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Abstract

We consider the problem of grounding the
meaning of words in the physical world
and focus on the visual modality which we
represent by visual attributes. We create
a new large-scale taxonomy of visual at-
tributes covering more than 500 concepts
and their corresponding 688K images. We
use this dataset to train attribute classi-
fiers and integrate their predictions with
text-based distributional models of word
meaning. We show that these bimodal
models give a better fit to human word as-
sociation data compared to amodal models
and word representations based on hand-
crafted norming data.

1 Introduction

Recent years have seen increased interest in
grounded language acquisition, where the goal is
to extract representations of the meaning of nat-
ural language tied to the physical world. The
language grounding problem has assumed sev-
eral guises in the literature such as semantic pars-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Kate and Mooney, 2007; Lu et
al., 2008; Börschinger et al., 2011), mapping nat-
ural language instructions to executable actions
(Branavan et al., 2009; Tellex et al., 2011), associ-
ating simplified language to perceptual data such
as images or video (Siskind, 2001; Roy and Pent-
land, 2002; Gorniak and Roy, 2004; Yu and Bal-
lard, 2007), and learning the meaning of words
based on linguistic and perceptual input (Bruni
et al., 2012b; Feng and Lapata, 2010; Johns and
Jones, 2012; Andrews et al., 2009; Silberer and
Lapata, 2012).

In this paper we are concerned with the latter
task, namely constructing perceptually grounded

distributional models. The motivation for models
that do not learn exclusively from text is twofold.
From a cognitive perspective, there is mounting
experimental evidence suggesting that our inter-
action with the physical world plays an impor-
tant role in the way we process language (Barsa-
lou, 2008; Bornstein et al., 2004; Landau et al.,
1998). From an engineering perspective, the abil-
ity to learn representations for multimodal data has
many practical applications including image re-
trieval (Datta et al., 2008) and annotation (Chai
and Hung, 2008), text illustration (Joshi et al.,
2006), object and scene recognition (Lowe, 1999;
Oliva and Torralba, 2007; Fei-Fei and Perona,
2005), and robot navigation (Tellex et al., 2011).

One strand of research uses feature norms as a
stand-in for sensorimotor experience (Johns and
Jones, 2012; Andrews et al., 2009; Steyvers, 2010;
Silberer and Lapata, 2012). Feature norms are ob-
tained by asking native speakers to write down at-
tributes they consider important in describing the
meaning of a word. The attributes represent per-
ceived physical and functional properties associ-
ated with the referents of words. For example,
apples are typically green or red, round, shiny,
smooth, crunchy, tasty, and so on; dogs have four
legs and bark, whereas chairs are used for sit-
ting. Feature norms are instrumental in reveal-
ing which dimensions of meaning are psychologi-
cally salient, however, their use as a proxy for peo-
ple’s perceptual representations can itself be prob-
lematic (Sloman and Ripps, 1998; Zeigenfuse and
Lee, 2010). The number and types of attributes
generated can vary substantially as a function of
the amount of time devoted to each concept. It is
not entirely clear how people generate attributes
and whether all of these are important for repre-
senting concepts. Finally, multiple participants are
required to create a representation for each con-
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cept, which limits elicitation studies to a small
number of concepts and the scope of any compu-
tational model based on feature norms.

Another strand of research focuses exclusively
on the visual modality, even though the grounding
problem could involve auditory, motor, and hap-
tic modalities as well. This is not entirely sur-
prising. Visual input represents a major source of
data from which humans can learn semantic rep-
resentations of linguistic and non-linguistic com-
municative actions (Regier, 1996). Furthermore,
since images are ubiquitous, visual data can be
gathered far easier than some of the other modali-
ties. Distributional models that integrate the visual
modality have been learned from texts and im-
ages (Feng and Lapata, 2010; Bruni et al., 2012b)
or from ImageNet (Deng et al., 2009), e.g., by
exploiting the fact that images in this database
are hierarchically organized according to WordNet
synsets (Leong and Mihalcea, 2011). Images are
typically represented on the basis of low-level fea-
tures such as SIFT (Lowe, 2004), whereas texts
are treated as bags of words.

Our work also focuses on images as a way
of physically grounding the meaning of words.
We, however, represent them by high-level vi-
sual attributes instead of low-level image fea-
tures. Attributes are not concept or category spe-
cific (e.g., animals have stripes and so do cloth-
ing items; balls are round, and so are oranges and
coins), and thus allow us to express similarities
and differences across concepts more easily. Fur-
thermore, attributes allow us to generalize to un-
seen objects; it is possible to say something about
them even though we cannot identify them (e.g., it
has a beak and a long tail). We show that this
attribute-centric approach to representing images
is beneficial for distributional models of lexical
meaning. Our attributes are similar to those pro-
vided by participants in norming studies, however,
importantly they are learned from training data (a
database of images and their visual attributes) and
thus generalize to new images without additional
human involvement.

In the following we describe our efforts to cre-
ate a new large-scale dataset that consists of 688K
images that match the same concrete concepts
used in the feature norming study of McRae et al.
(2005). We derive a taxonomy of 412 visual at-
tributes and explain how we learn attribute clas-
sifiers following recent work in computer vision
(Lampert et al., 2009; Farhadi et al., 2009). Next,

we show that this attribute-based image represen-
tation can be usefully integrated with textual data
to create distributional models that give a better fit
to human word association data over models that
rely on human generated feature norms.

2 Related Work

Grounding semantic representations with visual
information is an instance of multimodal learn-
ing. In this setting the data consists of multiple
input modalities with different representations and
the learner’s objective is to extract a unified repre-
sentation that fuses the modalities together. The
literature describes several successful approaches
to multimodal learning using different variants of
deep networks (Ngiam et al., 2011; Srivastava and
Salakhutdinov, 2012) and data sources including
text, images, audio, and video.

Special-purpose models that address the fusion
of distributional meaning with visual information
have been also proposed. Feng and Lapata (2010)
represent documents and images by a common
multimodal vocabulary consisting of textual words
and visual terms which they obtain by quantizing
SIFT descriptors (Lowe, 2004). Their model is es-
sentially Latent Dirichlet Allocation (LDA, Blei et
al., 2003) trained on a corpus of multimodal docu-
ments (i.e., BBC news articles and their associated
images). Meaning in this model is represented as
a vector whose components correspond to word-
topic distributions. A related model has been pro-
posed by Bruni et al. (2012b) who obtain distinct
representations for the textual and visual modali-
ties. Specifically, they extract a visual space from
images contained in the ESP-Game data set (von
Ahn and Dabbish, 2004) and a text-based seman-
tic space from a large corpus collection totaling
approximately two billion words. They concate-
nate the two modalities and subsequently project
them to a lower-dimensionality space using Sin-
gular Value Decomposition (Golub et al., 1981).

Traditionally, computer vision algorithms de-
scribe visual phenomena (e.g., objects, scenes,
faces, actions) by giving each instance a categor-
ical label (e.g., cat, beer garden, Brad Pitt, drink-
ing). The ability to describe images by their at-
tributes allows to generalize to new instances for
which there are no training examples available.
Moreover, attributes can transcend category and
task boundaries and thus provide a generic de-
scription of visual data.

Initial work (Ferrari and Zisserman, 2007)
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focused on simple color and texture attributes
(e.g., blue, stripes) and showed that these can be
learned in a weakly supervised setting from im-
ages returned by a search engine when using the
attribute as a query. Farhadi et al. (2009) were
among the first to use visual attributes in an ob-
ject recognition task. Using an inventory of 64 at-
tribute labels, they developed a dataset of approx-
imately 12,000 instances representing 20 objects
from the PASCAL Visual Object Classes Chal-
lenge 2008 (Everingham et al., 2008). Visual
semantic attributes (e.g., hairy, four-legged) were
used to identify familiar objects and to describe
unfamiliar objects when new images and bound-
ing box annotations were provided. Lampert et al.
(2009) showed that attribute-based representations
can be used to classify objects when there are no
training examples of the target classes available.
Their dataset contained over 30,000 images repre-
senting 50 animal concepts and used 85 attributes
from the norming study of Osherson et al. (1991).
Attribute-based representations have also been ap-
plied to the tasks of face detection (Kumar et al.,
2009), action identification (Liu et al., 2011), and
scene recognition (Patterson and Hays, 2012).

The use of visual attributes in models of distri-
butional semantics is novel to our knowledge. We
argue that they are advantageous for two reasons.
Firstly, they are cognitively plausible; humans em-
ploy visual attributes when describing the proper-
ties of concept classes. Secondly, they occupy the
middle ground between non-linguistic low-level
image features and linguistic words. Attributes
crucially represent image properties, however by
being words themselves, they can be easily inte-
grated in any text-based distributional model thus
eschewing known difficulties with rendering im-
ages into word-like units.

A key prerequisite in describing images by
their attributes is the availability of training data
for learning attribute classifiers. Although our
database shares many features with previous work
(Lampert et al., 2009; Farhadi et al., 2009) it dif-
fers in focus and scope. Since our goal is to
develop distributional models that are applicable
to many words, it contains a considerably larger
number of concepts (i.e., more than 500) and at-
tributes (i.e., 412) based on a detailed taxonomy
which we argue is cognitively plausible and ben-
eficial for image and natural language processing
tasks. Our experiments evaluate a number of mod-
els previously proposed in the literature and in

Attribute Categories Example Attributes
color patterns (25) is red, has stripes
diet (35) eats nuts, eats grass
shape size (16) is small, is chubby
parts (125) has legs, has wheels
botany;anatomy (25;78) has seeds, has fur
behavior (in)animate (55) flies, waddles, pecks
texture material (36) made of metal, is shiny
structure (3) 2 pieces, has pleats

Table 1: Attribute categories and examples of at-
tribute instances. Parentheses denote the number
of attributes per category.

all cases show that the attribute-based represen-
tation brings performance improvements over just
using the textual modality. Moreover, we show
that automatically computed attributes are compa-
rable and in some cases superior to those provided
by humans (e.g., in norming studies).

3 The Attribute Dataset

Concepts and Images We created a dataset of
images and their visual attributes for the nouns
contained in McRae et al.’s (2005) feature norms.
The norms cover a wide range of concrete con-
cepts including animate and inanimate things
(e.g., animals, clothing, vehicles, utensils, fruits,
and vegetables) and were collected by presenting
participants with words and asking them to list
properties of the objects to which the words re-
ferred. To avoid confusion, in the remainder of
this paper we will use the term attribute to refer to
properties of concepts and the term feature to refer
to image features, such as color or edges.

Images for the concepts in McRae et al.’s (2005)
production norms were harvested from ImageNet
(Deng et al., 2009), an ontology of images based
on the nominal hierarchy of WordNet (Fellbaum,
1998). ImageNet has more than 14 million im-
ages spanning 21K WordNet synsets. We chose
this database due to its high coverage and the high
quality of its images (i.e., cleanly labeled and high
resolution). McRae et al.’s norms contain 541 con-
cepts out of which 516 appear in ImageNet1 and
are represented by 688K images overall. The av-
erage number of images per concept is 1,310 with
the most popular being closet (2,149 images) and
the least popular prune (5 images).

1Some words had to be modified in order to match the cor-
rect synset, e.g., tank (container) was found as storage tank.
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behavior eats, walks, climbs, swims, runs
diet drinks water, eats anything
shape size is tall, is large
anatomy has mouth, has head, has nose, has tail, has claws,

has jaws, has neck, has snout, has feet, has tongue
color patterns is black, is brown, is white

botany has skin, has seeds, has stem, has leaves, has pulp
color patterns purple, white, green, has green top
shape size is oval, is long
texture material is shiny

behavior rolls
parts has step through frame, has fork, has 2 wheels, has chain, has pedals

has gears, has handlebar, has bell, has breaks has seat, has spokes
texture material made of metal
color patterns different colors, is black, is red, is grey, is silver

Table 2: Human-authored attributes for bear, eggplant, and bike.

The images depicting each concept were ran-
domly partitioned into a training, development,
and test set. For most concepts the development
set contained a maximum of 100 images and the
test set a maximum of 200 images. Concepts with
less than 800 images in total were split into 1/8
test and development set each, and 3/4 training set.
The development set was used for devising and re-
fining our attribute annotation scheme. The train-
ing and test sets were used for learning and eval-
uating, respectively, attribute classifiers (see Sec-
tion 4).

Attribute Annotation Our aim was to develop a
set of visual attributes that are both discriminating
and cognitively plausible, i.e., humans would gen-
erally use them to describe a concrete concept. As
a starting point, we thus used the visual attributes
from McRae et al.’s (2005) norming study. At-
tributes capturing other primary sensory informa-
tion (e.g., smell, sound), functional/motor proper-
ties, or encyclopaedic information were not taken
into account. For example, is purple is a valid vi-
sual attribute for an eggplant, whereas a vegetable
is not, since it cannot be visualized. Collating all
the visual attributes in the norms resulted in a to-
tal of 673 which we further modified and extended
during the annotation process explained below.

The annotation was conducted on a per-concept
rather than a per-image basis (as for example in
Farhadi et al. (2009)). For each concept (e.g., bear
or eggplant), we inspected the images in the devel-
opment set and chose all McRae et al. (2005) vi-
sual attributes that applied. If an attribute was gen-
erally true for the concept, but the images did not

provide enough evidence, the attribute was never-
theless chosen and labeled with <no evidence>.
For example, a plum has a pit, but most images in
ImageNet show plums where only the outer part
of the fruit is visible. Attributes supported by
the image data but missing from the norms were
added. For example, has lights and has bumper
are attributes of cars but are not included in the
norms. Attributes were grouped in eight general
classes shown in Table 1. Annotation proceeded
on a category-by-category basis, e.g., first all food-
related concepts were annotated, then animals, ve-
hicles, and so on. Two annotators (both co-authors
of this paper) developed the set of attributes for
each category. One annotator first labeled con-
cepts with their attributes, and the other annota-
tor reviewed the annotations, making changes if
needed. Annotations were revised and compared
per category in order to ensure consistency across
all concepts of that category.

Our methodology is slightly different from
Lampert et al. (2009) in that we did not simply
transfer the attributes from the norms to the con-
cepts in question but refined and extended them
according to the visual data. There are several
reasons for this. Firstly, it makes sense to se-
lect attributes corroborated by the images. Sec-
ondly, by looking at the actual images, we could
eliminate errors in McRae et al.’s (2005) norms.
For example, eight study participants erroneously
thought that a catfish has scales. Thirdly, dur-
ing the annotation process, we normalized syn-
onymous attributes (e.g., has pit and has stone)
and attributes that exhibited negligible variations

575



has 2 pieces, has pointed end, has strap, has thumb, has buckles, has heels
has shoe laces, has soles, is black, is brown, is white, made of leather, made of rubber

climbs, climbs trees, crawls, hops, jumps, eats, eats nuts, is small, has bushy tail
has 4 legs, has head, has neck, has nose, has snout, has tail, has claws
has eyes, has feet, has toes,

diff colours, has 2 legs, has 2 wheels, has windshield, has floorboard, has stand, has tank
has mudguard, has seat, has exhaust pipe, has frame, has handlebar, has lights, has mirror
has step-through frame, is black, is blue, is red, is white, made of aluminum, made of steel

Table 3: Attribute predictions for sandals, squirrel, and motorcycle.

in meaning (e.g., has stem and has stalk). Finally,
our aim was to collect an exhaustive list of vi-
sual attributes for each concept which is consis-
tent across all members of a category. This is un-
fortunately not the case in McRae et al.’s norms.
Participants were asked to list up to 14 different
properties that describe a concept. As a result, the
attributes of a concept denote the set of properties
humans consider most salient. For example, both,
lemons and oranges have pulp. But the norms pro-
vide this attribute only for the second concept.

On average, each concept was annotated with
19 attributes; approximately 14.5 of these were
not part of the semantic representation created by
McRae et al.’s (2005) participants for that con-
cept even though they figured in the representa-
tions of other concepts. Furthermore, on average
two McRae et al. attributes per concept were dis-
carded. Examples of concepts and their attributes
from our database2 are shown in Table 2.

4 Attribute-based Classification

Following previous work (Farhadi et al., 2009;
Lampert et al., 2009) we learned one classifier per
attribute (i.e., 350 classifiers in total).3 The train-
ing set consisted of 91,980 images (with a maxi-
mum of 350 images per concept). We used an L2-
regularized L2-loss linear SVM (Fan et al., 2008)
to learn the attribute predictions. We adopted the
training procedure of Farhadi al. (2009).4 To learn
a classifier for a particular attribute, we used all
images in the training data. Images of concepts
annotated with the attribute were used as positive
examples, and the rest as negative examples. The

2Available from http://homepages.inf.ed.ac.uk/
mlap/index.php?page=resources.

3We only trained classifiers for attributes corroborated by
the images and excluded those labeled with <no evidence>.

4http://vision.cs.uiuc.edu/attributes/

data was randomly split into a training and valida-
tion set of equal size in order to find the optimal
cost parameter C. The final SVM for the attribute
was trained on the entire training data, i.e., on all
positive and negative examples.

The SVM learners used the four different fea-
ture types proposed in Farhadi et al. (2009),
namely color, texture, visual words, and edges.
Texture descriptors were computed for each pixel
and quantized to the nearest 256 k-means centers.
Visual words were constructed with a HOG spa-
tial pyramid. HOG descriptors were quantized
into 1000 k-means centers. Edges were detected
using a standard Canny detector and their orien-
tations were quantized into eight bins. Color de-
scriptors were sampled for each pixel and quan-
tized to the nearest 128 k-means centers. Shapes
and locations were represented by generating his-
tograms for each feature type for each cell in a grid
of three vertical and horizontal blocks. Our clas-
sifiers used 9,688 features in total. Table 3 shows
their predictions for three test images.

Note that attributes are predicted on an image-
by-image basis; our task, however, is to describe a
concept w by its visual attributes. Since concepts
are represented by many images we must some-
how aggregate their attributes into a single repre-
sentation. For each image iw ∈ Iw of concept w,
we output an F-dimensional vector containing pre-
diction scores scorea(iw) for attributes a = 1, ...,F.
We transform these attribute vectors into a single
vector pw ∈ [0,1]1×F , by computing the centroid
of all vectors for concept w. The vector is nor-
malized to obtain a probability distribution over
attributes given w:

pw =
(∑iw∈Iw scorea(iw))a=1,...,F

∑F
a=1 ∑iw∈Iw scorea(iw)

(1)

We additionally impose a threshold δ on pw by set-
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Figure 1: Attribute classifier performance for dif-
ferent thresholds δ (test set).

ting each entry less than δ to zero.
Figure 1 shows the results of the attribute pre-

diction on the test set on the basis of the computed
centroids; specifically, we plot recall against pre-
cision based on threshold δ.5 Table 4 shows the
10 nearest neighbors for five example concepts
from our dataset. Again, we measure the cosine
similarity between a concept and all other con-
cepts in the dataset when these are represented by
their visual attribute vector pw.

5 Attribute-based Semantic Models

We evaluated the effectiveness of our attribute
classifiers by integrating their predictions with tra-
ditional text-only models of semantic representa-
tion. These models have been previously proposed
in the literature and were also described in a recent
comparative study (Silberer and Lapata, 2012).

We represent the visual modality by attribute
vectors computed as shown in Equation (1). The
linguistic environment is approximated by textual
attributes. We used Strudel (Baroni et al., 2010)
to obtain these attributes for the nouns in our
dataset. Given a list of target words, Strudel ex-
tracts weighted word-attribute pairs from a lem-
matized and pos-tagged text corpus (e.g., egg-
plant–cook-v, eggplant–vegetable-n). The weight
of each word-attribute pair is a log-likelihood ratio
score expressing the pair’s strength of association.
In our experiments we learned word-attribute pairs
from a lemmatized and pos-tagged (2009) dump
of the English Wikipedia.6 In the remainder of
this section we will briefly describe the models we

5Threshold values ranged from 0 to 0.9 with 0.1 stepsize.
6The corpus can be downloaded from http://wacky.

sslmit.unibo.it/doku.php?id=corpora.

Concept Nearest Neighbors
boat ship, sailboat, yacht, submarine, canoe,

whale, airplane, jet, helicopter, tank (army)
rooster chicken, turkey, owl, pheasant, peacock, stork,

pigeon, woodpecker, dove, raven
shirt blouse, robe, cape, vest, dress, coat, jacket,

skirt, camisole, nightgown
spinach lettuce, parsley, peas, celery, broccoli, cab-

bage, cucumber, rhubarb, zucchini, asparagus
squirrel chipmunk, raccoon, groundhog, gopher, por-

cupine, hare, rabbit, fox, mole, emu

Table 4: Ten most similar concepts computed on
the basis of averaged attribute vectors and ordered
according to cosine similarity.

used in our study and how the textual and visual
modalities were fused to create a joint representa-
tion.

Concatenation Model Variants of this model
were originally proposed in Bruni et al. (2011)
and Johns and Jones (2012). Let T ∈ RN×D de-
note a term-attribute co-occurrence matrix, where
each cell records a weighted co-occurrence score
of a word and a textual attribute. Let P ∈ [0,1]N×F

denote a visual matrix, representing a probability
distribution over visual attributes for each word.
A word’s meaning can be then represented by the
concatenation of its normalized textual and visual
vectors.

Canonical Correlation Analysis The second
model uses Canonical Correlation Analysis (CCA,
Hardoon et al. (2004)) to learn a joint semantic
representation from the textual and visual modali-
ties. Given two random variables x and y (or two
sets of vectors), CCA can be seen as determining
two sets of basis vectors in such a way, that the cor-
relation between the projections of the variables
onto these bases is mutually maximized (Borga,
2001). In effect, the representation-specific de-
tails pertaining to the two views of the same phe-
nomenon are discarded and the underlying hidden
factors responsible for the correlation are revealed.

The linguistic and visual views are the same as
in the simple concatenation model just explained.
We use a kernelized version of CCA (Hardoon et
al., 2004) that first projects the data into a higher-
dimensional feature space and then performs CCA
in this new feature space. The two kernel matrices
are KT = T T ′ and KP = PP′. After applying CCA
we obtain two matrices projected onto l basis vec-
tors, T̃ ∈RN×l , resulting from the projection of the
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textual matrix T onto the new basis and P̃ ∈RN×l ,
resulting from the projection of the corresponding
visual attribute matrix. The meaning of a word is
then represented by T̃ or P̃.

Attribute-topic Model Andrews et al. (2009)
present an extension of LDA (Blei et al., 2003)
where words in documents and their associated
attributes are treated as observed variables that
are explained by a generative process. The
idea is that each document in a document col-
lection D is generated by a mixture of com-
ponents {x1, ...,xc, ...,xC} ∈ C , where a compo-
nent xc comprises a latent discourse topic coupled
with an attribute cluster. Inducing these attribute-
topic components from D with the extended LDA
model gives two sets of parameters: word prob-
abilities given components PW (wi|X = xc) for wi,
i = 1, ...,n, and attribute probabilities given com-
ponents PA(ak|X = xc) for ak, k = 1, ...,F . For ex-
ample, most of the probability mass of a compo-
nent x would be reserved for the words shirt, coat,
dress and the attributes has 1 piece, has seams,
made of material and so on.

Word meaning in this model is represented by
the distribution PX |W over the learned compo-
nents. Assuming a uniform distribution over com-
ponents xc in D , PX |W can be approximated as:

PX=xc|W=wi
=

P(wi|xc)P(xc)

P(wi)
≈ P(wi|xc)

C
∑

l=1
P(wi|xl)

(2)

where C is the total number of components.
In our work, the training data is a corpus D of

textual attributes (rather than documents). Each
attribute is represented as a bag-of-concepts,
i.e., words demonstrating the property expressed
by the attribute (e.g., vegetable-n is a property of
eggplant, spinach, carrot). For some of these con-
cepts, our classifiers predict visual attributes. In
this case, the concepts are paired with one of their
visual attributes. We sample attributes for a con-
cept w from their distribution given w (Eq. (1)).

6 Experimental Setup

Evaluation Task We evaluated the distribu-
tional models presented in Section 5 on the
word association norms collected by Nelson et al.
(1998).7 These were established by presenting
a large number of participants with a cue word
(e.g., rice) and asking them to name an associate

7From http://w3.usf.edu/FreeAssociation/.

word in response (e.g., Chinese, wedding, food,
white). For each cue, the norms provide a set
of associates and the frequencies with which they
were named. We can thus compute the prob-
ability distribution over associates for each cue.
Analogously, we can estimate the degree of sim-
ilarity between a cue and its associates using our
models. The norms contain 63,619 unique cue-
associate pairs. Of these, 435 pairs were covered
by McRae et al. (2005) and our models. We also
experimented with 1,716 pairs that were not part
of McRae et al.’s study but belonged to concepts
covered by our attribute taxonomy (e.g., animals,
vehicles), and were present in our corpus and Ima-
geNet. Using correlation analysis (Spearman’s ρ),
we examined the degree of linear relationship be-
tween the human cue-associate probabilities and
the automatically derived similarity values.8

Parameter Settings In order to integrate the vi-
sual attributes with the models described in Sec-
tion 5 we must select the appropriate threshold
value δ (see Eq. (1)). We optimized this value
on the development set and obtained best results
with δ = 0. We also experimented with thresh-
olding the attribute prediction scores and with ex-
cluding attributes with low precision. In both
cases, we obtained best results when using all at-
tributes. We could apply CCA to the vectors rep-
resenting each image separately and then compute
a weighted centroid on the projected vectors. We
refrained from doing this as it involves additional
parameters and assumes input different from the
other models. We measured the similarity between
two words using the cosine of the angle. For the
attribute-topic model, the number of predefined
components C was set to 10. In this model, sim-
ilarity was measured as defined by Griffiths et al.
(2007). The underlying idea is that word associa-
tion can be expressed as a conditional distribution.

With regard to the textual attributes, we
obtained a 9,394-dimensional semantic space
after discarding word-attribute pairs with a
log-likelihood ratio score less than 19.9 We also
discarded attributes co-occurring with less than
two different words.

8Previous work (Griffiths et al., 2007) which also predicts
word association reports how many times the word with the
highest score under the model was the first associate in the
human norms. This evaluation metric assumes that there are
many associates for a given cue which unfortunately is not
the case in our study which is restricted to the concepts rep-
resented in our attribute taxonomy.

9Baroni et al. (2010) use a similar threshold of 19.51.
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Nelson Concat CCA TopicAttr TextAttr
Concat 0.24
CCA 0.30 0.72
TopicAttr 0.26 0.55 0.28
TextAttr 0.21 0.80 0.83 0.34
VisAttr 0.23 0.65 0.52 0.40 0.39

Table 5: Correlation matrix for seen Nelson et al.
(1998) cue-associate pairs and five distributional
models. All correlation coefficients are statisti-
cally significant (p < 0.01, N = 435).

7 Results

Our experiments were designed to answer four
questions: (1) Do visual attributes improve the
performance of distributional models? (2) Are
there performance differences among different
models, i.e., are some models better suited to the
integration of visual information? (3) How do
computational models fare against gold standard
norming data? (4) Does the attribute-based repre-
sentation bring advantages over more conventional
approaches based on raw image features?

Our results are broken down into seen (Table 5)
and unseen (Table 6) concepts. The former are
known to the attribute classifiers and form part
of our database, whereas the latter are unknown
and are not included in McRae et al.’s (2005)
norms. We report the correlation coefficients we
obtain when human-derived cue-associate proba-
bilities (Nelson et al., 1998) are compared against
the simple concatenation model (Concat), CCA,
and Andrews et al.’s (2009) attribute-topic model
(TopicAttr). We also report the performance of
a distributional model that is based solely on the
output of our attribute classifiers, i.e., without any
textual input (VisAttr) and conversely the perfor-
mance of a model that uses textual information
only (i.e., Strudel attributes) without any visual in-
put (TextAttr). The results are displayed as a cor-
relation matrix so that inter-model correlations can
also be observed.

As can be seen in Table 5 (second column), two
modalities are in most cases better than one when
evaluating model performance on seen data. Dif-
ferences in correlation coefficients between mod-
els with two versus one modality are all statis-
tically significant (p < 0.01 using a t-test), with
the exception of Concat when compared against
VisAttr. It is also interesting to note that Topi-
cAttr is the least correlated model when compared
against other bimodal models or single modali-

Nelson Concat CCA TopicAttr TextAttr
Concat 0.11
CCA 0.15 0.66
TopicAttr 0.17 0.69 0.48
TextAttr 0.11 0.65 0.25 0.39
VisAttr 0.13 0.57 0.87 0.57 0.34

Table 6: Correlation matrix for unseen Nelson
et al. (1998) cue-associate pairs and five distribu-
tional models. All correlation coefficients are sta-
tistically significant (p < 0.01, N = 1,716).

ties. This indicates that the latent space obtained
by this model is most distinct from its constituent
parts (i.e., visual and textual attributes). Perhaps
unsuprisingly Concat, CCA, VisAttr, and TextAttr
are also highly intercorrelated.

On unseen pairs (see Table 6), Concat fares
worse than CCA and TopicAttr, achieving simi-
lar performance to TextAttr. CCA and TopicAttr
are significantly better than TextAttr and VisAttr
(p < 0.01). This indicates that our attribute classi-
fiers generalize well beyond the concepts found in
our database and can produce useful visual infor-
mation even on unseen images. Compared to Con-
cat and CCA, TopicAttr obtains a better fit with the
human association norms on the unseen data.

To answer our third question, we obtained dis-
tributional models from McRae et al.’s (2005)
norms and assessed how well they predict Nelson
et al.’s (1998) word-associate similarities. Each
concept was represented as a vector with dimen-
sions corresponding to attributes generated by par-
ticipants of the norming study. Vector components
were set to the (normalized) frequency with which
participants generated the corresponding attribute
when presented with the concept. We measured
the similarity between two words using the co-
sine coefficient. Table 7 presents results for dif-
ferent model variants which we created by ma-
nipulating the number and type of attributes in-
volved. The first model uses the full set of at-
tributes present in the norms (All Attributes). The
second model (Text Attributes) uses all attributes
but those classified as visual (e.g., functional, en-
cyclopaedic). The third model (Visual Attributes)
considers solely visual attributes.

We observe a similar trend as with our compu-
tational models. Taking visual attributes into ac-
count increases the fit with Nelson’s (1998) associ-
ation norms, whereas visual and textual attributes
on their own perform worse. Interestingly, CCA’s
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Models Seen
All Attributes 0.28
Text Attributes 0.20
Visual Attributes 0.25

Table 7: Model performance on seen Nelson et
al. (1998) cue-associate pairs; models are based
on gold human generated attributes (McRae et al.,
2005). All correlation coefficients are statistically
significant (p < 0.01, N = 435).

Models Seen Unseen
Concat 0.22 0.10
CCA 0.26 0.15
TopicAttr 0.23 0.19
TextAttr 0.20 0.08
VisAttr 0.21 0.13
MixLDA 0.16 0.11

Table 8: Model performance on a subset of Nelson
et al. (1998) cue-associate pairs. Seen are concepts
known to the attribute classifiers and covered by
MixLDA (N = 85). Unseen are concepts covered
by LDA but unknown to the attribute classifiers
(N = 388). All correlation coefficients are statisti-
cally significant (p < 0.05).

performance is comparable to the All Attributes
model (see Table 5, second column), despite us-
ing automatic attributes (both textual and visual).
Furthermore, visual attributes obtained through
our classifiers (see Table 5) achieve a marginally
lower correlation coefficient against human gener-
ated ones (see Table 7).

Finally, to address our last question, we com-
pared our approach against Feng and Lapata
(2010) who represent visual information via quan-
tized SIFT features. We trained their MixLDA
model on their corpus consisting of 3,361 BBC
news documents and corresponding images (Feng
and Lapata, 2008). We optimized the model pa-
rameters on a development set consisting of cue-
associate pairs from Nelson et al. (1998), exclud-
ing the concepts in McRae et al. (2005). We
used a vocabulary of approximately 6,000 words.
The best performing model on the development set
used 500 visual terms and 750 topics and the asso-
ciation measure proposed in Griffiths et al. (2007).
The test set consisted of 85 seen and 388 unseen
cue-associate pairs that were covered by our mod-
els and MixLDA.

Table 8 reports correlation coefficients for our
models and MixLDA against human probabili-
ties. All attribute-based models significantly out-
perform MixLDA on seen pairs (p < 0.05 using a
t-test). MixLDA performs on a par with the con-
catenation model on unseen pairs, however CCA,
TopicAttr, and VisAttr are all superior. Although
these comparisons should be taken with a grain
of salt, given that MixLDA and our models are
trained on different corpora (MixLDA assumes
that texts and images are collocated, whereas our
images do not have collateral text), they seem to
indicate that attribute-based information is indeed
beneficial.

8 Conclusions

In this paper we proposed the use of automatically
computed visual attributes as a way of physically
grounding word meaning. Our results demonstrate
that visual attributes improve the performance of
distributional models across the board. On a
word association task, CCA and the attribute-topic
model give a better fit to human data when com-
pared against simple concatenation and models
based on a single modality. CCA consistently out-
performs the attribute-topic model on seen data (it
is in fact slightly better over a model that uses gold
standard human generated attributes), whereas the
attribute-topic model generalizes better on unseen
data (see Tables 5, 6, and 8). Since the attribute-
based representation is general and text-based we
argue that it can be conveniently integrated with
any type of distributional model or indeed other
grounded models that rely on low-level image fea-
tures (Bruni et al., 2012a; Feng and Lapata, 2010)

In the future, we would like to extend our
database to actions and show that this attribute-
centric representation is useful for more applied
tasks such as image description generation and ob-
ject recognition. Finally, we have only scratched
the surface in terms of possible models for inte-
grating the textual and visual modality. Interest-
ing frameworks which we plan to explore are deep
belief networks and Bayesian non-parametrics.
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