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Abstract 

This paper describes a framework to extract the effective correction rules from the 

sentence-aligned corpus and show a practical application: auto-editing using the found rules. 

The framework exploits the methodology of finding Levenshtein distance between sentences 

to identify the key parts of the rules and then use the editing corpus to filter, condense and 

refine the rules. We produce the rule candidates of such form, A => B, where A stands for the 

erroneous pattern and B is the correct pattern.  

Our framework is language independent, therefore can be applied to other languages easily. 

The evaluation of the discovered rules reveals that 67.2% of the top 1500 ranked rules are 

annotated as correct or mostly correct by experts. Based on the rules, we create an online 

auto-editing system for demo on http://mslab.csie.ntu.edu.tw/~kw/new_demo.html. 
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1 Introduction 

Nowadays people write blogs, diaries, and reports not only in their native language but 

sometimes using a language they are not familiar with. During the process of writing, people 

sometimes make spelling mistakes, grammatical errors, or inappropriate lexical usage in 

writing, in particular if not using their native language. Therefore, it has become an important 

and practical research issue for NLP researchers on how to provide editorial assistance 

automatically and effectively. Especially for the second language learners, instant response to 

their writing indicating which part might be incorrect and then providing the auto-editing 

candidates would improve not only the writing itself but also the understanding of the 

language. 

Editing is an inevitable part in learning language and can be classified into human editing and 

machine editing. Human editing is inefficient when the number of article is increasing and 

also inconvenient for people who want to edit their daily documents. Besides, human editing 

involves subjective opinions which are different to machine editing which depends on the 

objective experiment results. 

Despite the growing demand of editorial assistance tools, the existing ones still have much 

room for improvement. Grammar checker provided by Microsoft Word has its known 

deficiency as being language dependent and covering only a small portion of errors without 

explicitly revealing the correction mechanism behind it. This paper tries to demonstrate an 

auto-editing system based on the correction rules mined from online editing websites. 

In this paper, we focus on two research goals. First, we want to design a strategy that 

identifies effective rules automatically and efficiently from editing databases. Second, we 

want to design an auto-editing system based on the discovered rules. 

Our method is language independent, therefore can be easily applied to another language. 

Our evaluation reveals that among the top 1500 rules the system found, 67.2% of them are 

regarded as correct or mostly correct. 

The remainder of the paper is organized as follows: Section 2 describe the related work on 

detecting erroneous patterns. Section 3 lays out our methodology. Section 4 describes 

experiment and our demo system. Section 5 concludes our study. 

 

2 Related Works 

Previous approaches can be classified into two categories. The first category detects 

erroneous patterns based on rules and the second category makes use of statistical techniques. 

2.1 Knowledge-Based Method 

Some methods detecting erroneous patterns based on the manually created rules are 

proven to be effective in detecting grammar errors [1]. Lisa N. Michaud develops a 

system including error identification model and response generation model using 



 

knowledge bases which cover general information about analyzing grammar structure 

and specific information of a user’s learning history [2]. Besides, Emily M. Bender 

present a tutorial system based on computational grammar augmented with mal-rules for 

analysis, error diagnosis, and semantics-centered generation of correct forms [3]. 

However, the manually designed rules consume labor and time and require language 

experts to do that, which limits the generalization of such method and cannot be easily 

applied to different languages.  

2.2 Statistical Techniques 

As discussed in Section 2.1, rule-based methods have some apparent shortcomings. 

Rather than asking experts to annotate corpus, some papers propose statistical models to 

identify erroneous patterns. An unsupervised method to detect grammatical errors by 

inferring negative evidences reaches 80% precision and 20% recall but their system is 

only effective in recognizing certain grammatical errors and detect only about one-fifth 

as many errors as a human judge does [4]. Some other papers focus on detecting 

particular errors, such as preposition errors [5], disagreement on the quantifier and the 

noun [6]. Others treat the detection of erroneous sentences as a binary classification 

problem and propose a new feature called “Labeled Sequential Patterns (LSP)” which is 

compared to the other four features including two scores produced by toolkit, lexical 

collocation [11], and function word density. The average accuracy of LSP is 79.63% and 

beats the other four features. Furthermore, the existence of time word and function word 

in a sentence is proven to be important. While in this way, one can only know whether a 

sentence is correct and would not have a clue about how to correct errors [7]. Finally, 

some researchers treat detecting erroneous patterns as a statistical machine translation 

problem. They believe the erroneous sentences and the correct sentences are two 

different languages. However, error correction is intrinsically different from translation 

and there is no apparent evidence till now whether the existing machine translation 

techniques are suitable for such purpose [8][9].  

Our work is different from the previous work in two major respects. First, we treat error 

detection as a pattern mining problem to extract effective rules from editing corpus. 

Second, we do not use any context, syntactic, or grammatical information in this paper. 

 

 

 

 

 

 



 

 

 

 

 

3 Methodology 

3.1 Overview 

 

Our framework consists of 

refining the rules. 

 

3.2 Corpus Description

We retrieve 310967 parallel 

sentence from an online-editing website

people to write diaries in their second language and the diaries 

mistakes) would be edited by some 

corresponding language. Besides, the edited part in a

sentence (not cross sentences)

easily from the website. 

Figure 1. System Overview 

framework consists of two parts. First it produces the rules and next it focuses on

Description 

parallel pairs of sentences, one erroneous sentence and one correct 

editing website Lang-8 (http://lang-8.com/). The website allow

people to write diaries in their second language and the diaries (which may 

be edited by some volunteer members who 

corresponding language. Besides, the edited part in an article is restricted 

(not cross sentences). Consequently, we can retrieve the sentence

 

 

 

and next it focuses on 

one erroneous sentence and one correct 

. The website allows 

which may contain some 

who are native in the 

n article is restricted a single 

the sentence-aligned data 



 

In the following chapters, we use Wi to represent the erroneous sentence of the i-th pair 

of sentence in the corpus and Ci represents the corresponding correct sentence to Wi. 

Besides, S+ is defined as a collection of all correct sentences in the corpus, while S- is 

defined as a collection of all erroneous sentences. 

3.3 Producing Rules 

Before describing our method, we would like to provide some formal definitions for 

erroneous and correct patterns, rules, applying rules, and frequency of patterns:  

 

Definition of (erroneous and correct) patterns: A pattern is a series of consecutive words 

(or characters) which belong to a subsequence of a sentence. An erroneous pattern 

represents such sequence that is believed to be wrong, and a correct pattern is the one 

that is believed to be correct. 

 

Definition of rule: A rule K can be written as KL => KR. The left-hand side of the arrow, 

KL, is the erroneous pattern and the right-hand side of the arrow, KR, is correct pattern 

which KL should be transformed to. 

 

Definition of applying a rule to a sentence: Given a rule K : KL => KR, and a sentence T, 

if KL exist in the T, we replace the KL in T to KR. Such process is considered as applying 

rule K to sentence T. 

 

Definition of freS+(KL): the occurrence frequency of a pattern KL in S+ 

 

To discover a rule A� B from the editing corpus, we need to first identify the plausible 

left and right hand side of the rule. This is by no means a trivial task, and the fact that 

there could be multiple choices of such rule can only make such tasks even harder. One 

intuitive method is to compare the word set existing in Wi and Ci and create the patterns 

using the difference among them. However, such the intuitive method suffers certain 

deficiency such as provided by the following examples. 

Erroneous : “Open the light” 

Correct  : “Turn the light on ” 

 

Erroneous : “I with him had dinner” 

Correct  : “I had dinner with him” 

The difference set between the first pairs are {open, turn, on} while that of the second 

pairs is an empty set {} since the order is not considered. It is not clear how such 

difference set can lead to both erroneous and correct patterns. 

The approach we proposed is to exploit the procedure of calculating the word-level 



 

Levenshtein distance which is often called editing distance [10]. The Levenshtein 

distance is defined as the minimum number of edits needed to transform one string into 

the other, with the allowable edit operations being insertion, deletion, or substitution of a 

single character. The insert operation inserts a word X in the erroneous sentence, which 

implies there is a word X in the correct sentence that has potential to be involved in the 

correct pattern KR for a rule KL�KR. Similarly, the delete operation removes one word Y 

from the erroneous sentence to become the correct one, and this word Y is likely to be 

involved in the erroneous pattern KL. Finally, when a substitute operation is performed, 

the word to be replaced should appear in KL while the replacing word shall be involved 

in KR. Similarly, the edit distance between two sentences can be defined as the minimum 

number of allowable operations required to transform from one of them into the other, 

given each unit of transformation is based on words instead of characters. 

Here we argue that the words operated through the editing-distance process from an 

erroneous to a correct sentence have higher chance to involve in the patterns for rules. 

For example, if we apply an editing distance approach to the following sentence pairs, 

multiple outputs such can be acquired such as the ones in table 1 and table 2: 

Erroneous : “I still don't know where is it in the movie” 

Correct : “I still don't understand where it is in the movie” 

Based on the two editing-distance results shown in table 1 and 2, it is possible to obtain 

that the four words {it, is, know, understand} are plausible words to appear in the rule KL 

� KR. 

 

Table 1. one of the editing results for edit distance 

operation position Involved word 

Insert 6 it 

delete 8 it 

substitute 4 know→understand 

Table 2. another editing result for edit distance 

operation position Involved word 

insert 8 Is 

delete 6 Is 

substitute 4 know→understand 

 

For each pair of Wi and Ci, we can collect all the involving words after producing the 

Levenshtein distance. Figure 2. shows the pseudo code. We exploit a dynamic 

programming approach to improve its efficienscy.  



 

 

Figure 2. pseudo code of producing rules 

 

After applying the modified Levenshtein distance algorithm, it is possible to obtain a set 

of involving words Ri as follows. 

}know , understand,it  , is{Ri =  

However, to form a reasonable pattern, the words in set Ri is not sufficient. They should 

be combined with other terms. Ideally KL and KR must consist of some words from Ri 

and some from the rest of the sentence. Therefore for each pair of Wi and Ci in the corpus, 

we retrieve consecutive word patterns in which at least one word is from Ri. For example, 

based on Ri, the followings are rule candidates. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3. pattern candidates for forming a rule 

Candidates for KL 

(word length ≤ 4) 

Candidates for KR 

(word length ≤ 4) 

don’t know 

know where 

where is 

is it 

it in 

still don’t know 

don’t know where 

know where is 

where is it 

is it in 

it in the 

I still don’t know 

still don’t know where 

don’t know where is 

know where is it 

where is it in 

is it in the 

it in the movie 

don’t understand 

understand where 

where it 

it is 

is in 

still don’t understand 

don’t understand where 

understand where it 

where it is 

it is in 

is in the 

I still don’t understand 

still don’t understand where 

don’t understand where it 

understand where it is 

where it is in 

it is in the 

is in the movie 

 

Next, we match each plausible candidate for KL to each candidate for KR to form a 

plausible rule. For each plausible rule, we then check its feasibility by applying it on Wi 

to see if the correct sentence Ci can be produced. The infeasible rules will be ignored. 

 

Definition of feasible rule: Given a rule K : KL => KR, if there exists at least one 

erroneous sentence in corpus can be corrected using K , then K is considered as a 

feasible rule. 

 

3.4 Refining Rules 

So far, we have produced several rules, some makes more sense and some might not. In 

this section, we describe how to assess the quality of the rules. 

 

 

 



 

Table 4. observation on the frequency 

 pattern freS+       pattern freS+ 

erroneous went to shopping 10     Erroneous am so exciting 0 

correct went shopping 205  Correct am so excited 71 

 

We believe the erroneous patterns KL should not occur in the correct sentences too 

frequently (otherwise it shall have been replaced by the correct one KR), therefore 

consider freS+ as a property metric to evaluate the quality of a rule. According to the real 

experiment shown in Table 4, the frequency of the erroneous patterns seems to occur less 

frequently in the correct corpus, freS+, comparing to the correct ones. 

 

Next, we condense the rules according to their freS+. The condensed rule is shorter than 

the original one and is supposed to be more general (i.e. can cover more sentences). For 

example, in the following sentences, the condensed rule is more general and reasonable 

since the subject ‘I’ has nothing to do with the erroneous pattern.  

Erroneous : “I went to shopping and had dinner with my friend yesterday.” 

Correct   : “I went shopping and had dinner with my friend yesterday.” 

Rule     : “I went to shopping” => “I went shopping” 

Condensed Rule     : “went to shopping” => “went shopping” 

To obtain the shortest possible rules for auto-editing, we propose a simple idea to check 

if the left hand side KL can be condensed to a shorter one, without boosting its freS+ 

significantly. If yes, then it implies we have found a shorter erroneous pattern which also 

occurs rarely in the correct corpus. For example, for the erroneous pattern “I went to 

shopping”, table 5 shows the frequency of each possible subsequence in the correct 

corpus. Apparently “am worry about” is the most condensed rule without occurring more 

than four times in the correct corpus.  

 

Table 5. example for condensing a rule 

 

sentence segment worry worry about am worry 
am worry 

about 

I am worry 

about 

frequency 1446 225 206 3 1 

 

Below is the algorithm for rule condensing. If the frequency of the condensed erroneous 

rule is smaller than a pre-defined frequency Ncondense which is observed from experiment, 



 

we will accept it as a condensed erroneous pattern. We remove the same words from the 

KR to produce the corresponding correct pattern. The condense process repeats until any 

of the word to be removed in KL does not occur in the KR. The pseudo code of 

condensing rules is shown in Figuire 3. 

 

 

Figure 3. pseudo code of condensing rules 

 

The final step of the refinement is to rank the rules based on their qualities. We propose 

two plausible strategies to rank the rules. First, it is possible to rank the rules according 

to its freS+ from low to high. That says, a rule is less likely to be correct something right 

into something wrong if its freS+ is low. Second, it is possible to rank the rules according 

to the number of sentences in the corpus that can be applied using it. The first strategy is 

similar to the definition of precision while the second is closer to the meaning of recall.  

 

4 Experiments 

We retrieve 310967 pairs of English sentences from the “Lang-8” as our parallel corpus and 

the system finally produces 110567 rules. In the evaluation, we invite three people major in 

English to annotate our rules. Then we demonstrate an auto-editing system to show how such 

rules can be applied. 

 

4.1 Evaluation 

We rank all rules according to its freS+
 
and four English-major people are invited to 

annotate the top 1500 ranked rules and we have two annotations for each rule. The labels 

for annotations are correct, mostly correct, mostly wrong, wrong, and depends on context.  

The following tables are the experiment results. Besides, there is fair agreement between 

the two annotations by kappa value equals to 0.49835. 



 

 

Table 6. the average result of top 1500 annotated rules 

 
correct mostly correct mostly wrong wrong depends on context 

R1~R1500 53.96% 12.96% 0.92% 4.5% 27.66% 

 

4.2 Discussion 

We also perform some manual analysis on the rules. The result is shown in Table 7 and 

we can know that the top 3 types of correction (67% of rules) are about spelling errors, 

collocation and phrase, and agreement of subject and verb. Besides, most of the incorrect 

rules would lead to false suggestions and 83% of rules belonging to depend on context 

category are about chunks and phrase. 

 

Table 7. analysis on rules 

I. Correct & Mostly Correct (67% of Rules) %  

1. spelling 60% 

2. collocation and phrase (sequence of words which co-occur more often than 

would be expected by chance 

15% 

3. agreement of subject and verb 7% 

4. choice of verb tense 5% 

5. verb+ing forms and infinitives 2% 

6. choice of the proper article  1% 

7. pluralization (irregular noun) 1% 

8. capitalization (use of capital letter) 1% 

9. Other (use of preposition, word choice, cohesive devices, elliptical forms, 

punctuation, parts of speech, count and noncount nouns…etc.) 

8% 

II. Wrong & Mostly Wrong (0.9% of Rules) % 

1. suggestions of wrong corrections 97% 

2. errors not to be spotted and corrected 3% 

III. Depends on Context and/or Writers’ Intention (32.1% of Rules) %  

1. correctness of the chunks/phrases  83% 

2. verbal and verb tense 5 % 

3. spelling (more than one possibility) 3% 

4. word choice 2% 

5. Others (use of preposition, conjunction, cohesive devices, parts of 

speech…etc.) 

7% 

Figure4. displays the rules histograms when we rank a rule according to the number of 

sentence pairs it can be applied to in the corpus. 



 

 

Figure 4. rule distribution 

 

The following are some example rules discovered by our system. Such errors can hardly 

be corrected by Microsoft Word 2007 grammar checker. 

Table 8. example rules 

example rules 

am worry about => am worried about 

help me to study => help me study 

I will appreciate it => I would appreciate it 

went to shopping => went shopping 

am so exciting => am so excited 

waked => woke 

look forward to read => look forward to reading 

for read my => for reading my 

The street name => The street’s name 

to playing with => to play with 

He promised to me => He promised me 

asked repeat => repeatedly asked 

Have you listen to => Have you listened to 

It’s rains => It’s raining 

I ate a milk => I had milk 

for the long time => for a long time 

don’t cooking => don’t cook 

will success => will succeed 

don’t know what happen => don’t know what happened 

 

4.3 Auto-editing System 



 

We construct an online, real-time auto-editing system to demonstrate the usefulness of 

our rules to provide editorial assistance. We first try to test whether a part of the real-time 

typing sentence can match with the erroneous patterns. If yes (it will be marked in red), 

then we apply the correction rule to suggest replacing it with the correct pattern. The 

users can click the correct part (marked in green) to tell the system such correction is 

accepted. The link of our system is: http://mslab.csie.ntu.edu.tw/~kw/new_demo.html 

 

Figure 5. screenshot of demo system 

The above screenshot is the entire system view. Two kinds of rules are provided. 

“Highly-ranked Rules” exploits only higher ranked rules and ignore lower-ranked one. 

“All Rules” utilizes every rule but suffers the risk of using incorrect ones. 

 

Figure 6. screenshot of auto-editing 

In the edit area, one can type sentences in English. If any of the rules is matched, the 



 

suggested correction will appear on the above area in green. If the users agree with the 

corrections, they can click on the green word and the sentence will be edited accordingly. 

 

Figure 7. screenshot of keywords search in rule database 

On the right hand side is a search engine for the related rules. Given a keyword (e.g. 

course), the system will return all rules that contains such word.  

 

5 Conclusion and Future Work 

In this work, we propose a language-universal framework that is capable of producing 

effective editing rules given a parallel editing corpus. The quality of rules can be assessed 

using one of our ranking strategies. Moreover, we have demonstrated the practical usage of 

the rules by constructing an Auto-Editing System to provide editorial assistance for language 

learners. In this paper, we produce correction rules without considering syntactic structure 

and POS (Part-of-Speech). In the future, we would like to make use of both of the two 

features. The syntactic structure retrieved by a parser can potentially make the rule more 

feasible since we then do not have to worry about splitting phrases into parts. On the other 

hand, substituting words in a rule into its POS creates more general rules that can be applied 

to more sentences.  
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