

Identifying Correction Rules for Auto Editing

An-Ta Huang

Department of Computer Science and Information Engineering

National Taiwan University

r97922137@ntu.edu.tw

Tsung-Ting Kuo

Department of Computer Science and Information Engineering

National Taiwan University

d97944007@csie.ntu.edu.tw

Ying-Chun Lai

School of Applied Foreign Languages

Chung-Shan Medical University

yingchun@csmu.edu.tw

Shou-de Lin

Department of Computer Science and Information Engineering

National Taiwan University

sdlin@csie.ntu.edu.tw

Abstract

This paper describes a framework to extract the effective correction rules from the

sentence-aligned corpus and show a practical application: auto-editing using the found rules.

The framework exploits the methodology of finding Levenshtein distance between sentences

to identify the key parts of the rules and then use the editing corpus to filter, condense and

refine the rules. We produce the rule candidates of such form, A => B, where A stands for the

erroneous pattern and B is the correct pattern.

Our framework is language independent, therefore can be applied to other languages easily.

The evaluation of the discovered rules reveals that 67.2% of the top 1500 ranked rules are

annotated as correct or mostly correct by experts. Based on the rules, we create an online

auto-editing system for demo on http://mslab.csie.ntu.edu.tw/~kw/new_demo.html.

Keywords: edit distance, erroneous pattern, correction rules, auto editing

1 Introduction

Nowadays people write blogs, diaries, and reports not only in their native language but

sometimes using a language they are not familiar with. During the process of writing, people

sometimes make spelling mistakes, grammatical errors, or inappropriate lexical usage in

writing, in particular if not using their native language. Therefore, it has become an important

and practical research issue for NLP researchers on how to provide editorial assistance

automatically and effectively. Especially for the second language learners, instant response to

their writing indicating which part might be incorrect and then providing the auto-editing

candidates would improve not only the writing itself but also the understanding of the

language.

Editing is an inevitable part in learning language and can be classified into human editing and

machine editing. Human editing is inefficient when the number of article is increasing and

also inconvenient for people who want to edit their daily documents. Besides, human editing

involves subjective opinions which are different to machine editing which depends on the

objective experiment results.

Despite the growing demand of editorial assistance tools, the existing ones still have much

room for improvement. Grammar checker provided by Microsoft Word has its known

deficiency as being language dependent and covering only a small portion of errors without

explicitly revealing the correction mechanism behind it. This paper tries to demonstrate an

auto-editing system based on the correction rules mined from online editing websites.

In this paper, we focus on two research goals. First, we want to design a strategy that

identifies effective rules automatically and efficiently from editing databases. Second, we

want to design an auto-editing system based on the discovered rules.

Our method is language independent, therefore can be easily applied to another language.

Our evaluation reveals that among the top 1500 rules the system found, 67.2% of them are

regarded as correct or mostly correct.

The remainder of the paper is organized as follows: Section 2 describe the related work on

detecting erroneous patterns. Section 3 lays out our methodology. Section 4 describes

experiment and our demo system. Section 5 concludes our study.

2 Related Works

Previous approaches can be classified into two categories. The first category detects

erroneous patterns based on rules and the second category makes use of statistical techniques.

2.1 Knowledge-Based Method

Some methods detecting erroneous patterns based on the manually created rules are

proven to be effective in detecting grammar errors [1]. Lisa N. Michaud develops a

system including error identification model and response generation model using

knowledge bases which cover general information about analyzing grammar structure

and specific information of a user’s learning history [2]. Besides, Emily M. Bender

present a tutorial system based on computational grammar augmented with mal-rules for

analysis, error diagnosis, and semantics-centered generation of correct forms [3].

However, the manually designed rules consume labor and time and require language

experts to do that, which limits the generalization of such method and cannot be easily

applied to different languages.

2.2 Statistical Techniques

As discussed in Section 2.1, rule-based methods have some apparent shortcomings.

Rather than asking experts to annotate corpus, some papers propose statistical models to

identify erroneous patterns. An unsupervised method to detect grammatical errors by

inferring negative evidences reaches 80% precision and 20% recall but their system is

only effective in recognizing certain grammatical errors and detect only about one-fifth

as many errors as a human judge does [4]. Some other papers focus on detecting

particular errors, such as preposition errors [5], disagreement on the quantifier and the

noun [6]. Others treat the detection of erroneous sentences as a binary classification

problem and propose a new feature called “Labeled Sequential Patterns (LSP)” which is

compared to the other four features including two scores produced by toolkit, lexical

collocation [11], and function word density. The average accuracy of LSP is 79.63% and

beats the other four features. Furthermore, the existence of time word and function word

in a sentence is proven to be important. While in this way, one can only know whether a

sentence is correct and would not have a clue about how to correct errors [7]. Finally,

some researchers treat detecting erroneous patterns as a statistical machine translation

problem. They believe the erroneous sentences and the correct sentences are two

different languages. However, error correction is intrinsically different from translation

and there is no apparent evidence till now whether the existing machine translation

techniques are suitable for such purpose [8][9].

Our work is different from the previous work in two major respects. First, we treat error

detection as a pattern mining problem to extract effective rules from editing corpus.

Second, we do not use any context, syntactic, or grammatical information in this paper.

3 Methodology

3.1 Overview

Our framework consists of

refining the rules.

3.2 Corpus Description

We retrieve 310967 parallel

sentence from an online-editing website

people to write diaries in their second language and the diaries

mistakes) would be edited by some

corresponding language. Besides, the edited part in a

sentence (not cross sentences)

easily from the website.

Figure 1. System Overview

framework consists of two parts. First it produces the rules and next it focuses on

Description

parallel pairs of sentences, one erroneous sentence and one correct

editing website Lang-8 (http://lang-8.com/). The website allow

people to write diaries in their second language and the diaries (which may

be edited by some volunteer members who

corresponding language. Besides, the edited part in an article is restricted

(not cross sentences). Consequently, we can retrieve the sentence

and next it focuses on

one erroneous sentence and one correct

. The website allows

which may contain some

who are native in the

n article is restricted a single

the sentence-aligned data

In the following chapters, we use Wi to represent the erroneous sentence of the i-th pair

of sentence in the corpus and Ci represents the corresponding correct sentence to Wi.

Besides, S+ is defined as a collection of all correct sentences in the corpus, while S- is

defined as a collection of all erroneous sentences.

3.3 Producing Rules

Before describing our method, we would like to provide some formal definitions for

erroneous and correct patterns, rules, applying rules, and frequency of patterns:

Definition of (erroneous and correct) patterns: A pattern is a series of consecutive words

(or characters) which belong to a subsequence of a sentence. An erroneous pattern

represents such sequence that is believed to be wrong, and a correct pattern is the one

that is believed to be correct.

Definition of rule: A rule K can be written as KL => KR. The left-hand side of the arrow,

KL, is the erroneous pattern and the right-hand side of the arrow, KR, is correct pattern

which KL should be transformed to.

Definition of applying a rule to a sentence: Given a rule K : KL => KR, and a sentence T,

if KL exist in the T, we replace the KL in T to KR. Such process is considered as applying

rule K to sentence T.

Definition of freS+(KL): the occurrence frequency of a pattern KL in S+

To discover a rule A� B from the editing corpus, we need to first identify the plausible

left and right hand side of the rule. This is by no means a trivial task, and the fact that

there could be multiple choices of such rule can only make such tasks even harder. One

intuitive method is to compare the word set existing in Wi and Ci and create the patterns

using the difference among them. However, such the intuitive method suffers certain

deficiency such as provided by the following examples.

Erroneous : “Open the light”

Correct : “Turn the light on ”

Erroneous : “I with him had dinner”

Correct : “I had dinner with him”

The difference set between the first pairs are {open, turn, on} while that of the second

pairs is an empty set {} since the order is not considered. It is not clear how such

difference set can lead to both erroneous and correct patterns.

The approach we proposed is to exploit the procedure of calculating the word-level

Levenshtein distance which is often called editing distance [10]. The Levenshtein

distance is defined as the minimum number of edits needed to transform one string into

the other, with the allowable edit operations being insertion, deletion, or substitution of a

single character. The insert operation inserts a word X in the erroneous sentence, which

implies there is a word X in the correct sentence that has potential to be involved in the

correct pattern KR for a rule KL�KR. Similarly, the delete operation removes one word Y

from the erroneous sentence to become the correct one, and this word Y is likely to be

involved in the erroneous pattern KL. Finally, when a substitute operation is performed,

the word to be replaced should appear in KL while the replacing word shall be involved

in KR. Similarly, the edit distance between two sentences can be defined as the minimum

number of allowable operations required to transform from one of them into the other,

given each unit of transformation is based on words instead of characters.

Here we argue that the words operated through the editing-distance process from an

erroneous to a correct sentence have higher chance to involve in the patterns for rules.

For example, if we apply an editing distance approach to the following sentence pairs,

multiple outputs such can be acquired such as the ones in table 1 and table 2:

Erroneous : “I still don't know where is it in the movie”

Correct : “I still don't understand where it is in the movie”

Based on the two editing-distance results shown in table 1 and 2, it is possible to obtain

that the four words {it, is, know, understand} are plausible words to appear in the rule KL

� KR.

Table 1. one of the editing results for edit distance

operation position Involved word

Insert 6 it

delete 8 it

substitute 4 know→understand

Table 2. another editing result for edit distance

operation position Involved word

insert 8 Is

delete 6 Is

substitute 4 know→understand

For each pair of Wi and Ci, we can collect all the involving words after producing the

Levenshtein distance. Figure 2. shows the pseudo code. We exploit a dynamic

programming approach to improve its efficienscy.

Figure 2. pseudo code of producing rules

After applying the modified Levenshtein distance algorithm, it is possible to obtain a set

of involving words Ri as follows.

}know , understand,it , is{Ri =

However, to form a reasonable pattern, the words in set Ri is not sufficient. They should

be combined with other terms. Ideally KL and KR must consist of some words from Ri

and some from the rest of the sentence. Therefore for each pair of Wi and Ci in the corpus,

we retrieve consecutive word patterns in which at least one word is from Ri. For example,

based on Ri, the followings are rule candidates.

Table 3. pattern candidates for forming a rule

Candidates for KL

(word length ≤ 4)

Candidates for KR

(word length ≤ 4)

don’t know

know where

where is

is it

it in

still don’t know

don’t know where

know where is

where is it

is it in

it in the

I still don’t know

still don’t know where

don’t know where is

know where is it

where is it in

is it in the

it in the movie

don’t understand

understand where

where it

it is

is in

still don’t understand

don’t understand where

understand where it

where it is

it is in

is in the

I still don’t understand

still don’t understand where

don’t understand where it

understand where it is

where it is in

it is in the

is in the movie

Next, we match each plausible candidate for KL to each candidate for KR to form a

plausible rule. For each plausible rule, we then check its feasibility by applying it on Wi

to see if the correct sentence Ci can be produced. The infeasible rules will be ignored.

Definition of feasible rule: Given a rule K : KL => KR, if there exists at least one

erroneous sentence in corpus can be corrected using K , then K is considered as a

feasible rule.

3.4 Refining Rules

So far, we have produced several rules, some makes more sense and some might not. In

this section, we describe how to assess the quality of the rules.

Table 4. observation on the frequency

 pattern freS+ pattern freS+

erroneous went to shopping 10 Erroneous am so exciting 0

correct went shopping 205 Correct am so excited 71

We believe the erroneous patterns KL should not occur in the correct sentences too

frequently (otherwise it shall have been replaced by the correct one KR), therefore

consider freS+ as a property metric to evaluate the quality of a rule. According to the real

experiment shown in Table 4, the frequency of the erroneous patterns seems to occur less

frequently in the correct corpus, freS+, comparing to the correct ones.

Next, we condense the rules according to their freS+. The condensed rule is shorter than

the original one and is supposed to be more general (i.e. can cover more sentences). For

example, in the following sentences, the condensed rule is more general and reasonable

since the subject ‘I’ has nothing to do with the erroneous pattern.

Erroneous : “I went to shopping and had dinner with my friend yesterday.”

Correct : “I went shopping and had dinner with my friend yesterday.”

Rule : “I went to shopping” => “I went shopping”

Condensed Rule : “went to shopping” => “went shopping”

To obtain the shortest possible rules for auto-editing, we propose a simple idea to check

if the left hand side KL can be condensed to a shorter one, without boosting its freS+

significantly. If yes, then it implies we have found a shorter erroneous pattern which also

occurs rarely in the correct corpus. For example, for the erroneous pattern “I went to

shopping”, table 5 shows the frequency of each possible subsequence in the correct

corpus. Apparently “am worry about” is the most condensed rule without occurring more

than four times in the correct corpus.

Table 5. example for condensing a rule

sentence segment worry worry about am worry
am worry

about

I am worry

about

frequency 1446 225 206 3 1

Below is the algorithm for rule condensing. If the frequency of the condensed erroneous

rule is smaller than a pre-defined frequency Ncondense which is observed from experiment,

we will accept it as a condensed erroneous pattern. We remove the same words from the

KR to produce the corresponding correct pattern. The condense process repeats until any

of the word to be removed in KL does not occur in the KR. The pseudo code of

condensing rules is shown in Figuire 3.

Figure 3. pseudo code of condensing rules

The final step of the refinement is to rank the rules based on their qualities. We propose

two plausible strategies to rank the rules. First, it is possible to rank the rules according

to its freS+ from low to high. That says, a rule is less likely to be correct something right

into something wrong if its freS+ is low. Second, it is possible to rank the rules according

to the number of sentences in the corpus that can be applied using it. The first strategy is

similar to the definition of precision while the second is closer to the meaning of recall.

4 Experiments

We retrieve 310967 pairs of English sentences from the “Lang-8” as our parallel corpus and

the system finally produces 110567 rules. In the evaluation, we invite three people major in

English to annotate our rules. Then we demonstrate an auto-editing system to show how such

rules can be applied.

4.1 Evaluation

We rank all rules according to its freS+

and four English-major people are invited to

annotate the top 1500 ranked rules and we have two annotations for each rule. The labels

for annotations are correct, mostly correct, mostly wrong, wrong, and depends on context.

The following tables are the experiment results. Besides, there is fair agreement between

the two annotations by kappa value equals to 0.49835.

Table 6. the average result of top 1500 annotated rules

correct mostly correct mostly wrong wrong depends on context

R1~R1500 53.96% 12.96% 0.92% 4.5% 27.66%

4.2 Discussion

We also perform some manual analysis on the rules. The result is shown in Table 7 and

we can know that the top 3 types of correction (67% of rules) are about spelling errors,

collocation and phrase, and agreement of subject and verb. Besides, most of the incorrect

rules would lead to false suggestions and 83% of rules belonging to depend on context

category are about chunks and phrase.

Table 7. analysis on rules

I. Correct & Mostly Correct (67% of Rules) %

1. spelling 60%

2. collocation and phrase (sequence of words which co-occur more often than

would be expected by chance

15%

3. agreement of subject and verb 7%

4. choice of verb tense 5%

5. verb+ing forms and infinitives 2%

6. choice of the proper article 1%

7. pluralization (irregular noun) 1%

8. capitalization (use of capital letter) 1%

9. Other (use of preposition, word choice, cohesive devices, elliptical forms,

punctuation, parts of speech, count and noncount nouns…etc.)

8%

II. Wrong & Mostly Wrong (0.9% of Rules) %

1. suggestions of wrong corrections 97%

2. errors not to be spotted and corrected 3%

III. Depends on Context and/or Writers’ Intention (32.1% of Rules) %

1. correctness of the chunks/phrases 83%

2. verbal and verb tense 5 %

3. spelling (more than one possibility) 3%

4. word choice 2%

5. Others (use of preposition, conjunction, cohesive devices, parts of

speech…etc.)

7%

Figure4. displays the rules histograms when we rank a rule according to the number of

sentence pairs it can be applied to in the corpus.

Figure 4. rule distribution

The following are some example rules discovered by our system. Such errors can hardly

be corrected by Microsoft Word 2007 grammar checker.

Table 8. example rules

example rules

am worry about => am worried about

help me to study => help me study

I will appreciate it => I would appreciate it

went to shopping => went shopping

am so exciting => am so excited

waked => woke

look forward to read => look forward to reading

for read my => for reading my

The street name => The street’s name

to playing with => to play with

He promised to me => He promised me

asked repeat => repeatedly asked

Have you listen to => Have you listened to

It’s rains => It’s raining

I ate a milk => I had milk

for the long time => for a long time

don’t cooking => don’t cook

will success => will succeed

don’t know what happen => don’t know what happened

4.3 Auto-editing System

We construct an online, real-time auto-editing system to demonstrate the usefulness of

our rules to provide editorial assistance. We first try to test whether a part of the real-time

typing sentence can match with the erroneous patterns. If yes (it will be marked in red),

then we apply the correction rule to suggest replacing it with the correct pattern. The

users can click the correct part (marked in green) to tell the system such correction is

accepted. The link of our system is: http://mslab.csie.ntu.edu.tw/~kw/new_demo.html

Figure 5. screenshot of demo system

The above screenshot is the entire system view. Two kinds of rules are provided.

“Highly-ranked Rules” exploits only higher ranked rules and ignore lower-ranked one.

“All Rules” utilizes every rule but suffers the risk of using incorrect ones.

Figure 6. screenshot of auto-editing

In the edit area, one can type sentences in English. If any of the rules is matched, the

suggested correction will appear on the above area in green. If the users agree with the

corrections, they can click on the green word and the sentence will be edited accordingly.

Figure 7. screenshot of keywords search in rule database

On the right hand side is a search engine for the related rules. Given a keyword (e.g.

course), the system will return all rules that contains such word.

5 Conclusion and Future Work

In this work, we propose a language-universal framework that is capable of producing

effective editing rules given a parallel editing corpus. The quality of rules can be assessed

using one of our ranking strategies. Moreover, we have demonstrated the practical usage of

the rules by constructing an Auto-Editing System to provide editorial assistance for language

learners. In this paper, we produce correction rules without considering syntactic structure

and POS (Part-of-Speech). In the future, we would like to make use of both of the two

features. The syntactic structure retrieved by a parser can potentially make the rule more

feasible since we then do not have to worry about splitting phrases into parts. On the other

hand, substituting words in a rule into its POS creates more general rules that can be applied

to more sentences.

6 References

[1] George E. Heidon. “Intelligent Writing Assistance.Handbook of Natural Language

Processing.” Robert Dale, Hermann Moisi, and Harold Somers (ed.). Marcel

Dekker.

[2] Lisa N. Michaud, Kathleen F. McCoy, and Christopher A. Pennington. “An

Intelligent Tutoring System for Deaf Learners of Written English.” In Proceeding of

Fourth International ACM Conference on Assistive Technologies, 2000

[3] Emily M. Bender, Dan Flickinger, Stephan Oepen, Annemarie Walsh, and Timothy

Baldwin. “Arboretum: Using a precision grammar for grammar checking in call.” In

Proceedings of the InSTIL/ICALL Symposium: NLP and Speech Technologies in

Advanced Language Learning Systems, 2004.

[4] Chodorow and Leacock, “An Unsupervised Method for Detecting Grammatical

Errors.” Proceedings of the 1st North American chapter of the Association for

Computational Linguistics conference, pp. 140-147, 2000.

[5] Matthieu Hermet, and Alain Désilets. “Using First and Second Language Models to

Correct Preposition Errors in Second Language Authoring.” Proceedings of the

Fourth Workshop on Innovative Use of NLP for Building Educational Applications,

pp. 64-72, 2009.

[6] Chris Brocket, William B. Dolan, and Michael Gamon. “Correcting ESL errors

using phrasal SMT techniques.” Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association for

Computational Linguistics, 2006.

[7] Sun,G. Liu, X. Cong, G. Zhou, M. Xiong,Z. Lin, C.-Y., and Lee,J. ”Detecting

Erroneous Sentences Using Automatically Mined Sequential Patterns. In

Association of Computational Linguistics, 2007.

[8] Guihua Sun, Gao Cong, Xiaohua Liu, Chin-Yew Lin, and Ming Zhou. “Mining

Sequential Patterns and Tree Patterns to Detect Erroneous Sentences.” Proceedings

of the 22nd national conference on Artificial intelligence - Volume 1, 2007.

[9] Shi,Y.,andZhou,L. “Error Detection Using Linguistic Features.” Human Language

Technology Conference and Conference on Empirical Methods in Natural Language

Processing, 2005[10] V. I. Levenshtein. “Binary codes capable of correcting

deletions, insertions and reversals”. Doklady Akademii Nauk SSSR 163(4)

p845-848, 1965,also Soviet Physics Doklady 10(8) p707-710, Feb 1966

[11] Yajuan L¨ u and Ming Zhou., “Collocation translation acquisition using

monolingual corpora”, In Proceeding of Association for Computational Linguistics,

2004.

