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Abstract

There are several tasks where is preferable not
responding than responding incorrectly. This
idea is not new, but despite several previous at-
tempts there isn’t a commonly accepted mea-
sure to assess non-response. We study here an
extension of accuracy measure with this fea-
ture and a very easy to understand interpreta-
tion. The measure proposed (c@1) has a good
balance of discrimination power, stability and
sensitivity properties. We show also how this
measure is able to reward systems that main-
tain the same number of correct answers and
at the same time decrease the number of in-
correct ones, by leaving some questions unan-
swered. This measure is well suited for tasks
such as Reading Comprehension tests, where
multiple choices per question are given, but
only one is correct.

1 Introduction

There is some tendency to consider that an incorrect
result is simply the absence of a correct one. This is
particularly true in the evaluation of Information Re-
trieval systems where, in fact, the absence of results
sometimes is the worse output.

However, there are scenarios where we should
consider the possibility of not responding, because
this behavior has more value than responding incor-
rectly. For example, during the process of introduc-
ing new features in a search engine it is important
to preserve users’ confidence in the system. Thus,
a system must decide whether it should give or not
a result in the new fashion or keep on with the old
kind of output. A similar example is the decision

about showing or not ads related to the query. Show-
ing wrong ads harms the business model more than
showing nothing. A third example more related to
Natural Language Processing is the Machine Read-
ing evaluation through reading comprehension tests.
In this case, where multiple choices for a question
are offered, choosing a wrong option should be pun-
ished against leaving the question unanswered.

In the latter case, the use of utility functions is
a very common option. However, utility functions
give arbitrary value to not responding and ignore
the system’s behavior showed when it responds (see
Section 2). To avoid this, we present c@1 measure
(Section 2.2), as an extension of accuracy (the pro-
portion of correctly answered questions). In Sec-
tion 3 we show that no other extension produces a
sensible measure. In Section 4 we evaluate c@1 in
terms of stability, discrimination power and sensibil-
ity, and some real examples of its behavior are given
in the context of Question Answering. Related work
is discussed in Section 5.

2 Looking for the Value of Not Responding

Lets take the scenario of Reading Comprehension
tests to argue about the development of the measure.
Our scenario assumes the following:

• There are several questions.

• Each question has several options.

• One option is correct (and only one).

The first step is to consider the possibility of not
responding. If the system responds, then the assess-
ment will be one of two: correct or wrong. But if
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the system doesn’t respond there is no assessment.
Since every question has a correct answer, non re-
sponse is not correct but it is not incorrect either.
This is represented in contingency Table 1, where:

• nac: number of questions for which the answer
is correct

• naw: number of questions for which the answer
is incorrect

• nu: number of questions not answered

• n: number of questions (n = nac + naw + nu)

Correct (C) Incorrect (¬C)
Answered (A) nac naw

Unanswered (¬A) nu

Table 1: Contingency table for our scenario

Let’s start studying a simple utility function able
to establish the preference order we want:

• -1 if question receives an incorrect response

• 0 if question is left unanswered

• 1 if question receives a correct response

Let U(i) be the utility function that returns one of
the above values for a given question i. Thus, if we
want to consider n questions in the evaluation, the
measure would be:

UF =
1

n

n∑
i=1

U(i) =
nac − naw

n
(1)

The rationale of this utility function is intuitive:
not answering adds no value and wrong answers add
negative values. Positive values of UF indicate more
correct answers than incorrect ones, while negative
values indicate the opposite. However, the utility
function is giving an arbitrary value to the prefer-
ences (-1, 0, 1).

Now we want to interpret in some way the value
that Formula (1) assigns to unanswered questions.
For this purpose, we need to transform Formula (1)
into a more meaningful measure with a parameter
for the number of unanswered questions (nu). A

monotonic transformation of (1) permit us to pre-
serve the ranking produced by the measure. Let
f(x)=0.5x+0.5 be the monotonic function to be used
for the transformation. Applying this function to
Formula (1) results in Formula (2):

0.5
nac − naw

n
+ 0.5 =

0.5

n
[nac − naw + n] =

=
0.5

n
[nac − naw + nac + naw + nu]

=
0.5

n
[2nac + nu] =

nac

n
+ 0.5

nu

n
(2)

Measure (2) provides the same ranking of sys-
tems than measure (1). The first summand of For-
mula (2) corresponds to accuracy, while the second
is adding an arbitrary constant weight of 0.5 to the
proportion of unanswered questions. In other words,
unanswered questions are receiving the same value
as if half of them had been answered correctly.

This does not seem correct given that not answer-
ing is being rewarded in the same proportion to all
the systems, without taking into account the per-
formance they have shown with the answered ques-
tions. We need to propose a more sensible estima-
tion for the weight of unanswered questions.

2.1 A rationale for the Value of Unanswered
Questions

According to the utility function suggested, unan-
swered questions would have value as if half of them
had been answered correctly. Why half and not other
value? Even more, Why a constant value? Let’s gen-
eralize this idea and estate more clearly our hypoth-
esis:

Unanswered questions have the same value as if a
proportion of them would have been answered cor-
rectly.

We can express this idea according to contingency
Table 1 in the following way:

P (C) = P (C ∩A) + P (C ∩ ¬A) =

= P (C ∩A) + P (C/¬A) ∗ P (¬A)
(3)

P (C ∩ A) can be estimated by nac/n, P (¬A)
can be estimated by nu/n, and we have to estimate
P (C/¬A). Our hypothesis is saying that P (C/¬A)
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is different from 0. The utility measure (2) corre-
sponds to P(C) in Formula (3) where P (C/¬A) re-
ceives a constant value of 0.5. It is assuming arbi-
trarily that P (C/¬A) = P (C/A).

Following this, our measure must consist of two
parts: The overall accuracy and a better estimation
of correctness over the unanswered questions.

2.2 The Measure Proposed: c@1
From the answered questions we have already ob-
served the proportion of questions that received a
correct answer (P (C ∩A) = nac/n). We can use this
observation as our estimation for P (C/¬A) instead
of the arbitrary value of 0.5.

Thus, the measure we propose is c@1 (correct-
ness at one) and is formally represented as follows:

c@1 =
nac

n
+

nac

n

nu

n
=

1

n
(nac +

nac

n
nu) (4)

The most important features of c@1 are:

1. A system that answers all the questions will re-
ceive a score equal to the traditional accuracy
measure: nu=0 and therefore c@1=nac/n.

2. Unanswered questions will add value to c@1
as if they were answered with the accuracy al-
ready shown.

3. A system that does not return any answer would
receive a score equal to 0 due to nac=0 in both
summands.

According to the reasoning above, we can inter-
pret c@1 in terms of probability as P (C) where
P (C/¬A) has been estimated with P (C ∩ A). In
the following section we will show that there is no
other estimation for P (C/¬A) able to provide a rea-
sonable evaluation measure.

3 Other Estimations for P (C/¬A)

In this section we study whether other estimations
of P (C/¬A) can provide a sensible measure for QA
when unanswered questions are taken into account.
They are:

1. P (C/¬A) ≡ 0

2. P (C/¬A) ≡ 1

3. P (C/¬A) ≡ P (¬C/¬A) ≡ 0.5

4. P (C/¬A) ≡ P (C/A)

5. P (C/¬A) ≡ P (¬C/A)

3.1 P (C/¬A) ≡ 0

This estimation considers the absence of response as
incorrect response and we have the traditional accu-
racy (nac/n).

Obviously, this is against our purposes.

3.2 P (C/¬A) ≡ 1

This estimation considers all unanswered questions
as correctly answered. This option is not reasonable
and is given for completeness: systems giving no
answer would get maximum score.

3.3 P (C/¬A) ≡ P (¬C/¬A) ≡ 0.5

It could be argued that since we cannot have obser-
vations of correctness for unanswered questions, we
should assume equiprobability between P (C/¬A)
and P (¬C/¬A). In this case, P(C) corresponds
to the expression (2) already discussed. As previ-
ously explained, in this case we are giving an arbi-
trary constant value to unanswered questions inde-
pendently of the system’s performance shown with
answered ones. This seems unfair. We should be
aiming at rewarding those systems not responding
instead of giving wrong answers, not reward the sole
fact that the system is not responding.

3.4 P (C/¬A) ≡ P (C/A)

An alternative is to estimate the probability of cor-
rectness for the unanswered questions as the pre-
cision observed over the answered ones: P(C/A)=
nac/(nac+ naw). In this case, our measure would be
like the one shown in Formula (5):

P (C) = P (C ∩A) + P (C/¬A) ∗ P (¬A) =

= P (C/A) ∗ P (A) + P (C/A) ∗ P (¬A) =

= P (C/A) =
nac

nac + naw

(5)

The resulting measure is again the observed pre-
cision over the answered ones. This is not a sensible
measure, as it would reward a cheating system that
decides to leave all questions unanswered except one
for which it is sure to have a correct answer.
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Furthermore, from the idea that P (C/¬A) is
equal to P (C/A) the underlying assumption is that
systems choose to answer or not to answer ran-
domly, whereas we want to reward the systems that
choose not responding because they are able to de-
cide that their candidate options are wrong or be-
cause they are unable to decide which candidate is
correct.

3.5 P (C/¬A) ≡ P (¬C/A)

The last option to be considered explores the idea
that systems fail not responding in the same propor-
tion that they fail when they give an answer (i.e. pro-
portion of incorrect answers).

Estimating P (C/¬A) as naw / (nac+ naw), the
measure would be:

P (C) = P (C ∩A) + P (C/¬A) ∗ P (¬A) =

= P (C ∩A) ∗ P (¬C/A) ∗ P (¬A) =

=
nac

n
+

naw

nac + naw
∗ nu

n

(6)

This measure is very easy to cheat. It is possible
to obtain almost a perfect score just by answering in-
correctly only one question and leaving unanswered
the rest of the questions.

4 Evaluation of c@1

When a new measure is proposed, it is important
to study the reliability of the results obtained us-
ing that measure. For this purpose, we have cho-
sen the method described by Buckley and Voorhees
(2000) for assessing the stability and discrimination
power, as well as the method described by Voorhees
and Buckley (2002) for examining the sensitivity of
our measure. These methods have been used for
studying IR metrics (showing similar results with
the methods based on statistics (Sakai, 2006)), as
well as for evaluating the reliability of other QA
measures different to the ones studied here (Sakai,
2007a; Voorhees, 2002; Voorhees, 2003).

We have compared the results over c@1 with the
ones obtained using both accuracy and the utility
function (UF) defined in Formula (1). This compari-
son is useful to show how confident can a researcher
be with the results obtained using each evaluation
measure.

In the following subsections we will first show the
data used for our study. Then, the experiments about
stability and sensitivity will be described.

4.1 Data sets
We used the test collections and runs from the Ques-
tion Answering track at the Cross Language Evalu-
ation Forum 2009 (CLEF) (Peñas et al., 2010). The
collection has a set of 500 questions with their an-
swers. The 44 runs in different languages contain
the human assessments for the answers given by ac-
tual participants. Systems could chose not to answer
a question. In this case, they had the chance to sub-
mit their best candidate in order to assess the perfor-
mance of their validation module (the one that de-
cides whether to give or not the answer).

This data collection allows us to compare c@1
and accuracy over the same runs.

4.2 Stability vs. Discrimination Power
The more stable a measure is, the lower the probabil-
ity of errors associated with the conclusion “system
A is better than system B” is. Measures with a high
error must be used more carefully performing more
experiments than in the case of using a measure with
lower error.

In order to study the stability of c@1 and to com-
pare it with accuracy we used the method described
by Buckley and Voorhees (2000). This method al-
lows also to study the number of times systems are
deemed to be equivalent with respect to a certain
measure, which reflects the discrimination power of
that measure. The less discriminative the measure
is, the more ties between systems there will be. This
means that longer difference in scores will be needed
for concluding which system is better (Buckley and
Voorhees, 2000).

The method works as follows: let S denote a set
of runs. Let x and y denote a pair of runs from S.
Let Q denote the entire evaluation collection. Let f
represents the fuzziness value, which is the percent
difference between scores such that if the difference
is smaller than f then the two scores are deemed to
be equivalent. We apply the algorithm of Figure 1
to obtain the information needed for computing the
error rate (Formula (7)). Stability is inverse to this
value, the lower the error rate is, the more stable
the measure is. The same algorithm gives us the
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proportion of ties (Formula (8)), which we use for
measuring discrimination power, that is the lower
the proportion of ties is, the more discriminative the
measure is.

for each pair of runs x,y ϵ S
for each trial from 1 to 100
Qi = select at random subcol of size c from Q;
margin = f * max (M(x,Qi),M(y,Qi));
if(|M(x,Qi) - M(y,Qi)| < |margin|)
EQM (x,y)++;

else if(|M(x,Qi) > M(y,Qi)|)
GTM (x,y)++;

else
GTM (y,x)++;

Figure 1: Algorithm for computing EQM (x,y),
GTM (x,y) and GTM (y,x) in the stability method

We assume that for each measure the correct de-
cision about whether run x is better than run y hap-
pens when there are more cases where the value of
x is better than the value of y. Then, the number of
times y is better than x is considered as the number
of times the test is misleading, while the number of
times the values of x and y are equivalent is consid-
ered the number of ties.

On the other hand, it is clear that larger fuzziness
values decrease the error rate but also decrease the
discrimination power of a measure. Since a fixed
fuzziness value might imply different trade-offs for
different metrics, we decided to vary the fuzziness
value from 0.01 to 0.10 (following the work by Sakai
(2007b)) and to draw for each measure a proportion-
of-ties / error-rate curve. Figure 2 shows these
curves for the c@1, accuracy and UF measures. In
the Figure we can see how there is a consistent de-
crease of the error rate of all measures when the
proportion of ties increases (this corresponds to the
increase in the fuzziness value). Figure 2 shows
that the curves of accuracy and c@1 are quite simi-
lar (slightly better behavior of c@1) , which means
that they have a similar stability and discrimination
power.

The results suggest that the three measures are
quite stable, having c@1 and accuracy a lower er-
ror rate than UF when the proportion of ties grows.
These curves are similar to the ones obtained for

Figure 2: Error-rate / Proportion of ties curves for accu-
racy, c@1 and UF with c = 250

other QA evaluation measures (Sakai, 2007a).

4.3 Sensitivity

The swap-rate (Voorhees and Buckley, 2002) repre-
sents the chance of obtaining a discrepancy between
two question sets (of the same size) as to whether
a system is better than another given a certain dif-
ference bin. Looking at the swap-rates of all the
difference performance bins, the performance dif-
ference required in order to conclude that a run is
better than another for a given confidence value can
be estimated. For example, if we want to know the
required difference for concluding that system A is
better than system B with a confidence of 95%, then
we select the difference that represents the first bin
where the swap-rate is lower or equal than 0.05.

The sensitivity of the measure is the number of
times among all the comparisons in the experi-
ment where this performance difference is obtained
(Sakai, 2007b). That is, the more comparisons ac-
complish the estimated performance difference, the
more sensitive is the measure. The more sensitive
the measure, the more useful it is for system dis-
crimination.

The swap method works as follows: let S denote
a set of runs, let x and y denote a pair of runs from S.
Let Q denote the entire evaluation collection. And
let d denote a performance difference between two
runs. Then, we first define 21 performance differ-
ence bins: the first bin represents performance dif-
ferences between systems such that 0 ≤ d < 0.01;
the second bin represents differences such that 0.01
≤ d < 0.02; and the limits for the remaining bins in-
crease by increments of 0.01, with the last bin con-
taining all the differences equal or higher than 0.2.
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Error rateM =

∑
x,yϵS min(GTM (x, y), GTM (y, x))∑

x,yϵS(GTM (x, y) + GTM (y, x) + EQM (x, y))
(7)

Prop T iesM =

∑
x,yϵS EQM (x, y)∑

x,yϵS(GTM (x, y) + GTM (y, x) + EQM (x, y))
(8)

Let BIN(d) denote a mapping from a difference d to
one of the 21 bins where it belongs. Thus, algorithm
in Figure 3 is applied for calculating the swap-rate
of each bin.

for each pair of runs x,y ϵ S
for each trial from 1 to 100

select Qi , Q
′
i ⊂ Q, where

Qi ∩ Q
′
i == ϕ and |Qi| == |Q′

i| == c;
dM (Qi) = M(x,Qi)−M(y, Qi);
dM (Q

′
i) = M(x,Q

′
i)−M(y, Q

′
i);

counter(BIN(|dM (Qi)|))++;
if(dM (Qi) * dM (Q

′
i) < 0)

swap counter(BIN(|dM (Qi)|))++;
for each bin b

swap rate(b) = swap counter(b)/counter(b);

Figure 3: Algorithm for computing swap-rates

(i) (ii) (iii) (iv)
UF 0.17 0.48 35.12% 59.30%

c@1 0.09 0.77 11.69% 58.40%
accuracy 0.09 0.68 13.24% 55.00%

Table 2: Results obtained applying the swap method to
accuracy, c@1 and UF at 95% of confidence, with c =
250: (i) Absolute difference required; (ii) Highest value
obtained; (iii) Relative difference required ((i)/(ii)); (iv)
percentage of comparisons that accomplish the required
difference (sensitivity)

Given that Qi and Q
′
i must be disjoint, their size

can only be up to half of the size of the original col-
lection. Thus, we use the value c=250 for our exper-
iment1. Table 2 shows the results obtained by apply-
ing the swap method to accuracy, c@1 and UF, with
c = 250, swap-rate ≤ 5, and sensitivity given a con-
fidence of 95% (Column (iv)). The range of values

1We use the same size for experiments in Section 4.2 for
homogeneity reasons.

are similar to the ones obtained for other measures
according to (Sakai, 2007a).

According to Column (i), a higher absolute dif-
ference is required for concluding that a system is
better than another using UF. However, the relative
difference is similar to the one required by c@1.
Thus, similar percentage of comparisons using c@1
and UF accomplish the required difference (Column
(iv)). These results show that their sensitivity values
are similar, and higher than the value for accuracy.

4.4 Qualitative evaluation

In addition to the theoretical study, we undertook a
study to interpret the results obtained by real sys-
tems in a real scenario. The aim is to compare the
results of the proposed c@1 measure with accuracy
in order to compare their behavior. For this purpose
we inspected the real systems runs in the data set.

System c@1 accuracy (i) (ii) (iii)
icia091ro 0.58 0.47 237 156 107
uaic092ro 0.47 0.47 236 264 0
loga092de 0.44 0.37 187 230 83
base092de 0.38 0.38 189 311 0

Table 3: Example of system results in QA@CLEF 2009.
(i) number of questions correctly answered; (ii) number
of questions incorrectly answered; (iii) number of unan-
swered questions.

Table 3 shows a couple of examples where two
systems have answered correctly a similar num-
ber of questions. For example, this is the case of
icia091ro and uaic092ro that, therefore, obtain al-
most the same accuracy value. However, icia091ro
has returned less incorrect answers by not respond-
ing some questions. This is the kind of behavior we
want to measure and reward. Table 3 shows how
accuracy is sensitive only to the number of correct
answers whereas c@1 is able to distinguish when
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systems keep the number of correct answers but re-
duce the number of incorrect ones by not respond-
ing to some. The same reasoning is applicable to
loga092de compared to base092de for German.

5 Related Work

The decision of leaving a query without response is
related to the system ability to measure accurately its
self-confidence about the correctness of their candi-
date answers. Although there have been one attempt
to make the self-confidence score explicit and use
it (Herrera et al., 2005), rankings are, usually, the
implicit way to evaluate this self-confidence. Mean
Reciprocal Rank (MRR) has traditionally been used
to evaluate Question Answering systems when sev-
eral answers per question were allowed and given
in order (Fukumoto et al., 2002; Voorhees and Tice,
1999). However, as it occurs with Accuracy (propor-
tion of questions correctly answered), the risk of giv-
ing a wrong answer is always preferred better than
not responding.

The QA track at TREC 2001 was the first eval-
uation campaign in which systems were allowed
to leave a question unanswered (Voorhees, 2001).
The main evaluation measure was MRR, but perfor-
mance was also measured by means of the percent-
age of answered questions and the portion of them
that were correctly answered. However, no combi-
nation of these two values into a unique measure was
proposed.

TREC 2002 discarded the idea of including unan-
swered questions in the evaluation. Only one answer
by question was allowed and all answers had to be
ranked according to the system’s self-confidence in
the correctness of the answer. Systems were evalu-
ated by means of Confidence Weighted Score (CWS),
rewarding those systems able to provide more cor-
rect answers at the top of the ranking (Voorhees,
2002). The formulation of CWS is the following:

CWS =
1

n

n∑
i=1

C(i)

i
(9)

Where n is the number of questions, and C(i) is
the number of correct answers up to the position i in
the ranking. Formally:

C(i) =
i∑

j=1

I(j) (10)

where I(j) is a function that returns 1 if answer j
is correct and 0 if it is not. The formulation of CWS
is inspired by the Average Precision (AP) over the
ranking for one question:

AP =
1

R

∑
r

I(r)
C(r)

r
(11)

where R is the number of known relevant results
for a topic, and r is a position in the ranking. Since
only one answer per question is requested, R equals
to n (the number of questions) in CWS. However,
in AP formula the summands belong to the posi-
tions of the ranking where there is a relevant result
(product of I(r)), whereas in CWS every position of
the ranking add value to the measure regardless of
whether there is a relevant result or not in that po-
sition. Therefore, CWS gives much more value to
some questions over others: questions whose an-
swers are at the top of the ranking are giving almost
the complete value to CWS, whereas those questions
whose answers are at the bottom of the ranking are
almost not counting in the evaluation.

Although CWS was aimed at promoting the de-
velopment of better self-confidence scores, it was
discussed as a measure for evaluating QA systems
performance. CWS was discarded in the following
campaigns of TREC in favor of accuracy (Voorhees,
2003). Subsequently, accuracy was adopted by the
QA track at the Cross-Language Evaluation Forum
from the beginning (Magnini et al., 2005).

There was an attempt to consider explicitly sys-
tems confidence self-score (Herrera et al., 2005): the
use of the Pearson’s correlation coefficient and the
proposal of measures K and K1 (see Formula 12).
These measures are based in a utility function that
returns -1 if the answer is incorrect and 1 if it is
correct. This positive or negative value is weighted
with the normalized confidence self-score given by
the system to each answer. K is a variation of K1
for being used in evaluations where more than an
answer per question is allowed.

If the self-score is 0, then the answer is ignored
and thus, this measure is permitting to leave a ques-
tion unanswered. A system that always returns a
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K1 =

∑
iϵ{correctanswers}

self score(i)−
∑

iϵ{incorrectanswers}

self score(i)

n
ϵ [−1, 1] (12)

self-score equals to 0 (no answer) obtains a K1 value
of 0. However, the final value of K1 is difficult to
interpret: a positive value does not indicate neces-
sarily more correct answers than incorrect ones, but
that the sum of scores of correct answers is higher
than the sum resulting from the scores of incorrect
answers. This could explain the little success of this
measure for evaluating QA systems in favor, again,
of accuracy measure.

Accuracy is the simplest and most intuitive evalu-
ation measure. At the same time is able to reward
those systems showing good performance. How-
ever, together with MRR belongs to the set of mea-
sures that pushes in favor of giving always a re-
sponse, even wrong, since there is no punishment for
it. Thus, the development of better validation tech-
nologies (systems able to decide whether the can-
didate answers are correct or not) is not promoted,
despite new QA architectures require them.

In effect, most QA systems during TREC and
CLEF campaigns had an upper bound of accuracy
around 60%. An explanation for this was the effect
of error propagation in the most extended pipeline
architecture: Passage Retrieval, Answer Extraction,
Answer Ranking. Even with performances higher
than 80% in each step, the overall performance
drops dramatically just because of the product of
partial performances. Thus, a way to break the
pipeline architecture is the development of a mod-
ule able to decide whether the QA system must con-
tinue or not its searching for new candidate answers:
the Answer Validation module. This idea is behind
the architecture of IBM’s Watson (DeepQA project)
that successfully participated at Jeopardy (Ferrucci
et al., 2010).

In 2006, the first Answer Validation Exercise
(AVE) proposed an evaluation task to advance the
state of the art in Answer Validation technologies
(Peñas et al., 2007). The starting point was the re-
formulation of Answer Validation as a Recognizing
Textual Entailment problem, under the assumption

that hypotheses can be automatically generated by
combining the question with the candidate answer
(Peñas et al., 2008a). Thus, validation was seen as a
binary classification problem whose evaluation must
deal with unbalanced collections (different propor-
tion of positive and negative examples, correct and
incorrect answers). For this reason, AVE 2006 used
F-measure based on precision and recall for correct
answers selection (Peñas et al., 2007). Other op-
tion is an evaluation based on the analysis of Re-
ceiver Operating Characteristic (ROC) space, some-
times preferred for classification tasks with unbal-
anced collections. A comparison of both approaches
for Answer Validation evaluation is provided in (Ro-
drigo et al., 2011).

AVE 2007 changed its evaluation methodology
with two objectives: the first one was to bring sys-
tems based on Textual Entailment to the Automatic
Hypothesis Generation problem which is not part it-
self of the Recognising Textual Entailment (RTE)
task but an Answer Validation need. The second
one was an attempt to quantify the gain in QA per-
formance when more sophisticated validation mod-
ules are introduced (Peñas et al., 2008b). With this
aim, several measures were proposed to assess: the
correct selection of candidate answers, the correct
rejection of wrong answer and finally estimate the
potential gain (in terms of accuracy) that Answer
Validation modules can provide to QA (Rodrigo et
al., 2008). The idea was to give value to the cor-
rectly rejected answers as if they could be correctly
answered with the accuracy shown selecting the cor-
rect answers. This extension of accuracy in the An-
swer Validation scenario inspired the initial develop-
ment of c@1 considering non-response.

6 Conclusions

The central idea of this work is that not respond-
ing has more value than responding incorrectly. This
idea is not new, but despite several attempts in TREC
and CLEF there wasn’t a commonly accepted mea-
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sure to assess non-response. We have studied here
an extension of accuracy measure with this feature,
and with a very easy to understand rationale: Unan-
swered questions have the same value as if a pro-
portion of them had been answered correctly, and
the value they add is related to the performance (ac-
curacy) observed over the answered questions. We
have shown that no other estimation of this value
produce a sensible measure.

We have shown also that the proposed measure
c@1 has a good balance of discrimination power,
stability and sensitivity properties. Finally, we have
shown how this measure rewards systems able to
maintain the same number of correct answers and at
the same time reduce the number of incorrect ones,
by leaving some questions unanswered.

Among other tasks, measure c@1 is well suited
for evaluating Reading Comprehension tests, where
multiple choices per question are given, but only one
is correct. Non-response must be assessed if we
want to measure effective reading and not just the
ability to rank options. This is clearly not enough
for the development of reading technologies.
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