating natural language patterns
to database concepts, as opposed to relationships
between pairs of natural language utterances.

3 Overview of the Approach

In this section, we give a high-level overview of
the rest of the paper.

Problem Our goal is to learn a function that will
map a natural language question x to a query z
over a database D. The database D is a collection
of assertions in the form r(e1, e2) where r is a bi-
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nary relation from a vocabulary R, and e1 and e2
are entities from a vocabulary E. We assume that
the elements of R and E are human-interpretable
strings like population or new-york. In our
experiments, R and E contain millions of en-
tries representing ambiguous and overlapping con-
cepts. The database is equipped with a simple in-
terface that accepts queries in the form r(?, e2) or
r(e1, ?). When executed, these queries return all
entities e that satisfy the given relationship. Thus,
our task is to find the query z that best captures the
semantics of the question x.

Model The question answering model includes a
lexicon and a linear ranking function. The lexicon
L associates natural language patterns to database
concepts, thereby defining the space of queries
that can be derived from the input question (see
Table 2). Lexical entries can pair strings with
database entities (nyc and new-york), strings with
database relations (big and population), or ques-
tion patterns with templated database queries (how
r is e? and r(?,e)). We describe this model in
more detail in Section 4.

Learning The learning algorithm induces a lex-
icon L and estimates the parameters θ of the
linear ranking function. We learn L by boot-
strapping from an initial seed lexicon L0 over a
corpus of question paraphrases C = {(x, x′) :
x′ is a paraphrase of x}, like the examples in Ta-
ble 1. We estimate θ by using the initial lexicon to
automatically label queries in the paraphrase cor-
pus, as described in Section 5.2. The final result
is a scalable learning algorithm that requires no
manual annotation of questions.

Evaluation In Section 8, we evaluate our system
against various baselines on the end-task of ques-
tion answering against a large database of facts
extracted from the web. We use held-out known-
answerable questions from WikiAnswers as a test
set.

4 Question Answering Model

To answer questions, we must find the best query
for a given natural language question.

4.1 Lexicon and Derivations

To define the space of possible queries, PARALEX

uses a lexicon L that encodes mappings from nat-
ural language to database concepts (entities, rela-
tions, and queries). Each entry in L is a pair (p, d)

Entry Type NL Pattern DB Concept
Entity nyc new-york

Relation big population

Question (1-Arg.) how big is e population(?, e)

Question (2-Arg.) how r is e r(?, e)

Table 2: Example lexical entries.

where p is a pattern and d is an associated database
concept. Table 2 gives examples of the entry types
in L: entity, relation, and question patterns.

Entity patterns match a contiguous string of
words and are associated with some database en-
tity e ∈ E.

Relation patterns match a contiguous string of
words and are associated with a relation r ∈ R and
an argument ordering (e.g. the string child could
be modeled as either parent-of or child-of with
opposite argument ordering).

Question patterns match an entire question
string, with gaps that recursively match an en-
tity or relation patterns. Question patterns are as-
sociated with a templated database query, where
the values of the variables are determined by the
matched entity and relation patterns. A question
pattern may be 1-Argument, with a variable for
an entity pattern, or 2-Argument, with variables
for an entity pattern and a relation pattern. A 2-
argument question pattern may also invert the ar-
gument order of the matched relation pattern, e.g.
who r e? may have the opposite argument order
of who did e r?

The lexicon is used to generate a derivation y
from an input question x to a database query z.
For example, the entries in Table 2 can be used
to make the following derivation from the ques-
tion How big is nyc? to the query population(?,

new-york):

This derivation proceeds in two steps: first match-
ing a question form like How r is e? and then
mapping big to population and nyc to new-york.
Factoring the derivation this way allows the lexi-
cal entries for big and nyc to be reused in semanti-
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cally equivalent variants like nyc how big is it? or
approximately how big is nyc? This factorization
helps the system generalize to novel questions that
do not appear in the training set.

We model a derivation as a set of (pi, di) pairs,
where each pi matches a substring of x, the sub-
strings cover all words in x, and the database con-
cepts di compose to form z. Derivations are rooted
at either a 1-argument or 2-argument question en-
try and have entity or relation entries as leaves.

4.2 Linear Ranking Function
In general, multiple queries may be derived from a
single input question x using a lexicon L. Many of
these derivations may be incorrect due to noise in
L. Given a question x, we consider all derivations
y and score them with θ ·φ(x, y), where φ(x, y) is
a n-dimensional feature representation and θ is a
n-dimensional parameter vector. Let GEN(x;L)
be the set of all derivations y that can be generated
from x using L. The best derivation y∗(x) accord-
ing to the model (θ, L) is given by:

y∗(x) = argmax
y∈GEN(x;L)

θ · φ(x, y)

The best query z∗(x) can be computed directly
from the derivation y∗(x).

Computing the set GEN(x;L) involves finding
all 1-Argument and 2-Argument question patterns
that match x, and then enumerating all possible
database concepts that match entity and relation
strings. When the database and lexicon are large,
this becomes intractable. We prune GEN(x;L)
using the model parameters θ by only considering
the N -best question patterns that match x, before
additionally enumerating any relations or entities.

For the end-to-end QA task, we return a ranked
list of answers from the k highest scoring queries.
We score an answer a with the highest score of all
derivations that generate a query with answer a.

5 Learning

PARALEX uses a two-part learning algorithm; it
first induces an overly general lexicon (Section
5.1) and then learns to score derivations to increase
accuracy (Section 5.2). Both algorithms rely on an
initial seed lexicon, which we describe in Section
7.4.

5.1 Lexical Learning
The lexical learning algorithm constructs a lexi-
con L from a corpus of question paraphrases C =

{(x, x′) : x′ is a paraphrase of x}, where we as-
sume that all paraphrased questions (x, x′) can be
answered with a single, initially unknown, query
(Table 1 shows example paraphrases). This as-
sumption allows the algorithm to generalize from
the initial seed lexicon L0, greatly increasing the
lexical coverage.

As an example, consider the paraphrase pair x
= What is the population of New York? and x′ =
How big is NYC? Suppose x can be mapped to a
query under L0 using the following derivation y:

what is the r of e = r(?, e)

population = population

new york = new-york

We can induce new lexical items by aligning the
patterns used in y to substrings in x′. For example,
suppose we know that the words in (x, x′) align in
the following way:

Using this information, we can hypothesize that
how r is e, big, and nyc should have the same in-
terpretations as what is the r of e, population, and
new york, respectively, and create the new entries:

how r is e = r(?, e)

big = population

nyc = new-york

We call this procedure InduceLex(x, x′, y, A),
which takes a paraphrase pair (x, x′), a derivation
y of x, and a word alignment A, and returns a new
set of lexical entries. Before formally describing
InduceLex we need to introduce some definitions.

Let n and n′ be the number of words in x and
x′. Let [k] denote the set of integers {1, . . . , k}.
A word alignment A between x and x′ is a subset
of [n] × [n′]. A phrase alignment is a pair of in-
dex sets (I, I ′) where I ⊆ [n] and I ′ ⊆ [n′]. A
phrase alignment (I, I ′) is consistent with a word
alignment A if for all (i, i′) ∈ A, i ∈ I if and only
if i′ ∈ I ′. In other words, a phrase alignment is
consistent with a word alignment if the words in
the phrases are aligned only with each other, and
not with any outside words.

We will now define InduceLex(x, x′, y, A) for
the case where the derivation y consists of a 2-
argument question entry (pq, dq), a relation entry
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function LEARNLEXICON

Inputs:
- A corpus C of paraphrases (x, x′). (Table 1)
- An initial lexicon L0 of (pattern, concept) pairs.
- A word alignment function WordAlign(x, x′).

(Section 6)
- Initial parameters θ0.
- A function GEN(x;L) that derives queries from

a question x using lexicon L. (Section 4)
- A function InduceLex(x, x′, y, A) that induces

new lexical items from the paraphrases (x, x′) us-
ing their word alignment A and a derivation y of
x. (Section 5.1)

Output: A learned lexicon L.

L = {}
for all x, x′ ∈ C do

if GEN(x;L0) is not empty then
A←WordAlign(x, x′)
y∗ ← argmaxy∈GEN(x;L0)

θ0 · φ(x, y)
L← L ∪ InduceLex(x, x′, y∗, A)

return L

Figure 1: Our lexicon learning algorithm.

(pr, dr), and an entity entry (pe, de), as shown in
the example above.2 InduceLex returns the set of
all triples (p′q, dq), (p

′
r, dr), (p

′
e, de) such that for

all p′q, p
′
r, p
′
e such that

1. p′q, p
′
r, p
′
e are a partition of the words in x′.

2. The phrase pairs (pq, p
′
q), (pr, p

′
r), (pe, p

′
e)

are consistent with the word alignment A.

3. The p′r and p′e are contiguous spans of words
in x′.

Figure 1 shows the complete lexical learning al-
gorithm. In practice, for a given paraphrase pair
(x, x′) and alignment A, InduceLex will gener-
ate multiple sets of new lexical entries, resulting
in a lexicon with millions of entries. We use an
existing statistical word alignment algorithm for
WordAlign (see Section 6). In the next section,
we will introduce a scalable approach for learning
to score derivations to filter out lexical items that
generalize poorly.

5.2 Parameter Learning

Parameter learning is necessary for filtering out
derivations that use incorrect lexical entries like
new mexico = mexico, which arise from noise in
the paraphrases and noise in the word alignment.

2InduceLex has similar behavior for the other type of
derivation, which consists of a 1-argument question entry
(pq, dq) and an entity (pe, de).

We use the hidden variable structured perceptron
algorithm to learn θ from a list of (question x,
query z) training examples. We adopt the itera-
tive parameter mixing variation of the perceptron
(McDonald et al., 2010) to scale to a large number
of training examples.

Figure 2 shows the parameter learning algo-
rithm. The parameter learning algorithm operates
in two stages. First, we use the initial lexicon
L0 to automatically generate (question x, query z)
training examples from the paraphrase corpus C.
Then we feed the training examples into the learn-
ing algorithm, which estimates parameters for the
learned lexicon L.

Because the number of training examples is
large, we adopt a parallel perceptron approach.
We first randomly partition the training data T
into K equally-sized subsets T1, . . . , TK . We then
perform perceptron learning on each partition in
parallel. Finally, the learned weights from each
parallel run are aggregated by taking a uniformly
weighted average of each partition’s parameter
vector. This procedure is repeated for T iterations.

The training data consists of (question x, query
z) pairs, but our scoring model is over (question
x, derivation y) pairs, which are unobserved in
the training data. We use a hidden variable ver-
sion of the perceptron algorithm (Collins, 2002),
where the model parameters are updated using the
highest scoring derivation y∗ that will generate the
correct query z using the learned lexicon L.

6 Data

For our database D, we use the publicly avail-
able set of 15 million REVERB extractions (Fader
et al., 2011).3 The database consists of a set
of triples r(e1, e2) over a vocabulary of ap-
proximately 600K relations and 2M entities, ex-
tracted from the ClueWeb09 corpus.4 The RE-
VERB database contains a large cross-section of
general world-knowledge, and thus is a good
testbed for developing an open-domain QA sys-
tem. However, the extractions are noisy, unnor-
malized (e.g., the strings obama, barack-obama,
and president-obama all appear as distinct en-
tities), and ambiguous (e.g., the relation born-in

contains facts about both dates and locations).
3We used version 1.1, downloaded from http://

reverb.cs.washington.edu/.
4The full set of REVERB extractions from ClueWeb09

contains over six billion triples. We used the smaller subset
of triples to simplify our experiments.
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function LEARNPARAMETERS

Inputs:
- A corpus C of paraphrases (x, x′). (Table 1)
- An initial lexicon L0 of (pattern, db concept)

pairs.
- A learned lexiconL of (pattern, db concept) pairs.
- Initial parameters θ0.
- Number of perceptron epochs T .
- Number of training-data shards K.
- A function GEN(x;L) that derives queries from

a question x using lexicon L. (Section 4)
- A function PerceptronEpoch(T , θ, L) that runs

a single epoch of the hidden-variable structured
perceptron algorithm on training set T with initial
parameters θ, returning a new parameter vector
θ′. (Section 5.2)

Output: A learned parameter vector θ.

// Step 1: Generate Training Examples T
T = {}
for all x, x′ ∈ C do

if GEN(x;L0) is not empty then
y∗ ← argmaxy∈GEN(x;L0)

θ0 · φ(x, y)
z∗ ← query of y∗

Add (x′, z∗) to T
// Step 2: Learn Parameters from T
Randomly partition T into shards T1, . . . , TK
for t = 1 . . . T do

// Executed on k processors
θk,t = PerceptronEpoch(Tk, θt−1, L)

// Average the weights
θt =

1
K

∑
k θk,t

return θT

Figure 2: Our parameter learning algorithm.

Our paraphrase corpus C was constructed from
the collaboratively edited QA site WikiAnswers.
WikiAnswers users can tag pairs of questions as
alternate wordings of each other. We harvested
a set of 18M of these question-paraphrase pairs,
with 2.4M distinct questions in the corpus.

To estimate the precision of the paraphrase cor-
pus, we randomly sampled a set of 100 pairs and
manually tagged them as ‘paraphrase’ or ‘not-
paraphrase.’ We found that 55% of the sampled
pairs are valid paraphrased. Most of the incorrect
paraphrases were questions that were related, but
not paraphrased e.g. How big is the biggest mall?
and Most expensive mall in the world?

We word-aligned each paraphrase pair using
the MGIZA++ implementation of IBM Model 4
(Och and Ney, 2000; Gao and Vogel, 2008). The
word-alignment algorithm was run in each direc-
tion (x, x′) and (x′, x) and then combined using
the grow-diag-final-and heuristic (Koehn et al.,
2003).

7 Experimental Setup

We compare the following systems:

• PARALEX: the full system, using the lexical
learning and parameter learning algorithms
from Section 5.

• NoParam: PARALEX without the learned
parameters.

• InitOnly: PARALEX using only the initial
seed lexicon.

We evaluate the systems’ performance on the end-
task of QA on WikiAnswers questions.

7.1 Test Set
A major challenge for evaluation is that the RE-
VERB database is incomplete. A system may cor-
rectly map a test question to a valid query, only
to return 0 results when executed against the in-
complete database. We factor out this source of
error by semi-automatically constructing a sample
of questions that are known to be answerable us-
ing the REVERB database, and thus allows for a
meaningful comparison on the task of question un-
derstanding.

To create the evaluation set, we identified ques-
tions x in a held out portion of the WikiAnswers
corpus such that (1) x can be mapped to some
query z using an initial lexicon (described in Sec-
tion 7.4), and (2) when z is executed against the
database, it returns at least one answer. We then
add x and all of its paraphrases as our evaluation
set. For example, the question What is the lan-
guage of Hong-Kong satisfies these requirements,
so we added these questions to the evaluation set:

What is the language of Hong-Kong?
What language do people in hong kong use?
How many languages are spoken in hong kong?
How many languages hong kong people use?
In Hong Kong what language is spoken?
Language of Hong-kong?

This methodology allows us to evaluate the sys-
tems’ ability to handle syntactic and lexical varia-
tions of questions that should have the same an-
swers. We created 37 question clusters, result-
ing in a total of 698 questions. We removed all
of these questions and their paraphrases from the
training set. We also manually filtered out any in-
correct paraphrases that appeared in the test clus-
ters.

We then created a gold-standard set of (x, a, l)
triples, where x is a question, a is an answer, and l
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Question Pattern Database Query
who r e r(?, e)

what r e r(?, e)

who does e r r(e, ?)

what does e r r(e, ?)

what is the r of e r(?, e)

who is the r of e r(?, e)

what is r by e r(e, ?)

who is e’s r r(?, e)

what is e’s r r(?, e)

who is r by e r(e, ?)

when did e r r-in(e, ?)

when did e r r-on(e, ?)

when was e r r-in(e, ?)

when was e r r-on(e, ?)

where was e r r-in(e, ?)

where did e r r-in(e, ?)

Table 3: The question patterns used in the initial
lexicon L0.

is a label (correct or incorrect). To create the gold-
standard, we first ran each system on the evalua-
tion questions to generate (x, a) pairs. Then we
manually tagged each pair with a label l. This
resulted in a set of approximately 2, 000 human
judgments. If (x, a) was tagged with label l and x′

is a paraphrase of x, we automatically added the
labeling (x′, a, l), since questions in the same clus-
ter should have the same answer sets. This process
resulted in a gold standard set of approximately
48, 000 (x, a, l) triples.

7.2 Metrics

We use two types of metrics to score the systems.
The first metric measures the precision and recall
of each system’s highest ranked answer. Precision
is the fraction of predicted answers that are cor-
rect and recall is the fraction of questions where a
correct answer was predicted. The second metric
measures the accuracy of the entire ranked answer
set returned for a question. We compute the mean
average precision (MAP) of each systems’ output,
which measures the average precision over all lev-
els of recall.

7.3 Features and Settings

The feature representation φ(x, y) consists of in-
dicator functions for each lexical entry (p, d) ∈ L
used in the derivation y. For parameter learning,
we use an initial weight vector θ0 = 0, use T = 20

F1 Precision Recall MAP
PARALEX 0.54 0.77 0.42 0.22
NoParam 0.30 0.53 0.20 0.08
InitOnly 0.18 0.84 0.10 0.04

Table 4: Performance on WikiAnswers questions
known to be answerable using REVERB.

F1 Precision Recall MAP
PARALEX 0.54 0.77 0.42 0.22
No 2-Arg. 0.40 0.86 0.26 0.12
No 1-Arg 0.35 0.81 0.22 0.11

No Relations 0.18 0.84 0.10 0.03
No Entity 0.36 0.55 0.27 0.15

Table 5: Ablation of the learned lexical items.
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Figure 3: Precision-recall curves for PARALEX

with and without 2-argument question patterns.

iterations and shard the training data into K = 10
pieces. We limit each system to return the top 100
database queries for each test sentence. All input
words are lowercased and lemmatized.

7.4 Initial Lexicon
Both the lexical learning and parameter learning
algorithms rely on an initial seed lexicon L0. The
initial lexicon allows the learning algorithms to
bootstrap from the paraphrase corpus.

We construct L0 from a set of 16 hand-written
2-argument question patterns and the output of the
identity transformation on the entity and relation
strings in the database. Table 3 shows the question
patterns that were used in L0.

8 Results

Table 4 shows the performance of PARALEX on
the test questions. PARALEX outperforms the
baseline systems in terms of both F1 and MAP.
The lexicon-learning algorithm boosts the recall
by a factor of 4 over the initial lexicon, show-
ing the utility of the InduceLex algorithm. The
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String Learned Database Relations for String
get rid of treatment-for, cause, get-rid-of, cure-for, easiest-way-to-get-rid-of
word word-for, slang-term-for, definition-of, meaning-of, synonym-of
speak speak-language-in, language-speak-in, principal-language-of, dialect-of
useful main-use-of, purpose-of, importance-of, property-of, usefulness-of

String Learned Database Entities for String
smoking smoking, tobacco-smoking, cigarette, smoking-cigar, smoke, quit-smoking
radiation radiation, electromagnetic-radiation, nuclear-radiation
vancouver vancouver, vancouver-city, vancouver-island, vancouver-british-columbia
protein protein, protein-synthesis, plasma-protein, monomer, dna

Table 6: Examples of relation and entity synonyms learned from the WikiAnswers paraphrase corpus.

parameter-learning algorithm also results in a
large gain in both precision and recall: InduceLex
generates a noisy set of patterns, so selecting the
best query for a question is more challenging.

Table 5 shows an ablation of the different types
of lexical items learned by PARALEX. For each
row, we removed the learned lexical items from
each of the types described in Section 4, keeping
only the initial seed lexical items. The learned 2-
argument question templates significantly increase
the recall of the system. This increased recall
came at a cost, lowering precision from 0.86 to
0.77. Thresholding the query score allows us to
trade precision for recall, as shown in Figure 3.
Table 6 shows some examples of the learned en-
tity and relation synonyms.

The 2-argument question templates help PAR-
ALEX generalize over different variations of the
same question, like the test questions shown in
Table 7. For each question, PARALEX combines
a 2-argument question template (shown below the
questions) with the rules celebrate = holiday-of

and christians = christians to derive a full
query. Factoring the problem this way allows
PARALEX to reuse the same rules in different
syntactic configurations. Note that the imperfect
training data can lead to overly-specific templates
like what are the religious r of e, which can lower
accuracy.

9 Error Analysis

To understand how close we are to the goal of
open-domain QA, we ran PARALEX on an unre-
stricted sample of questions from WikiAnswers.
We used the same methodology as described in the
previous section, where PARALEX returns the top
answer for each question using REVERB.

We found that PARALEX performs significantly
worse on this dataset, with recall maxing out at ap-

Celebrations for Christians?
r for e?

Celebrations of Christians?
r of e?

What are some celebrations for Christians?
what are some r for e?

What are some celebrations of the Christians?
what are some r of e?

What are some of Christians celebrations?
what are some of e r?

What celebrations do Christians do?
what r do e do?

What did Christians celebrate?
what did e r?

What are the religious celebrations of Christians?
what are the religious r of e?

What celebration do Christians celebrate?
what r do e celebrate?

Table 7: Questions from the test set with 2-
argument question patterns that PARALEX used to
derive a correct query.

proximately 6% of the questions answered at pre-
cision 0.4. This is not surprising, since the test
questions are not restricted to topics covered by
the REVERB database, and may be too complex to
be answered by any database of relational triples.

We performed an error analysis on a sample
of 100 questions that were either incorrectly an-
swered or unanswered. We examined the can-
didate queries that PARALEX generated for each
question and tagged each query as correct (would
return a valid answer given a correct and com-
plete database) or incorrect. Because the input
questions are unrestricted, we also judged whether
the questions could be faithfully represented as a
r(?, e) or r(e, ?) query over the database vocabu-
lary. Table 8 shows the distribution of errors.

The largest source of error (36%) were on com-
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plex questions that could not be represented as a
query for various reasons. We categorized these
questions into groups. The largest group (14%)
were questions that need n-ary or higher-order
database relations, for example How long does
it take to drive from Sacramento to Cancun? or
What do cats and dogs have in common? Approx-
imately 13% of the questions were how-to ques-
tions like How do you make axes in minecraft?
whose answers are a sequence of steps, instead
of a database entity. Lastly, 9% of the questions
require database operators like joins, for example
When were Bobby Orr’s children born?

The second largest source of error (32%) were
questions that could be represented as a query, but
where PARALEX was unable to derive any cor-
rect queries. For example, the question Things
grown on Nigerian farms? was not mapped to
any queries, even though the REVERB database
contains the relation grown-in and the entity
nigeria. We found that 13% of the incorrect
questions were cases where the entity was not rec-
ognized, 12% were cases where the relation was
not recognized, and 6% were cases where both the
entity and relation were not recognized.

We found that 28% of the errors were cases
where PARALEX derived a query that we judged to
be correct, but returned no answers when executed
against the database. For example, given the ques-
tion How much can a dietician earn? PARALEX

derived the query salary-of(?, dietician) but
this returned no answers in the REVERB database.

Finally, approximately 4% of the questions in-
cluded typos or were judged to be inscrutable, for
example Barovier hiriacy of evidence based for
pressure sore?

Discussion Our experiments show that the learn-
ing algorithms described in Section 5 allow PAR-
ALEX to generalize beyond an initial lexicon and
answer questions with significantly higher accu-
racy. Our error analysis on an unrestricted set of
WikiAnswers questions shows that PARALEX is
still far from the goal of truly high-recall, open-
domain QA. We found that many questions asked
on WikiAnswers are either too complex to be
mapped to a simple relational query, or are not
covered by the REVERB database. Further, ap-
proximately one third of the missing recall is due
to entity and relation recognition errors.

Incorrectly Answered/Unanswered Questions
36% Complex Questions

Need n-ary or higher-order relations (14%)

Answer is a set of instructions (13%)

Need database operators e.g. joins (9%)

32% Entity or Relation Recognition Errors

Entity recognition errors (13%)

Relation recognition errors (12%)

Entity & relation recognition errors (7%)

28% Incomplete Database

Derived a correct query, but no answers

4% Typos/Inscrutable Questions

Table 8: Error distribution of PARALEX on an un-
restricted sample of questions from the WikiAn-
swers dataset.

10 Conclusion

We introduced a new learning approach that in-
duces a complete question-answering system from
a large corpus of noisy question-paraphrases. Us-
ing only a seed lexicon, the approach automat-
ically learns a lexicon and linear ranking func-
tion that demonstrated high accuracy on a held-out
evaluation set.

A number of open challenges remain. First,
precision could likely be improved by adding
new features to the ranking function. Second,
we would like to generalize the question under-
standing framework to produce more complex
queries, constructed within a compositional se-
mantic framework, but without sacrificing scala-
bility. Third, we would also like to extend the
system with other large databases like Freebase or
DBpedia. Lastly, we believe that it would be pos-
sible to leverage the user-provided answers from
WikiAnswers as a source of supervision.
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