
Proceedings of the 43rd Annual Meeting of the ACL, pages 99–106,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Pseudo-Projective Dependency Parsing

Joakim Nivre and Jens Nilsson
School of Mathematics and Systems Engineering

Växjö University
SE-35195 V̈axjö, Sweden

{nivre,jni }@msi.vxu.se

Abstract

In order to realize the full potential of
dependency-based syntactic parsing, it is
desirable to allow non-projective depen-
dency structures. We show how a data-
driven deterministic dependency parser,
in itself restricted to projective structures,
can be combined with graph transforma-
tion techniques to produce non-projective
structures. Experiments using data from
the Prague Dependency Treebank show
that the combined system can handle non-
projective constructions with a precision
sufficient to yield a significant improve-
ment in overall parsing accuracy. This
leads to the best reported performance for
robust non-projective parsing of Czech.

1 Introduction

It is sometimes claimed that one of the advantages
of dependency grammar over approaches based on
constituency is that it allows a more adequate treat-
ment of languages with variable word order, where
discontinuous syntactic constructions are more com-
mon than in languages like English (Mel’čuk,
1988; Covington, 1990). However, this argument
is only plausible if the formal framework allows
non-projective dependency structures, i.e. structures
where a head and its dependents may correspond
to a discontinuous constituent. From the point of
view of computational implementation this can be
problematic, since the inclusion of non-projective

structures makes the parsing problem more com-
plex and therefore compromises efficiency and in
practice also accuracy and robustness. Thus, most
broad-coverage parsers based on dependency gram-
mar have been restricted to projective structures.
This is true of the widely used link grammar parser
for English (Sleator and Temperley, 1993), which
uses a dependency grammar of sorts, the probabilis-
tic dependency parser of Eisner (1996), and more
recently proposed deterministic dependency parsers
(Yamada and Matsumoto, 2003; Nivre et al., 2004).
It is also true of the adaptation of the Collins parser
for Czech (Collins et al., 1999) and the finite-state
dependency parser for Turkish by Oflazer (2003).

This is in contrast to dependency treebanks, e.g.
Prague Dependency Treebank (Hajič et al., 2001b),
Danish Dependency Treebank (Kromann, 2003),
and the METU Treebank of Turkish (Oflazer et al.,
2003), which generally allow annotations with non-
projective dependency structures. The fact that pro-
jective dependency parsers can never exactly repro-
duce the analyses found in non-projective treebanks
is often neglected because of the relative scarcity of
problematic constructions. While the proportion of
sentences containing non-projective dependencies is
often 15–25%, the total proportion of non-projective
arcs is normally only 1–2%. As long as the main
evaluation metric is dependency accuracy per word,
with state-of-the-art accuracy mostly below 90%,
the penalty for not handling non-projective construc-
tions is almost negligible. Still, from a theoretical
point of view, projective parsing of non-projective
structures has the drawback that it rules out perfect
accuracy even as an asymptotic goal.

99

(“Only one of them concerns quality.”)

R
Z

(Out-of

� �

?

AuxP

P
nich
them

� �
?

Atr

VB
je
is

T
jen

only

� �
?

AuxZ

C
jedna

one-FEM-SG

� �
?

Sb

R
na
to

� �
?

AuxP

N4
kvalitu
quality

?

� �Adv

Z:
.

.)

� �

?

AuxZ

Figure 1: Dependency graph for Czech sentence from the Prague Dependency Treebank1

There exist a few robust broad-coverage parsers
that produce non-projective dependency structures,
notably Tapanainen and Järvinen (1997) and Wang
and Harper (2004) for English, Foth et al. (2004)
for German, and Holan (2004) for Czech. In addi-
tion, there are several approaches to non-projective
dependency parsing that are still to be evaluated in
the large (Covington, 1990; Kahane et al., 1998;
Duchier and Debusmann, 2001; Holan et al., 2001;
Hellwig, 2003). Finally, since non-projective con-
structions often involve long-distance dependencies,
the problem is closely related to the recovery of
empty categories and non-local dependencies in
constituency-based parsing (Johnson, 2002; Dienes
and Dubey, 2003; Jijkoun and de Rijke, 2004; Cahill
et al., 2004; Levy and Manning, 2004; Campbell,
2004).

In this paper, we show how non-projective depen-
dency parsing can be achieved by combining a data-
driven projective parser with special graph transfor-
mation techniques. First, the training data for the
parser is projectivized by applying a minimal num-
ber of lifting operations (Kahane et al., 1998) and
encoding information about these lifts in arc labels.
When the parser is trained on the transformed data,
it will ideally learn not only to construct projective
dependency structures but also to assign arc labels
that encode information about lifts. By applying an
inverse transformation to the output of the parser,
arcs with non-standard labels can be lowered to their
proper place in the dependency graph, giving rise

1The dependency graph has been modified to make the final
period a dependent of the main verb instead of being a depen-
dent of a special root node for the sentence.

to non-projective structures. We call this pseudo-
projective dependency parsing, since it is based on a
notion of pseudo-projectivity (Kahane et al., 1998).

The rest of the paper is structured as follows.
In section 2 we introduce the graph transformation
techniques used to projectivize and deprojectivize
dependency graphs, and in section 3 we describe the
data-driven dependency parser that is the core of our
system. We then evaluate the approach in two steps.
First, in section 4, we evaluate the graph transfor-
mation techniques in themselves, with data from the
Prague Dependency Treebank and the Danish De-
pendency Treebank. In section 5, we then evaluate
the entire parsing system by training and evaluating
on data from the Prague Dependency Treebank.

2 Dependency Graph Transformations

We assume that the goal in dependency parsing is to
construct a labeled dependency graph of the kind de-
picted in Figure 1. Formally, we define dependency
graphs as follows:

1. LetR = {r1, . . . , rm} be the set of permissible
dependency types (arc labels).

2. A dependency graph for a string of words
W = w1· · ·wn is a labeled directed graph
D = (W,A), where

(a) W is the set of nodes, i.e. word tokens in
the input string, ordered by a linear prece-
dence relation<,

(b) A is a set of labeled arcs(wi, r, wj), where
wi, wj ∈W , r ∈ R,

(c) for everywj ∈W , there is at most one arc
(wi, r, wj) ∈ A.

100

(“Only one of them concerns quality.”)

R
Z

(Out-of

� �
?

AuxP

P
nich
them

� �
?

Atr

VB
je
is

T
jen

only

� �
?

AuxZ

C
jedna

one-FEM-SG

� �
?

Sb

R
na
to

� �
?

AuxP

N4
kvalitu
quality

?

� �Adv

Z:
.

.)

� �

?

AuxZ

Figure 2: Projectivized dependency graph for Czech sentence

3. A graphD = (W,A) is well-formed iff it is
acyclic and connected.

If (wi, r, wj) ∈ A, we say thatwi is the head ofwj

andwj a dependent ofwi. In the following, we use
the notationwi

r→ wj to mean that(wi, r, wj) ∈ A;
we also usewi → wj to denote an arc with unspeci-
fied label andwi →∗ wj for the reflexive and transi-
tive closure of the (unlabeled) arc relation.

The dependency graph in Figure 1 satisfies all the
defining conditions above, but it fails to satisfy the
condition of projectivity (Kahane et al., 1998):

1. An arcwi→wk is projective iff, for every word
wj occurring betweenwi andwk in the string
(wi <wj <wk or wi >wj >wk), wi →∗ wj .

2. A dependency graphD = (W,A) is projective
iff every arc inA is projective.

The arc connecting the headjedna(one) to the de-
pendentZ (out-of) spans the tokenje (is), which is
not dominated byjedna.

As observed by Kahane et al. (1998), any (non-
projective) dependency graph can be transformed
into a projective one by a lifting operation, which
replaces each non-projective arcwj → wk by a pro-
jective arcwi → wk such thatwi →∗ wj holds in
the original graph. Here we use a slightly different
notion of lift, applying to individual arcs and moving
their head upwards one step at a time:

L IFT(wj → wk) =

{
wi → wk if wi → wj

undefined otherwise

Intuitively, lifting an arc makes the wordwk depen-
dent on the headwi of its original headwj (which is

unique in a well-formed dependency graph), unless
wj is a root in which case the operation is undefined
(but thenwj → wk is necessarily projective if the
dependency graph is well-formed).

Projectivizing a dependency graph by lifting non-
projective arcs is a nondeterministic operation in the
general case. However, since we want to preserve
as much of the original structure as possible, we
are interested in finding a transformation that in-
volves a minimal number of lifts. Even this may
be nondeterministic, in case the graph contains sev-
eral non-projective arcs whose lifts interact, but we
use the following algorithm to construct a minimal
projective transformationD′ = (W,A′) of a (non-
projective) dependency graphD = (W,A):

PROJECTIVIZE(W , A)
1 A′ ← A
2 while (W,A′) is non-projective
3 a← SMALLEST-NONP-ARC(A′)
4 A′ ← (A′ − {a}) ∪ {L IFT(a)}
5 return (W,A′)

The function SMALLEST-NONP-ARC returns the
non-projective arc with the shortest distance from
head to dependent (breaking ties from left to right).
Applying the function PROJECTIVIZE to the graph
in Figure 1 yields the graph in Figure 2, where the
problematic arc pointing toZ has been lifted from
the original headjedna to the ancestorje. Using
the terminology of Kahane et al. (1998), we say that
jednais thesyntactic headof Z, while je is its linear
headin the projectivized representation.

Unlike Kahane et al. (1998), we do not regard a
projectivized representation as the final target of the
parsing process. Instead, we want to apply an in-

101

Lifted arc label Path labels Number of labels
Baseline d p n
Head d↑h p n(n + 1)
Head+Path d↑h p↓ 2n(n + 1)
Path d↑ p↓ 4n

Table 1: Encoding schemes (d = dependent,h = syntactic head,p = path;n = number of dependency types)

verse transformation to recover the underlying (non-
projective) dependency graph. In order to facilitate
this task, we extend the set of arc labels to encode
information about lifting operations. In principle, it
would be possible to encode the exact position of the
syntactic head in the label of the arc from the linear
head, but this would give a potentially infinite set of
arc labels and would make the training of the parser
very hard. In practice, we can therefore expect a
trade-off such that increasing the amount of infor-
mation encoded in arc labels will cause an increase
in the accuracy of the inverse transformation but a
decrease in the accuracy with which the parser can
construct the labeled representations. To explore this
tradeoff, we have performed experiments with three
different encoding schemes (plus a baseline), which
are described schematically in Table 1.

The baseline simply retains the original labels for
all arcs, regardless of whether they have been lifted
or not, and the number of distinct labels is therefore
simply the numbern of distinct dependency types.2

In the first encoding scheme, calledHead, we use
a new labeld↑h for each lifted arc, whered is the
dependency relation between the syntactic head and
the dependent in the non-projective representation,
andh is the dependency relation that the syntactic
head has to its own head in the underlying structure.
Using this encoding scheme, the arc fromje to Z
in Figure 2 would be assigned the label AuxP↑Sb
(signifying an AuxP that has been lifted from a Sb).
In the second scheme,Head+Path, we in addition
modify the label of every arc along the lifting path
from the syntactic to the linear head so that if the
original label isp the new label isp↓. Thus, the arc
from je to jednawill be labeledSb↓ (to indicate that
there is a syntactic head below it). In the third and
final scheme, denotedPath, we keep the extra infor-

2Note that this is a baseline for the parsing experiment only
(Experiment 2). For Experiment 1 it is meaningless as a base-
line, since it would result in 0% accuracy.

mation on path labels but drop the information about
the syntactic head of the lifted arc, using the labeld↑
instead ofd↑h (AuxP↑ instead of AuxP↑Sb).

As can be seen from the last column in Table 1,
both Head andHead+Path may theoretically lead
to a quadratic increase in the number of distinct arc
labels (Head+Pathbeing worse thanHead only by
a constant factor), while the increase is only linear in
the case ofPath. On the other hand, we can expect
Head+Pathto be the most useful representation for
reconstructing the underlying non-projective depen-
dency graph. In approaching this problem, a vari-
ety of different methods are conceivable, including
a more or less sophisticated use of machine learn-
ing. In the present study, we limit ourselves to an
algorithmic approach, using a deterministic breadth-
first search. The details of the transformation proce-
dure are slightly different depending on the encod-
ing schemes:

• Head: For every arc of the formwi
d↑h−→ wn,

we search the graph top-down, left-to-right,
breadth-first starting at the head nodewi. If we

find an arcwl
h−→ wm, called atarget arc, we

replacewi
d↑h−→ wn by wm

d−→ wn; otherwise

we replacewi
d↑h−→ wn by wi

d−→ wn (i.e. we
let the linear head be the syntactic head).

• Head+Path: Same asHead, but the search

only follows arcs of the formwj
p↓−→ wk and a

target arc must have the formwl
h↓−→ wm; if no

target arc is found,Head is used as backoff.

• Path: Same asHead+Path, but a target arc

must have the formwl
p↓−→ wm and no out-

going arcs of the formwm
p′↓−→ wo; no backoff.

In section 4 we evaluate these transformations with
respect to projectivized dependency treebanks, and
in section 5 they are applied to parser output. Before

102

Feature type Top−1 Top Next Next+1 Next+2 Next+3
Word form + + + +
Part-of-speech + + + + + +
Dep type of head +

leftmost dep + +
rightmost dep +

Table 2: Features used in predicting the next parser action

we turn to the evaluation, however, we need to intro-
duce the data-driven dependency parser used in the
latter experiments.

3 Memory-Based Dependency Parsing

In the experiments below, we employ a data-driven
deterministic dependency parser producing labeled
projective dependency graphs,3 previously tested on
Swedish (Nivre et al., 2004) and English (Nivre and
Scholz, 2004). The parser builds dependency graphs
by traversing the input from left to right, using a
stack to store tokens that are not yet complete with
respect to their dependents. At each point during the
derivation, the parser has a choice between pushing
the next input token onto the stack – with or with-
out adding an arc from the token on top of the stack
to the token pushed – and popping a token from the
stack – with or without adding an arc from the next
input token to the token popped. More details on the
parsing algorithm can be found in Nivre (2003).

The choice between different actions is in general
nondeterministic, and the parser relies on a memory-
based classifier, trained on treebank data, to pre-
dict the next action based on features of the cur-
rent parser configuration. Table 2 shows the features
used in the current version of the parser. At each
point during the derivation, the prediction is based
on six word tokens, the two topmost tokens on the
stack, and the next four input tokens. For each to-
ken, three types of features may be taken into ac-
count: the word form; the part-of-speech assigned
by an automatic tagger; and labels on previously as-
signed dependency arcs involving the token – the arc
from its head and the arcs to its leftmost and right-
most dependent, respectively. Except for the left-

3The graphs satisfy all the well-formedness conditions given
in section 2 except (possibly) connectedness. For robustness
reasons, the parser may output a set of dependency trees instead
of a single tree.

most dependent of the next input token, dependency
type features are limited to tokens on the stack.

The prediction based on these features is ak-
nearest neighbor classification, using theIB1 algo-
rithm andk = 5, the modified value difference met-
ric (MVDM) and class voting with inverse distance
weighting, as implemented in the TiMBL software
package (Daelemans et al., 2003). More details on
the memory-based prediction can be found in Nivre
et al. (2004) and Nivre and Scholz (2004).

4 Experiment 1: Treebank Transformation

The first experiment uses data from two dependency
treebanks. The Prague Dependency Treebank (PDT)
consists of more than 1M words of newspaper text,
annotated on three levels, the morphological, ana-
lytical and tectogrammatical levels (Hajič, 1998).
Our experiments all concern the analytical annota-
tion, and the first experiment is based only on the
training part. The Danish Dependency Treebank
(DDT) comprises about 100K words of text selected
from the Danish PAROLE corpus, with annotation
of primary and secondary dependencies (Kromann,
2003). The entire treebank is used in the experiment,
but only primary dependencies are considered.4 In
all experiments, punctuation tokens are included in
the data but omitted in evaluation scores.

In the first part of the experiment, dependency
graphs from the treebanks were projectivized using
the algorithm described in section 2. As shown in
Table 3, the proportion of sentences containing some
non-projective dependency ranges from about 15%
in DDT to almost 25% in PDT. However, the over-
all percentage of non-projective arcs is less than 2%
in PDT and less than 1% in DDT. The last four

4If secondary dependencies had been included, the depen-
dency graphs would not have satisfied the well-formedness con-
ditions formulated in section 2.

103

Lifts in projectivization
Data set # Sentences % NonP # Tokens % NonP 1 2 3 >3
PDT training 73,088 23.15 1,255,333 1.81 93.79 5.60 0.51 0.11
DDT total 5,512 15.48 100,238 0.94 79.49 13.28 4.36 2.87

Table 3: Non-projective sentences and arcs in PDT and DDT (NonP = non-projective)

Data set Head H+P Path
PDT training (28 labels) 92.3 (230) 99.3 (314) 97.3 (84)
DDT total (54 labels) 92.3 (123) 99.8 (147) 98.3 (99)

Table 4: Percentage of non-projective arcs recovered correctly (number of labels in parentheses)

columns in Table 3 show the distribution of non-
projective arcs with respect to the number of lifts
required. It is worth noting that, although non-
projective constructions are less frequent in DDT
than in PDT, they seem to be more deeply nested,
since only about 80% can be projectivized with a
single lift, while almost 95% of the non-projective
arcs in PDT only require a single lift.

In the second part of the experiment, we applied
the inverse transformation based on breadth-first
search under the three different encoding schemes.
The results are given in Table 4. As expected, the
most informative encoding,Head+Path, gives the
highest accuracy with over 99% of all non-projective
arcs being recovered correctly in both data sets.
However, it can be noted that the results for the least
informative encoding,Path, are almost comparable,
while the third encoding,Head, gives substantially
worse results for both data sets. We also see that
the increase in the size of the label sets forHead
and Head+Path is far below the theoretical upper
bounds given in Table 1. The increase is gener-
ally higher for PDT than for DDT, which indicates a
greater diversity in non-projective constructions.

5 Experiment 2: Memory-Based Parsing

The second experiment is limited to data from PDT.5

The training part of the treebank was projectivized
under different encoding schemes and used to train
memory-based dependency parsers, which were run
on the test part of the treebank, consisting of 7,507

5Preliminary experiments using data from DDT indicated
that the limited size of the treebank creates a severe sparse data
problem with respect to non-projective constructions.

sentences and 125,713 tokens.6 The inverse trans-
formation was applied to the output of the parsers
and the result compared to the gold standard test set.

Table 5 shows the overall parsing accuracy at-
tained with the three different encoding schemes,
compared to the baseline (no special arc labels) and
to training directly on non-projective dependency
graphs. Evaluation metrics used are Attachment
Score (AS), i.e. the proportion of tokens that are at-
tached to the correct head, and Exact Match (EM),
i.e. the proportion of sentences for which the depen-
dency graph exactly matches the gold standard. In
the labeled version of these metrics (L) both heads
and arc labels must be correct, while the unlabeled
version (U) only considers heads.

The first thing to note is that projectivizing helps
in itself, even if no encoding is used, as seen from
the fact that the projective baseline outperforms the
non-projective training condition by more than half
a percentage point on attachment score, although the
gain is much smaller with respect to exact match.
The second main result is that the pseudo-projective
approach to parsing (using special arc labels to guide
an inverse transformation) gives a further improve-
ment of about one percentage point on attachment
score. With respect to exact match, the improvement
is even more noticeable, which shows quite clearly
that even if non-projective dependencies are rare on
the token level, they are nevertheless important for
getting the global syntactic structure correct.

All improvements over the baseline are statisti-
cally significant beyond the 0.01 level (McNemar’s

6The part-of-speech tagging used in both training and testing
was the uncorrected output of an HMM tagger distributed with
the treebank; cf. Hajič et al. (2001a).

104

Encoding UAS LAS UEM LEM
Non-projective 78.5 71.3 28.9 20.6
Baseline 79.1 72.0 29.2 20.7
Head 80.1 72.8 31.6 22.2
Head+Path 80.0 72.8 31.8 22.4
Path 80.0 72.7 31.6 22.0

Table 5: Parsing accuracy (AS = attachment score, EM = exact match; U = unlabeled, L = labeled)

Unlabeled Labeled
Encoding P R F P R F
Head 61.3 54.1 57.5 55.2 49.8 52.4
Head+Path 63.9 54.9 59.0 57.9 50.6 54.0
Path 58.2 49.5 53.4 51.0 45.7 48.2

Table 6: Precision, recall and F-measure for non-projective arcs

test). By contrast, when we turn to a comparison
of the three encoding schemes it is hard to find any
significant differences, and the overall impression is
that it makes little or no difference which encoding
scheme is used, as long as there is some indication
of which words are assigned their linear head instead
of their syntactic head by the projective parser. This
may seem surprising, given the experiments reported
in section 4, but the explanation is probably that the
non-projective dependencies that can be recovered at
all are of the simple kind that only requires a single
lift, where the encoding of path information is often
redundant. It is likely that the more complex cases,
where path information could make a difference, are
beyond the reach of the parser in most cases.

However, if we consider precision, recall and F-
measure on non-projective dependencies only, as
shown in Table 6, some differences begin to emerge.
The most informative scheme,Head+Path, gives
the highest scores, although with respect toHead
the difference is not statistically significant, while
the least informative scheme,Path – with almost the
same performance on treebank transformation – is
significantly lower (p < 0.01). On the other hand,
given that all schemes have similar parsing accuracy
overall, this means that thePath scheme is the least
likely to introduce errors on projective arcs.

The overall parsing accuracy obtained with the
pseudo-projective approach is still lower than for the
best projective parsers. Although the best published
results for the Collins parser is 80% UAS (Collins,

1999), this parser reaches 82% when trained on the
entire training data set, and an adapted version of
Charniak’s parser (Charniak, 2000) performs at 84%
(Jan Hajǐc, pers. comm.). However, the accuracy is
considerably higher than previously reported results
for robust non-projective parsing of Czech, with a
best performance of 73% UAS (Holan, 2004).

Compared to related work on the recovery of
long-distance dependencies in constituency-based
parsing, our approach is similar to that of Dienes
and Dubey (2003) in that the processing of non-local
dependencies is partly integrated in the parsing pro-
cess, via an extension of the set of syntactic cate-
gories, whereas most other approaches rely on post-
processing only. However, while Dienes and Dubey
recognize empty categories in a pre-processing step
and only let the parser find their antecedents, we use
the parser both to detect dislocated dependents and
to predict either the type or the location of their syn-
tactic head (or both) and use post-processing only to
transform the graph in accordance with the parser’s
analysis.

6 Conclusion

We have presented a new method for non-projective
dependency parsing, based on a combination of
data-driven projective dependency parsing and
graph transformation techniques. The main result is
that the combined system can recover non-projective
dependencies with a precision sufficient to give a
significant improvement in overall parsing accuracy,

105

especially with respect to the exact match criterion,
leading to the best reported performance for robust
non-projective parsing of Czech.

Acknowledgements

This work was supported in part by the Swedish
Research Council (621-2002-4207). Memory-based
classifiers for the experiments were created using
TiMBL (Daelemans et al., 2003). Special thanks to
Jan Hajǐc and Matthias Trautner Kromann for assis-
tance with the Czech and Danish data, respectively,
and to Jan Hajǐc, Toḿǎs Holan, Dan Zeman and
three anonymous reviewers for valuable comments
on a preliminary version of the paper.

References
Cahill, A., Burke, M., O’Donovan, R., Van Genabith, J. and

Way, A. 2004. Long-distance dependency resolution in
automatically acquired wide-coverage PCFG-based LFG ap-
proximations. InProceedings of ACL.

Campbell, R. 2004. Using linguistic principles to recover
empty categories. InProceedings of ACL.

Charniak, E. 2000. A maximum-entropy-inspired parser. In
Proceedings of NAACL.

Collins, M., Hajǐc, J., Brill, E., Ramshaw, L. and Tillmann, C.
1999. A statistical parser for Czech. InProceedings of ACL.

Collins, M. 1999.Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania.

Covington, M. A. 1990. Parsing discontinuous constituents in
dependency grammar.Computational Linguistics, 16:234–
236.

Daelemans, W., Zavrel, J., van der Sloot, K. and van den Bosch,
A. 2003. TiMBL: Tilburg Memory Based Learner, version
5.0, Reference Guide. Technical Report ILK 03-10, Tilburg
University, ILK.

Dienes, P. and Dubey, A. 2003. Deep syntactic processing by
combining shallow methods. InProceedings of ACL.

Duchier, D. and Debusmann, R. 2001. Topological dependency
trees: A constraint-based account of linear precedence. In
Proceedings of ACL.

Eisner, J. M. 1996. Three new probabilistic models for depen-
dency parsing: An exploration. InProceedings of COLING.

Foth, K., Daum, M. and Menzel, W. 2004. A broad-coverage
parser for German based on defeasible constraints. InPro-
ceedings of KONVENS.

Hajič, J., Krbec, P., Oliva, K., Kveton, P. and Petkevic, V. 2001.
Serial combination of rules and statistics: A case study in
Czech tagging. InProceedings of ACL.

Hajič, J., Vidova Hladka, B., Panevová, J., Hajǐcová, E., Sgall,
P. and Pajas, P. 2001. Prague Dependency Treebank 1.0.
LDC, 2001T10.

Hajič, J. 1998. Building a syntactically annotated corpus:
The Prague Dependency Treebank. InIssues of Valency and
Meaning, pages 106–132. Karolinum.

Hellwig, P. 2003. Dependency unification grammar. InDepen-
dency and Valency, pages 593–635. Walter de Gruyter.

Holan, T., Kubǒn, V. and Pĺatek, M. 2001. Word-order re-
laxations and restrictions within a dependency grammar. In
Proceedings of IWPT.

Holan, T. 2004. Tvorba zavislostniho syntaktickeho analyza-
toru. InProceedings of MIS’2004.

Jijkoun, V. and de Rijke, M. 2004. Enriching the output of
a parser using memory-based learning. InProceedings of
ACL.

Johnson, M. 2002. A simple pattern-matching algorithm for re-
covering empty nodes and their antecedents. InProceedings
of ACL.

Kahane, S., Nasr, A. and Rambow, O. 1998. Pseudo-
projectivity: A polynomially parsable non-projective depen-
dency grammar. InProceedings of ACL-COLING.

Kromann, M. T. 2003. The Danish Dependency Treebank and
the DTAG treebank tool. InProceedings of TLT 2003.

Levy, R. and Manning, C. 2004. Deep dependencies from
context-free statistical parsers: Correcting the surface depen-
dency approximation. InProceedings of ACL.

Mel’ čuk, I. 1988. Dependency Syntax: Theory and Practice.
State University of New York Press.

Nivre, J. and Scholz, M. 2004. Deterministic dependency pars-
ing of English text. InProceedings of COLING.

Nivre, J., Hall, J. and Nilsson, J. 2004. Memory-based depen-
dency parsing. InProceedings of CoNLL.

Nivre, J. 2003. An efficient algorithm for projective depen-
dency parsing. InProceedings of IWPT.

Oflazer, K., Say, B., Hakkani-T̈ur, D. Z. and T̈ur, G. 2003.
Building a Turkish treebank. InTreebanks: Building and
Using Parsed Corpora, pages 261–277. Kluwer Academic
Publishers.

Oflazer, K. 2003. Dependency parsing with an extended finite-
state approach.Computational Linguistics, 29:515–544.

Sleator, D. and Temperley, D. 1993. Parsing English with a
link grammar. InProceedings of IWPT.

Tapanainen, P. and Järvinen, T. 1997. A non-projective depen-
dency parser. InProceedings of ANLP.

Wang, W. and Harper, M. P. 2004. A statistical constraint
dependency grammar (CDG) parser. InProceedings of the
Workshop in Incremental Parsing (ACL).

Yamada, H. and Matsumoto, Y. 2003. Statistical dependency
analysis with support vector machines. InProceedings of
IWPT.

106

