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Abstract

Cross-domain sentiment classification aims to

predict sentiment polarity on a target domain

utilizing a classifier learned from a source

domain. Most existing adversarial learning

methods focus on aligning the global marginal

distribution by fooling a domain discrimina-

tor, without taking category-specific decision

boundaries into consideration, which can lead

to the mismatch of category-level features. In

this work, we propose an adversarial category

alignment network (ACAN), which attempts

to enhance category consistency between the

source domain and the target domain. Specif-

ically, we increase the discrepancy of two po-

larity classifiers to provide diverse views, lo-

cating ambiguous features near the decision

boundaries. Then the generator learns to create

better features away from the category bound-

aries by minimizing this discrepancy. Exper-

imental results on benchmark datasets show

that the proposed method can achieve state-

of-the-art performance and produce more dis-

criminative features.

1 Introduction

Sentiment classification aims to automatically

identify the sentiment polarity (i.e., positive or

negative) of the textual data. It has attracted

a surge of attention due to its widespread ap-

plications, ranging from movie reviews to prod-

uct recommendations. Recently, deep learning-

based methods have been proposed to learn good

representations and achieved remarkable success.

However, the performances of these works are

highly dependent on manually annotated training

data while annotation process is time-consuming

and expensive. Thus, cross-domain sentiment

classification, which aims to transfer knowledge

learned on labeled data from related domains
∗Equal contribution
† Corresponding author

(called source domain) to a new domain (called

target domain), becomes a promising direction.

One key challenge of cross-domain sentiment

classification is that the expression of emotional

tendency usually varies across domains. For in-

stance, considering reviews about two sorts of

products: Kitchen and Electronics. One set of

reviews would contain opinion words such as “de-

licious” or “tasty”, and the other “rubbery” or

“blurry”, to name but a few. Due to the small in-

tersection of two domain words, it remains a sig-

nificant challenge to bridge the two domains diver-

gence effectively.

Researchers have developed many algorithms

for cross-domain sentiment classification in the

past. Traditional pivot-based works (Blitzer et al.,

2007; Yu and Jiang, 2016) attempt to infer the

correlation between pivot words, i.e., the domain-

shared sentiment words, and non-pivot words, i.e.,

the domain-specific sentiment words by utilizing

multiple pivot prediction tasks. However, these

methods share a major limitation that manual se-

lection of pivots is required before adaptation.

Recently, several approaches (Sun et al., 2016;

Zellinger et al., 2017) focus on learning domain

invariant features whose distribution is similar in

source and target domain. They attempt to mini-

mize the discrepancy between domain-specific la-

tent feature representations. Following this idea,

most existing adversarial learning methods (Ganin

et al., 2016; Li et al., 2017) reduce feature differ-

ence by fooling a domain discriminator. Despite

the promising results, these adversarial methods

suffer from inherent algorithmic weakness. Even

if the generator perfectly fools the discriminator,

it merely aligns the marginal distribution of the

two domains and ignores the category-specific de-

cision boundaries. As shown in Figure 1 (left), the

generator may generate ambiguous or even mis-

matched features near the decision boundary, thus
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hindering the performance of adaptation.

To address the aforementioned limitations, we

propose an adversarial category alignment net-

work (ACAN) which enforces the category-level

alignment under a prior condition of global

marginal alignment. Based on the cluster assump-

tion in (Chapelle et al., 2009), the optimal predic-

tor is constant on high density regions. Thus, we

can utilize two classifiers to provide diverse views

to detect points near the decision boundaries and

train the generator to create more discriminative

features into high-density region. Specifically, we

first maximize the discrepancy of the outputs of

two classifiers to locate the inconsistent polarity

prediction points. Then the generator is trained to

avoid these points in the feature space by minimiz-

ing the discrepancy. In such an adversarial man-

ner, the ambiguous points are kept away from the

decision boundaries and correctly distinguished,

as shown in Figure 1 (right).

We evaluate our method on the Amazon reviews

benchmark dataset which contains data collected

from four domains. ACAN is able to achieve

the state-of-the-art results. We also provide anal-

yses to demonstrate that our approach can gen-

erate more discriminative features than the ap-

proaches only aligning global marginal distribu-

tion (Zhuang et al., 2015).

2 Related Work

Sentiment Classification: Deep learning based

models have achieved great success on sentiment

classification (Zhang et al., 2011). These models

usually contain one embedding layer which maps

each word to a dense vector, and different network

architectures then process combined word vectors

to generate a representation for classification. Ac-

cording to diverse network architectures, four cat-

egories are divided including Convolutional Neu-

ral Networks (CNNs) (Kalchbrenner et al., 2014;

Kim, 2014), Recurrent Neural Networks (RNNs)

(Yang et al., 2016; Zhou et al., 2016b), Recursive

Neural Networks (RecNNs) (Socher et al., 2013)

and other neural networks (Iyyer et al., 2015).

Domain Adaption: The fundamental challenge

to solve the domain adaptation lies here is that

data from the source domain and target domain

have different distributions. To alleviate this

difference, there are many pivot-based methods

(Blitzer et al., 2007; He et al., 2011; Gouws et al.,

2012; Yu and Jiang, 2016; Ziser and Reichart,

Figure 1: Left: marginal distribution alignment by

minimizing the distance between two domains can

generate ambiguous feature near the decision bound-

ary. Right: two different classifiers locate ambigu-

ous features by considering decision boundary to make

category-level alignment.

2018) which try to align domain-specific opinion

(non-pivot) words through domain-shared opinion

(pivot) words as the expression of emotional ten-

dency usually varies across domains, which is a

major reason of the domain difference. However,

selecting pivot words for these methods first is

very tedious, and the pivot words they find may

not be accurate. Apart from pivot-based methods,

denoising auto-encoders (Glorot et al., 2011; Chen

et al., 2012; Yang and Eisenstein, 2014) have been

extensively explored to learn transferable features

during domain adaption by reconstructing noise

input. Despite their promising results, they are

based on discrete representation. Recently, some

adversarial learning methods (Ganin et al., 2016;

Li et al., 2017, 2018) propose to reduce this differ-

ence by minimizing the distance between feature

distributions. But these methods solely focus on

aligning the global marginal distribution by fool-

ing a domain discriminator, which can lead to the

mismatch of category-level features. To solve this

issue, we propose to further align the category-

level distribution by taking the decision boundary

into consideration. Some recent works with class-

level alignment have been explored in computer

vision applications (Saito et al., 2017, 2018).

Semi-supervised learning: Considering the tar-

get samples as unlabeled data, our work is some-

how related to semi-supervised learning (SSL).

SSL has several critical assumptions, such as clus-

ter assumption that the optimal predictor is con-

stant or smooth on connected high density regions

(Chapelle et al., 2009), and manifolds assumption

that support set data lies on low-dimensional man-

ifolds (Chapelle et al., 2009; Luo et al., 2017). Our

work takes these assumptions to develop the ap-

proach.
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Figure 2: The overview of the proposed adversarial category alignment network in training and test phase.

3 Method

3.1 Problem Definition and Overall
Framework

We are given two domains Ds and Dt, denot-

ing the source domain and the target domain re-

spectively. Ds =
{
x
(s)
i , y

(s)
i

}ns

i=1
are ns labeled

source domain examples, where x
(s)
i means a sen-

tence and y
(s)
i is the corresponding polarity label.

Dt =
{
x
(t)
i

}nt

i=1
are nt unlabeled target domain

examples. In our proposed method, we denote

G as a feature encoder that extracts features from

the input sentence. Then two classifiers F1 and

F2 map these features to soft probabilistic outputs

p1(y|x) and p2(y|x) respectively.

The goal is to train a model to classify the target

examples correctly with the aid of source labeled

data and target unlabeled data. To achieve this, we

first train G, F1 and F2 to obtain global marginal

alignment. This step reduces the distance between

two domains but generates ambiguous target fea-

tures near the decision boundary. Thus, F1 and F2

are adjusted to detect them by maximizing predic-

tion discrepancy. After that, G is trained to gen-

erate better features avoiding appearing near the

decision boundary. The method also regularizes

G by taking the target data samples into consider-

ation. In this way, we can achieve the category

alignment. The proposed Adversarial Category

Alignment Network (ACAN) is illustrated in Fig-

ure 2. The detailed training progress is described

in Appendix D.

3.2 Marginal Distribution Alignment

To solve the domain adaption problem, we first

consider minimize the classification error on the

source labeled data for two classifiers:

Lcls =− 1

ns

ns∑
i=1

K∑
j=1

y
(s)
i (j) log ỹ

(s)
1i (j)

− 1

ns

ns∑
i=1

K∑
j=1

y
(s)
i (j) log ỹ

(s)
2i (j)

ỹ1i =F1(G(x
(s)
i )) ỹ2i = F2(G(x

(s)
i ))

(1)

where K denotes the number of different polari-

ties. In addition, similar to (Zhuang et al., 2015),

our method tries to explicitly minimize the dis-

tance between the embedding features from both

the source and the target domains. We adopt the

Kullback−Leibler (KL) to estimate the distribu-

tion divergence:

Lkl=

n∑
i=1

gs(i) log
gs(i)

gt(i)
+

n∑
i=1

gt(i) log
gt(i)

gs(i)

g′s =
1

ns

∑ns

i=1
G(x

(s)
i ), gs =

g′s
||g′s||1

g′t =
1

nt

∑nt

i=1
G(x

(t)
i ), gt =

g′t
||g′t||1

(2)

where gs, gt ∈ RD, || · ||1 denotes L1 normaliza-

tion. In this way, the latent network representa-

tions of two domains are encouraged to be similar.

In other words, the marginal distribution is forced

to be aligned.
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3.3 Category-level Alignment
Diverse Views: Considering the marginal distri-

bution alignment, there could be some ambigu-

ous features near the decision boundary, which are

easy to be incorrectly categorized into a specific

class. If we alter the boundary of classifier F1 and

F2, the samples closer to the decision boundary

would have larger change. To explore these sam-

ples, we use F1 and F2 to provide diverse guid-

ance. We define a discrepancy between proba-

bilistic outputs of the two classifiers p1(y|x) and

p2(y|x). The formula is:

Ldis = Ex∼Dt [d(p1(y|x), p2(y|x))] (3)

where d(p1(y|x), p2(y|x)) defines the average ab-

solute difference for K classes, which is:

d(p1(y|x), p2(y|x))= 1

K

K∑
i=1

|p1i(y|x)−p2i(y|x)|
(4)

Specifically, we first fix the generator G and

train the classifiers F1,F2 to detect points near the

decision boundary by maximizing their discrep-

ancy. The objective is as follows:

max
F1,F2

Ex∼Dt [
1

K

K∑
i=1

|p1i(y|x)− p2i(y|x)|] (5)

Then, this discrepancy is minimized by optimizing

G in order to keep these points away from the deci-

sion boundary and categorized into correct classes.

The objective is as follows:

min
G

Ex∼Dt [
1

K

K∑
i=1

|p1i(y|x)− p2i(y|x)|] (6)

This adversarial step is repeated in the whole

training process so that we can continuously lo-

cate non-discriminative points and classify them

correctly, forcing the model to achieve category-

level alignment on two domains.

3.4 Training Steps
The whole training procedure can be divided into

three steps. In the first step, we consider both min-

imizing the classification error and marginal dis-

tribution discrepancy to achieve global marginal

alignment. The loss function of this step can be

written as:

L1 = Lcls + λ1Lkl (7)

In the second step, we consider increasing the dif-

ference of two classifiers F1 and F2 for the fixed

G, thus the ambiguous features can be located by

the diverse views. The loss function is defined as

below:

L2 = Lcls − λ2Ldis (8)

Lcls is used here to ensure the stability of the train-

ing process. λ2 is a hyper-parameter controlling

the range of classifiers. In the third step, the dif-

ference of two classifiers should be reduced for the

fixed F1 and F2:

L3 = Lcls + λ3Ldis (9)

Lcls and λ3 used here are similar to the second

step. We repeat this step n times to balance the

generator and two classifiers. After each step,

the corresponding part of the network parameters

will be updated. Algorithm 1 describes the overall

training procedure.

Algorithm 1 Training procedure of ACAN

Require: Ds, Dt, G, F1, F2

Require: λ1, λ2, λ3, iteration number n
for i ∈ [1,max−epochs] do

for minibatch B(s), B(t) ∈ D(s), D(t) do
compute Lcls on

[
xi ∈ B(s), yi ∈ B(s)

]
compute Lkl on

[
xi ∈ B(s), xj ∈ B(t)

]
L1 = Lcls + λ1Lkl

update G, F1, F2 by minimizing L1

compute Lcls on
[
xi∈B(s) , yi∈B(s)

]
compute Ldis on

[
xi∈B(t) , xi∈B(t)

]
L2 = Lcls − λ2Ldis

fix G, update F1, F2 by minimizing L2.

for j ∈ [1, n] do
compute Lcls on

[
xi ∈ B(s), yi ∈ B(s)

]
compute Ldis on

[
xi ∈ B(t), xi ∈ B(t)

]
L3 = Lcls + λ3Ldis

fix F1, F2, update G by minimizing L3.

end for
end for

end for

3.5 Generator Regularizer

To further enhance the feature generator, we in-

troduce to regularize G with the information of

unlabeled target data. Generally, the mapping of

G(·) can been seen a low-dimensional feature of

the input. According to the manifolds assump-

tion (Chapelle et al., 2009), this feature space is
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expected to be low-dimensional manifold and lin-

early separable. Inspired by (Luo et al., 2017), we

consider the connections between data points to

regularize G(·) in the feature space. Specifically,

the regularizer is formulated as follows:

R(G) =
∑
x∈Dt

lG(xi, xj) (10)

here lG is to approximate the semantic similarity

of two feature embeddings. Possible options in-

clude triplet loss (Wang et al., 2016), Laplacian

eigenmaps (Belkin and Niyogi, 2003) etc. After

exploring many tricks, we find below is optimal

which is also used by (Luo et al., 2017):

lG =

{
d2i,j sij=1

max(0,m−di,j)
2 sij=0

(11)

where di,j is L2 distance between data points, m
is a predefined distance, and sij indicates whether

xi and xj belong to the same class or not. Eq. 10

serves as a regularization that encourages the out-

put of R(G) to be distinguishable among classes.

It is applied on target data and integrated in the

framework in the third training step, weighted by

λ4. During the training, the underlying label of

xi is estimated by taking the maximum posterior

probability of the two classifiers.

3.6 Theoretical Analysis
In this subsection, we provide a theoretical analy-

sis of our method, which is inspired by the theory

of domain adaptation in (Ben-David et al., 2010).

For each domain, there is a labeling function on

inputs X , defined as f : X → [0, 1]. Thus, the

source domain is denoted as 〈Ds, fs〉 and the tar-

get domain as 〈Dt, ft〉. We define a hypothesis

function h: X → [0, 1] and a disagreement func-

tion:

ε(h1, h2) = E[|h1(x)− h2(x)|] (12)

Then the expected error on the source samples

εs(h, f) of h is defined as:

εs(h) = εs(h, fs) = Ex∼Ds [|h(x)−fs(x)|] (13)

Also for the target domain, we have

εt(h) = εs(h, ft) = Ex∼Dt [|h(x)− ft(x)|] (14)

As is introduced in (Ben-David et al., 2010), the

probabilistic bound of the error of hypothesis h on

the target domain εt(h) is defined as:

∀h ∈ H, εt(h) ≤ εs(h) +
1
2dHΔH(Ds, Dt) + λ (15)

where the expected error εt(h) is bounded by three

terms: (1) the expected error on the source exam-

ples εs(h); (2) the divergence between the distri-

butions Ds and Dt; (3) the combined error of the

ideal joint hypothesis λ.

First, the training algorithm is easy to mini-

mize εs(h) with source label information. Second,

λ is expected to be negligibly small and can be

usually disregarded. Therefore, the second term

dHΔH(Ds, Dt) is important quantitatively in com-

puting the target error.

Regarding dHΔH(Ds, Dt), we have

dHΔH(Ds, Dt) = 2 sup
h,h′∈H

|εs(h, h′)− εt(h, h
′)|

=2 sup
h,h′∈H

|Ex∼Ds [|h(x)−h′(x)|]−Ex∼Dt [|h(x)−h′(x)|]|
(16)

where h and h′ are two sets of hypotheses in

H. As we have sufficient labeled source exam-

ples to train, h and h′ can have consistent and

correct predictions on the source domain data.

Thus, dHΔH(Ds, Dt) is approximately calculated

as Ex∼Dt [|h(x) − h′(x)|]. In our model, the hy-

pothesis h can be decomposed into the feature ex-

tractor G and the classifier F using the notation ◦.

Thus dHΔH(Ds, Dt) can be formulated as:

sup
F1,F2

Ex∼Dt [|F1 ◦G(x)− F2 ◦G(x)|] (17)

For fixed G, sup can be replaced by max. There-

fore, F1 and F2 are trained to maximize the dis-

crepancy of their outputs and we expect G to min-

imize this discrepancy. So we obtain

min
G

max
F1,F2

Ex∼Dt [|F1 ◦G(x)−F2 ◦G(x)|] (18)

The maximization of F1 and F2 is to provide di-

verse views, to find ambiguous points near the de-

cision boundary, and the minimization of G is to

keep these points away from the decision bound-

ary. To optimize Eq. 18, we assist the model to

capture the whole feature space on the target do-

main better and achieve lower errors.

4 Experiments

4.1 Data and Experimental Setting

We evaluate the proposed ACAN on the Amazon
reviews benchmark datasets collected by Blitzer

(2007). It contains reviews from four differ-

ent domains: Books (B), DVDs (D), Electron-

ics (E), Kitchen appliances (K). There are 1000
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Source → Target
Previous Work Models ACAN Models

SVM AuxNN DANN PBLM DAS Baseline ACAN-KL ACAN-KM ACAN

D → B 75.20 80.80 81.70 82.50 82.05 81.30 83.00 82.85 82.35

E → B 68.85 78.00 78.55 71.40 80.00 79.50 80.30 79.80 79.75

K → B 70.00 77.85 79.25 74.20 80.05 79.05 79.10 79.60 80.80
B → D 77.15 81.75 82.30 84.20 82.75 82.50 83.35 83.25 83.45

E → D 69.50 80.65 79.70 75.00 80.15 79.25 81.00 80.80 81.75
K → D 71.40 78.90 80.45 79.80 81.40 79.10 80.15 82.25 82.10

B → E 72.15 76.40 77.60 77.60 81.15 77.80 78.80 80.85 81.20
D → E 71.65 77.55 79.70 79.60 81.55 78.00 81.30 82.75 82.80
K → E 79.75 84.05 86.65 87.10 85.80 84.35 84.70 86.20 86.60

B → K 73.50 78.10 76.10 82.50 82.25 78.00 77.30 81.00 83.05
D → K 72.00 80.05 77.35 83.20 81.50 74.65 73.05 77.65 78.60

E → K 82.80 84.15 83.95 87.80 84.85 81.05 83.70 83.70 83.35

Average 73.66 79.85 80.29 80.40 81.96 79.55 80.48 81.78 82.15

Table 1: Accuracy of adaptation on Amazon benchmark. All results are the averaged performance of each neural

model by a 5-fold cross-validation protocol.

positive and 1000 negative reviews for each do-

main, as well as a few thousand unlabeled exam-

ples, of which the positive and negative reviews

are balanced. Following the convention of pre-

vious works (Zhou et al., 2016a; Ziser and Re-

ichart, 2018; He et al., 2018), we construct 12

cross-domain sentiment classification tasks. In

our transferring task, we employ a 5-fold cross-

validation protocol, that is, in each fold, 1600 bal-

anced samples are randomly selected from the la-

beled data for training and the rest 400 for valida-

tion. The results we report are the averaged per-

formance of each model across these five folds.

4.2 Training Details and Hyper-parameters

In our implementation, the feature encoder G con-

sists of three parts including a 300-dimensional

word embedding layer using GloVe (Pennington

et al., 2014), a one-layer CNN with ReLU activa-

tion function adopted in (Yu and Jiang, 2016; He

et al., 2018) and a max-over-time pooling through

which final sentence representation is obtained.

Specifically, the convolution filter and the window

size of this one-layer CNN are 300 and 3 sepa-

rately. Similarly, the classifier F1 and F2 can be

decomposed into one dropout layer and one fully

connected output layer. For the fully connected

layer, we constrain the l2-norm of the weight vec-

tor, setting its max norm to 3. For the imple-

mentation of generator regularizer, we apply dou-

bly stochastic sampling approximation due to the

computational complexity.

The margin m is set to 1 in this procedure. Dur-

ing training period, λ1, λ2, λ3, λ4, and n are set

to 5.0, 0.1, 0.1, 1.5, 2. Similar to (He et al.,

2018), we parametrize λ4 as a dynamic weight

exp[−5(1 − t
max−epochs)

2]λ4. This is to mini-

mize the effort of the regularizer as the predictor

is not good at the beginning of training. We train

30 epochs for all our experiments with batch-size

50 and dropout rate 0.5. RMSProp (Tieleman and

Hinton, 2012) optimizer with learning rate set to

0.0001 is used for all experiments.

4.3 Methods for Comparison

We consider the following approaches for compar-

isons (The URLs of previous methods code and

data we use are in Appendix A):

SVM (Fan et al., 2008): This is a non-domain-

adaptation method, which trains a linear SVM on

the raw bag-of-words representation of the labeled

source domain.

AuxNN (Yu and Jiang, 2016): This method uses

two auxiliary tasks to learn sentence embeddings

that works well across two domains. For fair com-

parison, we replace the neural model in this work

with our CNN encoder.

DANN (Ganin et al., 2016): This method ex-

ploits a domain classifier to minimize the discrep-

ancy between two domains via adversarial training

manner. we replace its encoder with our CNN-

based encoder.

PBLM (Ziser and Reichart, 2018): This is a repre-

sentation learning model that exploits the structure

of the input text. Specifically, we choose CNN as

the task classifier.

DAS (He et al., 2018): This method employs

two regularizations: entropy minimization and

self-ensemble bootstrapping to refine the classifier

while minimizing the domain divergence.
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Figure 3: Visualization by applying principal component analysis to the representation of source training data and

target testing data produced by ACAN-KL (left) and ACAN (right) for K→E task. The red, blue, green, and black

points denote the source positive, source negative, target positive, and target negative examples correspondingly.

Baseline: Our baseline model is a non-adaptive

CNN similar to (Kim, 2014), trained without using

any target domain information, which is a variant

of our model by setting λ1, λ2, λ3, λ4 to zeros.

ACAN-KL: ACAN-KL is a variant of our model

which minimizes the distance between the features

of two domains by minimizing the KL divergence.

(set λ2 = λ3 = λ4 = 0)

ACAN-KM: ACAN-KM introduces the adversar-

ial category mapping based on ACAN-KL without

the regularizer. (set λ4 = 0).

ACAN: It is our full model.

4.4 Results

Table 1 shows the classification accuracy of differ-

ent methods on the Amazon reviews, and we can

see that the proposed ACAN outperforms all other

methods generally. It is obvious to see that SVM
performs not well in domain transferring task,

beaten by Baseline. We can notice that exploring

the structure of the input text (AuxNN and PBLM)

brings some improvements over Baseline. How-

ever, these two pivot-based methods present rela-

tively lower ability than DAS, which jointly mini-

mizes global feature divergence and refines clas-

sifier. Compared to DAS, our proposed ACAN
can improve 0.19% on the average accuracy. This

can be explained by that we deal with the relation-

ship between target features distribution and clas-

sifier more precisely. Finally, we conduct exper-

iments on the variants of the ACAN. It is clear

that the performances of Baseline, ACAN-KL,

ACAN-KM and ACAN present a growing trend

in most cases. Compared with ACAN-KL, ACAN
achieves large gain from 80.48% to 82.15%, show-

ing the effectiveness of category-level alignment.

4.5 Case Study

To better understand the results of different mod-

els, we conduct experiments on task B → E.

For each sentiment polarity, we first extract the

most related CNN filters according to the learned

weights of the output layer in classifier F1. Since

all listed models use a window size of 3, the out-

puts of CNN with the highest activation values

correspond to the most useful trigrams.

As shown in Table 2, we identify the top tri-

grams from 10 most related CNN filters on the

target domain. It is obvious that Baseline and

ACAN-KL are more likely to capture the domain-

independent words, such as “pointless”, “disap-

pointing” and “great”. Thus, the performance

of these two models drops much when applied

to the target domain. Besides, DAS can capture

more words of the target domain, but it is lim-

ited to nouns with less representativeness, such

as ”receiver”, ”product” and etc. Compared to

them, ACAN is able to extract the domain-specific

words like “flawlessly” and “rechargeable”. These

results are consistent with the accuracy of each

model’s predictions. We also conduct experiments

on the tasks B → K and K → D. Due to the space

limitations, the results are presented in Appendix

B.

4.6 Visualization of features

For more intuitive understanding of the differences

between the global marginal alignment and cate-

gory alignment, we further perform a visualiza-

tion of the feature representations of the ACAN-
KL and ACAN model for the training data in the

source domain and the testing data in the target do-

main for the K→E task. As can be seen in Figure

3, global marginal alignment causes ambiguous
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Method Negative Sentiment Positive Sentiment

Baseline

audio-was-distorted, is-absolutely-pointless, *-very-disappointing,

waste-of-money, was-point-most, an-unsupported-config,

an-extremely-disappointed, author-album-etc,

cure-overnight-headphones, aa-rechargable-batteries

wep-encryption-detailed, totally-wireless-headset, best-!-i,

love-it-!, again-period-!, beautifully-great-price,

awesome-accurate-sound, beautifully-designed-futuristic,

wonderful-product-*, glad-i-purchased

ACAN-KL

totally-useless-method, audio-was-distorted, *-very-weak,

*-very-disappointing, extra-ridiculous-buttons, hopeless-mess-no,

now-as-useless, waste-of-cash, is-absolutely-pointless,

manual-is-useless

gift-i-love, uniden-cordless-telephone, a-journey-to,

totally-wireless-headset, your-own-frequencies, a-gift-excellent,

exceptional-being-rechargeable, gorgeous-picture-excellent,

with-wireless-security, beautifully-designed-futuristic

DAS

receiver-was-faulty, defective-product-i, is-useless-i,

do-not-waste, did-not-work, very-poor-quality,

the-crappy-keyboard, just-too-weak, is-absolutely-pointless,

very-stupid-design

is-an-excellent, excellent-monitor-with, is-very-nice,

truly-excellent-headphones, an-incredible-sound
advanced-technology-incredible, this-is-an, !-highly-recommended

show-very-easy, picture-is-fabulous

ACAN

very-poorly-designed, garbage-im-sorry, handed-was-defective,

receiver-was-faulty, *-very-disappointing, audio-was-distorted
dirty-and-scratched, extra-ridiculous-buttons,

cartridges-are-incompatible, awful-absolutely-horrible

performs-flawlessly-hours, a-gift-excellent, beautifully-great-price,

encryption-detailed-monitoring, fit-excellent-sound, !-very-happy,

exceptional-being-rechargeable, beautifully-designed-futuristic,

smooth-accurate-tracking, digital-camera-during

Table 2: Comparison of the top trigrams chosen from 10 most related CNN filters learned on the task B → E. The

entire table contains the results achieved by the variants of our method. * denotes a padding. The domain-specific

words are in bold.

Figure 4: The influence of the number of labeled target

data on the task E → D and B → E.

features locating between two clusters while cat-

egory alignment effectively projects these points

into clusters, thus leading a more robust classifi-

cation result. We also conduct experiments on the

tasks B → E and B → K. Due to the space limita-

tions, the results are presented in Appendix C.

4.7 Model Analysis

In this part, we provide analysis to our proposed

ACAN variants. In Figure 4, we show the com-

parison between Baseline and ACAN under a set-

ting that some labeled target data are randomly

selected and mixed with training data. Here, we

present results on two transferring tasks while a

similar tendency can be observed in other pairs.

With an increase in the number of randomly se-

lected labeled target data, the difference between

the two models gradually decreases and ACAN
also progressively obtains better results. These

trends indicate that our ACAN is more effective

Figure 5: The training process of four ACAN model

variants on the task K → E.

with no or little-labeled target data and can further

benefit from more labeled target data. In Figure

5, we can easily observe that ACAN continuously

shows better results during the whole training pro-

cess among four settings. After some epochs,

ACAN-KL starts presenting lower testing accu-

racy than Baseline. One possible reason is that

those categories which are initially well aligned

between the source and target may be incorrectly

mapped because of ignoring category-level feature

distribution. This observation can prove our moti-

vation in some degree.

5 Conclusion

In this paper, we propose a novel approach,

which utilizes diverse view classifiers to achieve

category-level alignment for sentiment analysis.

Unlike previous works, we take the decision

boundary into consideration, thus classifying the
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target samples correctly into the corresponding

category. Experiments show the proposed ACAN

significantly outperforms state-of-the-art methods

on the Amazon benchmark. In future we would

like to adapt our method to other domain adapta-

tion tasks and consider more effective alternatives

for the generator regularizer.
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A URLs of Data and Code

Here, we provide a list of URLs about the dataset

and the code of the previous methods we compare.

• The Amazon product review dataset gath-

ered by Blitzer et al (2007): http://
jmcauley.ucsd.edu/data/amazon/

• Code for AuxNN (Yu and Jiang, 2016):

https://github.com/jefferyYu/

Learning-Sentence-Embeddings-

for-cross-domain-sentiment

-classification

• Code for DANN (Ganin et al., 2016):

https://github.com/pumpikano/
tf-dann

• Code for PBLM (Ziser and Reichart, 2018):

https://github.com/yftah89/
PBLM-Domain-Adaptation

• Code for DAS (He et al., 2018): https://
github.com/ruidan/DAS

B Trigram Full Results

In the paper, Table 2 shows the top trigrams cho-

sen from 10 most related CNN filters learned on

the task B → E by the DAS the and variants of the

ACAN. For a more comprehensive presentation,

we also conduct experiments on the task B → K
and K → D, and the results are listed in Table 3

and Table 4 respectively. It is obvious that the pro-

posed ACAN is better to capture domain-specific

words, compared to its variants and DAS.

C Visualization full results

In this paper, Figure 3 visualizes the feature repre-

sentations of the ACAN-KL and ACAN model for

the training data in the source domain and the test-

ing data in the target domain for the K→E task.

For a more comprehensive presentation, we also

conduct experiments on the task B → E and B →
K, and the results are listed in Figure 7 and Figure

8 respectively. It is obvious that global marginal

alignment causes ambiguous features locating be-

tween two clusters while category alignment ef-

fectively projects these points into clusters.

D Detailed Illustration of Training Phase

The overview of the propose ACAN is shown in

Figure 2. For a better understanding, we present

the changes of decision boundaries and data distri-

bution during the network training process, shown

in Figure 6. First, we train F1 and F2 to locate the

points near the decision boundary by maximizing

their discrepancy. Then, we train G to minimize

the discrepancy to achieve category-level align-

ment. At the same time, the generator G is reg-

ularized with data from target domain.
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Method Negative Sentiment Positive Sentiment

Baseline

rice-also-disappointing, be-such-shoddy, basically-worthless-*,

does-n’t-toast, waste-your-time, is-totally-useless,

waste-of-time, was-sorely-disappointed,

safe-stainless-versus, were-very-dull

sophisticated-gorgeous-retro, lodge-properly-packaged,

delonghi-cooked-pretty, this-stunning-slice, beautifully-i-highly,

perfection-!-i, an-excellent-performer, beautiful-shape-!,

your-cooking-equipment, *-highly-recommend

ACAN-KL

totally-useless-and, rice-also-disappointing, be-such-shoddy,

flatware-is-unusable, misleading-advertising-i,

waste-of-time, poorly-made-expensive, were-very-dull,

makes-weak-coffee, was-sorely-disappointed

dishwasher-nonstick-!, beautifully-get-a, this-stunning-slice,

!-happy-holidays, look-wonderful-and, beautifully-i-highly,

month-i-!, excellent-addition-to,

*-highly-recommend, grilled-meats-and

DAS

was-very-disappointing, shoddy-junk-garbage, totally-useless-and,

thermometer-very-disappointing, disappointing-coffee-maker,

by-flimsy-brittle, do-not-waste, waste-of-time,

very-disappointing-and, be-lukewarm-disgusting

makes-wonderful-tasting, this-beautiful-pan, is-an-excellent,

sophisticated-gorgeous-retro, is-highly-recommend, awesome-!-!,

makes-great-coffee, and-versatile-pan,

also-highly-recommend, it-is-great

ACAN

kettle-was-leaking, totally-useless-and, rice-also-disappointing,

flatware-is-unusable, was-sorely-disappointed, waste-of-money

flat-crooked-ugly, is-no-metal,
now-basically-worthless, makes-weak-coffee

sophisticated-gorgeous-retro,great-hot-drinks, it-a-learning,

!-happy-holidays, great-grilled-sandwiches, !-highly-recommend,

it-toasts-beautifully, look-wonderful-and,

excellent-addition-to, nonstick-!-you

Table 3: Comparison of the top trigrams chosen from 10 most related CNN filters learned on the task B → K. The

entire table contains the results achieved by the variants of our method. * denotes a padding. The domain-specific

words are in bold.

Method Negative Sentiment Positive Sentiment

Baseline

beyond-is-badly, such-gross-audio, returning-for-the,

poorly-executed-poorly, director-john-ford, is-so-disappointing,

does-not-work, is-a-disappointment,

lighting-poor-directing, pathetic-remake-from

hip-hop-dvd, combines-multiple-genres,

the-most-amazing, very-good-price, stylish-photography,

best-performances-since, amazing-!-the, lasting-and-unique,

accomplished-and-dedicated, loves-being-able

ACAN-KL

return-an-even, such-gross-audio, star-hollywood-material,
poorly-executed-poorly, does-not-work,

a-complete-failure, is-a-disappointment, pathetic-remake-from,

waste-of-money, failed-miserably-alyson

beautifully-classic-comedy, adult-who-enjoys, i-bought-loves,

the-most-acclaimed, combines-multiple-genres, very-good-price,

’s-memorable-entrance, great-and-splendid,

acclaimed-romantic-comedies, stylish-photography-and

DAS

release-the-movie, a-total-waste, dodging-bullets-and,

incompetent-direction-by, is-absolutely-horrible,

very-disappointing-once, is-pretty-pathetic, was-a-waste

awful-the-ending, pathetic-remake-from

entertaining-and-inspirational, truly-enjoy-it, an-amazing-artist,
superb-production-and, very-good-price, fantastic-film-!,
best-performance-since, perfect-love-on,

amazing-film-from, and-fascinating-documentaries

ACAN

unfunny-overrated-movie, of-gross-caricature, was-a-waste,

pathetic-remake-from, poorly-executed-poorly, was-awful-from,

directing-poor-writing, is-a-disappointment,

disgusting-badly-written, tasteless-unoriginal-drivel

combines-multiple-genres, very-good-price, are-great-featuring,

accomplished-and-dedicated, great-performance-tongue,

’s-stylish-photography, is-my-favourite, family-classics-action
the-most-amazing, fantastic-action-picture

Table 4: Comparison of the top trigrams chosen from 10 most related CNN filters learned on the task K → D. The

entire table contains the results achieved by the variants of our method. * denotes a padding. The domain-specific

words are in bold.

Source 

Target

Maximize Discrepancy Minimize DiscrepancyRegularization

Target Cluster 
Decision Boundary

Adversarial Training 

Figure 6: The detail of changes in decision boundaries and data distribution during the network training process.
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Figure 7: Visualization by applying principal component analysis to the representation of source training data and

target testing data produced by ACAN-KL (left) and ACAN (right) for B→E task. The red, blue, green, and black

points denote the source positive, source negative, target positive, and target negative examples correspondingly.

Figure 8: Visualization by applying principal component analysis to the representation of source training data and

target testing data produced by ACAN-KL (left) and ACAN (right) for B→K task. The red, blue, green, and black

points denote the source positive, source negative, target positive, and target negative examples correspondingly.


