
Proceedings of NAACL-HLT 2018, pages 84–91
New Orleans, Louisiana, June 1 - 6, 2018. c©2017 Association for Computational Linguistics

Construction of the Literature Graph in Semantic Scholar
Waleed Ammar, Dirk Groeneveld, Chandra Bhagavatula, Iz Beltagy, Miles Crawford,

Doug Downey,� Jason Dunkelberger, Ahmed Elgohary, Sergey Feldman, Vu Ha,
Rodney Kinney, Sebastian Kohlmeier, Kyle Lo, Tyler Murray, Hsu-Han Ooi,

Matthew Peters, Joanna Power, Sam Skjonsberg, Lucy Lu Wang, Chris Wilhelm,
Zheng Yuan,� Madeleine van Zuylen, and Oren Etzioni

waleeda@allenai.org

Allen Institute for Artificial Intelligence, Seattle WA 98103, USA
�Northwestern University, Evanston IL 60208, USA

Abstract

We describe a deployed scalable system
for organizing published scientific litera-
ture into a heterogeneous graph to facili-
tate algorithmic manipulation and discov-
ery. The resulting literature graph consists
of more than 280M nodes, representing pa-
pers, authors, entities and various interac-
tions between them (e.g., authorships, cita-
tions, entity mentions). We reduce litera-
ture graph construction into familiar NLP
tasks (e.g., entity extraction and linking),
point out research challenges due to differ-
ences from standard formulations of these
tasks, and report empirical results for each
task. The methods described in this pa-
per are used to enable semantic features in
www.semanticscholar.org.

1 Introduction

The goal of this work is to facilitate algorithmic
discovery in the scientific literature. Despite no-
table advances in scientific search engines, data
mining and digital libraries (e.g., Wu et al., 2014),
researchers remain unable to answer simple ques-
tions such as:

� What is the percentage of female subjects in
depression clinical trials?

� Which of my co-authors published one or more
papers on coreference resolution?

� Which papers discuss the effects of Ranibizumab
on the Retina?

In this paper, we focus on the problem of ex-
tracting structured data from scientific documents,
which can later be used in natural language inter-
faces (e.g., Iyer et al., 2017) or to improve ranking
of results in academic search (e.g., Xiong et al.,

Figure 1: Part of the literature graph.

2017). We describe methods used in a scalable de-
ployed production system for extracting structured
information from scientific documents into the lit-
erature graph (see Fig. 1). The literature graph is
a directed property graph which summarizes key
information in the literature and can be used to an-
swer the queries mentioned earlier as well as more
complex queries. For example, in order to com-
pute the Erdős number of an author X, the graph
can be queried to find the number of nodes on the
shortest undirected path between author X and Paul
Erdős such that all edges on the path are labeled
“authored”.

We reduce literature graph construction into fa-
miliar NLP tasks such as sequence labeling, entity
linking and relation extraction, and address some
of the impractical assumptions commonly made in
the standard formulations of these tasks. For ex-
ample, most research on named entity recognition
tasks report results on large labeled datasets such
as CoNLL-2003 and ACE-2005 (e.g., Lample et al.,

84



2016), and assume that entity types in the test set
match those labeled in the training set (including
work on domain adaptation, e.g., Daumé, 2007).
These assumptions, while useful for developing
and benchmarking new methods, are unrealistic for
many domains and applications. The paper also
serves as an overview of the approach we adopt
at www.semanticscholar.org in a step towards
more intelligent academic search engines (Etzioni,
2011).

In the next section, we start by describing our
symbolic representation of the literature. Then, we
discuss how we extract metadata associated with a
paper such as authors and references, then how we
extract the entities mentioned in paper text. Before
we conclude, we briefly describe other research
challenges we are actively working on in order to
improve the quality of the literature graph.

2 Structure of The Literature Graph

The literature graph is a property graph with di-
rected edges. Unlike Resource Description Frame-
work (RDF) graphs, nodes and edges in property
graphs have an internal structure which is more
suitable for representing complex data types such
as papers and entities. In this section, we describe
the attributes associated with nodes and edges of
different types in the literature graph.

2.1 Node Types

Papers. We obtain metadata and PDF files
of papers via partnerships with publishers (e.g.,
Springer, Nature), catalogs (e.g., DBLP, MED-
LINE), pre-publishing services (e.g., arXiv, bioRx-
ive), as well as web-crawling. Paper nodes are
associated with a set of attributes such as ‘title’, ‘ab-
stract’, ‘full text’, ‘venues’ and ‘publication year’.
While some of the paper sources provide these at-
tributes as metadata, it is often necessary to extract
them from the paper PDF (details in §3). We de-
terministically remove duplicate papers based on
string similarity of their metadata, resulting in 37M
unique paper nodes. Papers in the literature graph
cover a variety of scientific disciplines, including
computer science, molecular biology, microbiology
and neuroscience.

Authors. Each node of this type represents a
unique author, with attributes such as ‘first name’
and ‘last name’. The literature graph has 12M
nodes of this type.

Entities. Each node of this type represents a
unique scientific concept discussed in the literature,
with attributes such as ‘canonical name’, ‘aliases’
and ‘description’. Our literature graph has 0.4M
nodes of this type. We describe how we populate
entity nodes in §4.3.

Entity mentions. Each node of this type rep-
resents a textual reference of an entity in one of
the papers, with attributes such as ‘mention text’,
‘context’, and ‘confidence’. We describe how we
populate the 237M mentions in the literature graph
in §4.1.

2.2 Edge Types
Citations. We instantiate a directed citation

edge from paper nodes p1 �! p2 for each p2

referenced in p1. Citation edges have attributes
such as ‘from paper id’, ‘to paper id’ and ‘contexts’
(the textual contexts where p2 is referenced in p1).
While some of the paper sources provide these at-
tributes as metadata, it is often necessary to extract
them from the paper PDF as detailed in §3.

Authorship. We instantiate a directed author-
ship edge between an author node and a paper node
a �! p for each author of that paper.

Entity linking edges. We instantiate a directed
edge from an extracted entity mention node to the
entity it refers to.

Mention–mention relations. We instantiate
a directed edge between a pair of mentions in the
same sentential context if the textual relation ex-
traction model predicts one of a predefined list of
relation types between them in a sentential con-
text.1 We encode a symmetric relation between
m1 and m2 as two directed edges m1 �! m2 and
m2 �! m1.

Entity–entity relations. While mention–
mention edges represent relations between men-
tions in a particular context, entity–entity edges
represent relations between abstract entities. These
relations may be imported from an existing knowl-
edge base (KB) or inferred from other edges in the
graph.

3 Extracting Metadata

In the previous section, we described the overall
structure of the literature graph. Next, we discuss
how we populate paper nodes, author nodes, au-
thorship edges, and citation edges.

1Due to space constraints, we opted not to discuss our
relation extraction models in this draft.

85



Although some publishers provide sufficient
metadata about their papers, many papers are pro-
vided with incomplete metadata. Also, papers ob-
tained via web-crawling are not associated with
any metadata. To fill in this gap, we built the Sci-
enceParse system to predict structured data from
the raw PDFs using recurrent neural networks
(RNNs).2 For each paper, the system extracts the
paper title, list of authors, and list of references;
each reference consists of a title, a list of authors, a
venue, and a year.

Preparing the input layer. We split each
PDF into individual pages, and feed each page to
Apache’s PDFBox library3 to convert it into a se-
quence of tokens, where each token has features,
e.g., ‘text’, ‘font size’, ‘space width’, ‘position on
the page’.

We normalize the token-level features before
feeding them as inputs to the model. For each of the
‘font size’ and ‘space width’ features, we compute
three normalized values (with respect to current
page, current document, and the whole training
corpus), each value ranging between -0.5 to +0.5.
The token’s ‘position on the page’ is given in XY
coordinate points. We scale the values linearly to
range from .�0:5;�0:5/ at the top-left corner of
the page to .0:5; 0:5/ at the bottom-right corner.

In order to capture case information, we add
seven numeric features to the input representa-
tion of each token: whether the first/second let-
ter is uppercase/lowercase, the fraction of upper-
case/lowercase letters and the fraction of digits.

To help the model make correct predictions for
metadata which tend to appear at the beginning
(e.g., titles and authors) or at the end of papers (e.g.,
references), we provide the current page number
as two discrete variables (relative to the beginning
and end of the PDF file) with values 0, 1 and 2+.
These features are repeated for each token on the
same page.

For the k-th token in the sequence, we compute
the input representation ik by concatenating the nu-
meric features, an embedding of the ‘font size’, and
the word embedding of the lowercased token. Word
embeddings are initialized with GloVe (Pennington
et al., 2014).

Model. The input token representations are
passed through one fully-connected layer and then

2The ScienceParse libraries can be found at http://
allenai.org/software/.

3https://pdfbox.apache.org

Field Precision Recall F1

title 85.5 85.5 85.5
authors 92.1 92.1 92.1

bibliography titles 89.3 89.4 89.3
bibliography authors 97.1 97.0 97.0
bibliography venues 91.7 89.7 90.7

bibliography years 98.0 98.0 98.0

Table 1: Results of the ScienceParse system.

fed into a two-layer bidirectional LSTM (Long
Short-Term Memory, Hochreiter and Schmidhuber,
1997), i.e.,

g!k D LSTM.Wik; g!k�1/; gk D Œg!k I g
 
k �;

h!k D LSTM.gk; h!k�1/; hk D Œh!k I g
 
k �

where W is a weight matrix, g 
k

and h 
k

are de-
fined similarly to g!

k
and h!

k
but process token

sequences in the opposite direction.
Following Collobert et al. (2011), we feed the

output of the second layer hk into a dense layer to
predict unnormalized label weights for each token
and learn label bigram feature weights (often de-
scribed as a conditional random field layer when
used in neural architectures) to account for depen-
dencies between labels.

Training. The ScienceParse system is trained
on a snapshot of the data at PubMed Central. It
consists of 1.4M PDFs and their associated meta-
data, which specify the correct titles, authors, and
bibliographies. We use a heuristic labeling pro-
cess that finds the strings from the metadata in the
tokenized PDFs to produce labeled tokens. This la-
beling process succeeds for 76% of the documents.
The remaining documents are not used in the train-
ing process. During training, we only use pages
which have at least one token with a label that is
not “none”.

Decoding. At test time, we use Viterbi decod-
ing to find the most likely global sequence, with
no further constraints. To get the title, we use the
longest continuous sequence of tokens with the
“title” label. Since there can be multiple authors,
we use all continuous sequences of tokens with the
“author” label as authors, but require that all authors
of a paper are mentioned on the same page. If the
author labels are predicted in multiple pages, we
use the one with the largest number of authors.

86



Results. We run our final tests on a held-out
set from PubMed Central, consisting of about 54K
documents. The results are detailed in Table 1. We
use a conservative evaluation where an instance is
correct if it exactly matches the gold annotation,
with no credit for partial matching.

To give an example for the type of errors
our model makes, consider the paper (Wang
et al., 2013) titled “Clinical review: Efficacy of
antimicrobial-impregnated catheters in external
ventricular drainage - a systematic review and meta-
analysis.” The title we extract for this paper omits
the first part “Clinical review:”. This is likely to
be a result of the pattern “Foo: Bar Baz” appear-
ing in many training examples with only “Bar Baz”
labeled as the title.

4 Entity Extraction and Linking

In the previous section, we described how we popu-
late the backbone of the literature graph, i.e., paper
nodes, author nodes and citation edges. Next, we
discuss how we populate mentions and entities in
the literature graph using entity extraction and link-
ing on the paper text. In order to focus on more
salient entities in a given paper, we only use the
title and abstract.

4.1 Approaches

We experiment with three approaches for entity
extraction and linking:

I. Statistical: uses one or more statistical models
for predicting mention spans, then uses another sta-
tistical model to link mentions to candidate entities
in a KB.

II. Hybrid: defines a small number of hand-
engineered, deterministic rules for string-based
matching of the input text to candidate entities
in the KB, then uses a statistical model to disam-
biguate the mentions.4

III. Off-the-shelf: uses existing libraries, namely
(Ferragina and Scaiella, 2010, TagMe)5 and
(Demner-Fushman et al., 2017, MetaMap Lite)6,
with minimal post-processing to extract and link
entities to the KB.

4We also experimented with a “pure” rules-based approach
which disambiguates deterministically but the hybrid approach
consistently gave better results.

5The TagMe APIs are described at https://sobigdata.
d4science.org/web/tagme/tagme-help

6We use v3.4 (L0) of MetaMap Lite, available at https:
//metamap.nlm.nih.gov/MetaMapLite.shtml

Approach CS Bio
prec. yield prec. yield

Statistical 98.4 712 94.4 928
Hybrid 91.5 1990 92.1 3126

Off-the-shelf 97.4 873 77.5 1206

Table 2: Document-level evaluation of three ap-
proaches in two scientific areas: computer science
(CS) and biomedical (Bio).

We evaluate the performance of each approach in
two broad scientific areas: computer science (CS)
and biomedical research (Bio). For each unique
(paper ID, entity ID) pair predicted by one of the
approaches, we ask human annotators to label each
mention extracted for this entity in the paper. We
use CrowdFlower to manage human annotations
and only include instances where three or more
annotators agree on the label. If one or more of
the entity mentions in that paper is judged to be
correct, the pair (paper ID, entity ID) counts as
one correct instance. Otherwise, it counts as an
incorrect instance. We report ‘yield’ in lieu of
‘recall’ due to the difficulty of doing a scalable
comprehensive annotation.

Table 2 shows the results based on 500 papers
using v1.1.2 of our entity extraction and linking
components. In both domains, the statistical ap-
proach gives the highest precision and the lowest
yield. The hybrid approach consistently gives the
highest yield, but sacrifices precision. The TagMe
off-the-shelf library used for the CS domain gives
surprisingly good results, with precision within 1
point from the statistical models. However, the
MetaMap Lite off-the-shelf library we used for the
biomedical domain suffered a huge loss in preci-
sion. Our error analysis showed that each of the
approaches is able to predict entities not predicted
by the other approaches so we decided to pool their
outputs in our deployed system, which gives signif-
icantly higher yield than any individual approach
while maintaining reasonably high precision.

4.2 Entity Extraction Models

Given the token sequence t1; : : : ; tN in a sentence,
we need to identify spans which correspond to en-
tity mentions. We use the BILOU scheme to en-
code labels at the token level. Unlike most formula-
tions of named entity recognition problems (NER),
we do not identify the entity type (e.g., protein,

87



drug, chemical, disease) for each mention since the
output mentions are further grounded in a KB with
further information about the entity (including its
type), using an entity linking module.

Model. First, we construct the token embed-
ding xk D ŒckIwk� for each token tk in the input
sequence, where ck is a character-based represen-
tation computed using a convolutional neural net-
work (CNN) with filter of size 3 characters, and wk

are learned word embeddings initialized with the
GloVe embeddings (Pennington et al., 2014).

We also compute context-sensitive word embed-
dings, denoted as lmk D Œlm!k I lm

 
k �, by con-

catenating the projected outputs of forward and
backward recurrent neural network language mod-
els (RNN-LM) at position k. The language model
(LM) for each direction is trained independently
and consists of a single layer long short-term mem-
ory (LSTM) network followed by a linear project
layer. While training the LM parameters, lm!k is
used to predict tkC1 and lm k is used to predict
tk�1. We fix the LM parameters during training of
the entity extraction model. See Peters et al. (2017)
and Ammar et al. (2017) for more details.

Given the xk and lmk embeddings for each token
k 2 f1; : : : ; N g, we use a two-layer bidirectional
LSTM to encode the sequence with xk and lmk

feeding into the first and second layer, respectively.
That is,
g!k D LSTM.xk; g!k�1/; gk D Œg!k I g

 
k �;

h!k D LSTM.ŒgkI lmk�; h!k�1/; hk D Œh!k Ih
 
k �;

where g 
k

and h 
k

are defined similarly to g!
k

and
h!

k
but process token sequences in the opposite

direction.
Similar to the model described in §3, we feed the

output of the second LSTM into a dense layer to
predict unnormalized label weights for each token
and learn label bigram feature weights to account
for dependencies between labels.

Results. We use the standard data splits of
the SemEval-2017 Task 10 on entity (and relation)
extraction from scientific papers (Augenstein et al.,
2017). Table 3 compares three variants of our en-
tity extraction model. The first line omits the LM
embeddings lmk , while the second line is the full
model (including LM embeddings) showing a large
improvement of 4.2 F1 points. The third line shows
that creating an ensemble of 15 models further im-
proves the results by 1.1 F1 points.

Model instances. In the deployed system, we
use three instances of the entity extraction model

Description F1

Without LM 49.9
With LM 54.1

Avg. of 15 models with LM 55.2

Table 3: Results of the entity extraction model on
the development set of SemEval-2017 task 10.

with a similar architecture, but trained on differ-
ent datasets. Two instances are trained on the
BC5CDR (Li et al., 2016) and the CHEMDNER
datasets (Krallinger et al., 2015) to extract key en-
tity mentions in the biomedical domain such as dis-
eases, drugs and chemical compounds. The third
instance is trained on mention labels induced from
Wikipedia articles in the computer science domain.
The output of all model instances are pooled to-
gether and combined with the rule-based entity
extraction module, then fed into the entity linking
model (described below).

4.3 Knowledge Bases
In this section, we describe the construction of en-
tity nodes and entity-entity edges. Unlike other
knowledge extraction systems such as the Never-
Ending Language Learner (NELL)7 and OpenIE
4,8 we use existing knowledge bases (KBs) of en-
tities to reduce the burden of identifying coher-
ent concepts. Grounding the entity mentions in
a manually-curated KB also increases user confi-
dence in automated predictions. We use two KBs:
UMLS: The UMLS metathesaurus integrates in-
formation about concepts in specialized ontologies
in several biomedical domains, and is funded by
the U.S. National Library of Medicine.
DBpedia: DBpedia provides access to structured
information in Wikipedia. Rather than including all
Wikipedia pages, we used a short list of Wikipedia
categories about CS and included all pages up to
depth four in their trees in order to exclude irrele-
vant entities, e.g., “Lord of the Rings” in DBpedia.

4.4 Entity Linking Models
Given a text span s identified by the entity extrac-
tion model in §4.2 (or with heuristics) and a ref-
erence KB, the goal of the entity linking model
is to associate the span with the entity it refers to.
A span and its surrounding words are collectively

7http://rtw.ml.cmu.edu/rtw/
8https://github.com/allenai/

openie-standalone

88



referred to as a mention. We first identify a set of
candidate entities that a given mention may refer
to. Then, we rank the candidate entities based on
a score computed using a neural model trained on
labeled data.

For example, given the string “. . . database
of facts, an ILP system will . . . ”, the entity ex-
traction model identifies the span “ILP” as a
possible entity and the entity linking model as-
sociates it with “Inductive_Logic_Programming”
as the referent entity (from among other can-
didates like “Integer_Linear_Programming” or
“Instruction-level_Parallelism”).

Datasets. We used two datasets: i) a biomed-
ical dataset formed by combining MSH (Jimeno-
Yepes et al., 2011) and BC5CDR (Li et al., 2016)
with UMLS as the reference KB, and ii) a CS
dataset we curated using Wikipedia articles about
CS concepts with DBpedia as the reference KB.

Candidate selection. In a preprocessing step,
we build an index which maps any token used in
a labeled mention or an entity name in the KB
to associated entity IDs, along with the frequency
this token is associated with that entity. This is
similar to the index used in previous entity linking
systems (e.g., Bhagavatula et al., 2015) to estimate
the probability that a given mention refers to an
entity. At train and test time, we use this index
to find candidate entities for a given mention by
looking up the tokens in the mention. This method
also serves as our baseline in Table 4 by selecting
the entity with the highest frequency for a given
mention.

Scoring candidates. Given a mention (m) and
a candidate entity (e), the neural model constructs a
vector encoding of the mention and the entity. We
encode the mention and entity using the functions
f and g, respectively, as follows:

f.m/ D Œvm.nameI avg.vm.lc; vm.rc/�;

g.e/ D Œve.nameI ve.def�;

where m.surface, m.lc and m.rc are the mention’s
surface form, left and right contexts, and e.name
and e.def are the candidate entity’s name and def-
inition, respectively. vtext is a bag-of-words sum
encoder for text. We use the same encoder for the
mention surface form and the candidate name, and
another encoder for the mention contexts and entity
definition.

Additionally, we include numerical features to
estimate the confidence of a candidate entity based
on the statistics collected in the index described

CS Bio

Baseline 84.2 54.2
Neural 84.6 85.8

Table 4: The Bag of Concepts F1 score of the base-
line and neural model on the two curated datasets.

earlier. We compute two scores based on the word
overlap of (i) mention’s context and candidate’s
definition and (ii) mention’s surface span and the
candidate entity’s name. Finally, we feed the con-
catenation of the cosine similarity between f.m/

and g.e/ and the intersection-based scores into an
affine transformation followed by a sigmoid non-
linearity to compute the final score for the pair (m,
e).

Results. We use the Bag of Concepts F1 metric
(Ling et al., 2015) for comparison. Table 4 com-
pares the performance of the most-frequent-entity
baseline and our neural model described above.

5 Other Research Problems

In the previous sections, we discussed how we con-
struct the main components of the literature graph.
In this section, we briefly describe several other
related challenges we are actively working on.

Author disambiguation. Despite initiatives to
have global author IDs ORCID and ResearcherID,
most publishers provide author information as
names (e.g., arXiv). However, author names cannot
be used as a unique identifier since several people
often share the same name. Moreover, different
venues and sources use different conventions in
reporting the author names, e.g., “first initial, last
name” vs. “last name, first name”. Inspired by
Culotta et al. (2007), we train a supervised binary
classifier for merging pairs of author instances and
use it to incrementally create author clusters. We
only consider merging two author instances if they
have the same last name and share the first initial.
If the first name is spelled out (rather than abbrevi-
ated) in both author instances, we also require that
the first name matches.

Ontology matching. Popular concepts are
often represented in multiple KBs. For example,
the concept of “artificial neural networks” is repre-
sented as entity ID D016571 in the MESH ontology,
and represented as page ID ‘21523’ in DBpedia.
Ontology matching is the problem of identifying

89



semantically-equivalent entities across KBs or on-
tologies.9

Limited KB coverage. The convenience of
grounding entities in a hand-curated KB comes at
the cost of limited coverage. Introduction of new
concepts and relations in the scientific literature
occurs at a faster pace than KB curation, resulting
in a large gap in KB coverage of scientific concepts.
In order to close this gap, we need to develop mod-
els which can predict textual relations as well as
detailed concept descriptions in scientific papers.
For the same reasons, we also need to augment
the relations imported from the KB with relations
extracted from text. Our approach to address both
entity and relation coverage is based on distant su-
pervision (Mintz et al., 2009). In short, we train
two models for identifying entity definitions and
relations expressed in natural language in scientific
documents, and automatically generate labeled data
for training these models using known definitions
and relations in the KB.

We note that the literature graph currently lacks
coverage for important entity types (e.g., affilia-
tions) and domains (e.g., physics). Covering af-
filiations requires small modifications to the meta-
data extraction model followed by an algorithm for
matching author names with their affiliations. In
order to cover additional scientific domains, more
agreements need to be signed with publishers.

Figure and table extraction. Non-textual
components such as charts, diagrams and tables
provide key information in many scientific docu-
ments, but the lack of large labeled datasets has im-
peded the development of data-driven methods for
scientific figure extraction. In Siegel et al. (2018),
we induced high-quality training labels for the task
of figure extraction in a large number of scientific
documents, with no human intervention. To accom-
plish this we leveraged the auxiliary data provided
in two large web collections of scientific documents
(arXiv and PubMed) to locate figures and their as-
sociated captions in the rasterized PDF. We use
the resulting dataset to train a deep neural network
for end-to-end figure detection, yielding a model
that can be more easily extended to new domains
compared to previous work.

Understanding and predicting citations.
The citation edges in the literature graph provide
a wealth of information (e.g., at what rate a paper

9Variants of this problem are also known as deduplication
or record linkage.

is being cited and whether it is accelerating), and
opens the door for further research to better under-
stand and predict citations. For example, in order
to allow users to better understand what impact a
paper had and effectively navigate its citations, we
experimented with methods for classifying a cita-
tion as important or incidental, as well as more fine-
grained classes (Valenzuela et al., 2015). The cita-
tion information also enables us to develop models
for estimating the potential of a paper or an author.
In Weihs and Etzioni (2017), we predict citation-
based metrics such as an author’s h-index and the
citation rate of a paper in the future. Also related
is the problem of predicting which papers should
be cited in a given draft (Bhagavatula et al., 2018),
which can help improve the quality of a paper draft
before it is submitted for peer review, or used to
supplement the list of references after a paper is
published.

6 Conclusion and Future Work

In this paper, we discuss the construction of a graph,
providing a symbolic representation of the scien-
tific literature. We describe deployed models for
identifying authors, references and entities in the
paper text, and provide experimental results to eval-
uate the performance of each model.

Three research directions follow from this work
and other similar projects, e.g., Hahn-Powell et al.
(2017); Wu et al. (2014): i) improving quality and
enriching content of the literature graph (e.g., on-
tology matching and knowledge base population).
ii) aggregating domain-specific extractions across
many papers to enable a better understanding of the
literature as a whole (e.g., identifying demographic
biases in clinical trial participants and summarizing
empirical results on important tasks). iii) exploring
the literature via natural language interfaces.

In order to help future research efforts, we make
the following resources publicly available: meta-
data for over 20 million papers,10 meaningful cita-
tions dataset,11 models for figure and table extrac-
tion,12 models for predicting citations in a paper
draft 13 and models for extracting paper metadata,14

among other resources.15

10http://labs.semanticscholar.org/corpus/
11http://allenai.org/data.html
12https://github.com/allenai/
deepfigures-open

13https://github.com/allenai/citeomatic
14https://github.com/allenai/science-parse
15http://allenai.org/software/

90



References
Waleed Ammar, Matthew E. Peters, Chandra Bhagavat-

ula, and Russell Power. 2017. The ai2 system at
semeval-2017 task 10 (scienceie): semi-supervised
end-to-end entity and relation extraction. In ACL
workshop (SemEval).

Isabelle Augenstein, Mrinal Das, Sebastian Riedel,
Lakshmi Vikraman, and Andrew D. McCallum.
2017. Semeval 2017 task 10 (scienceie): Extracting
keyphrases and relations from scientific publications.
In ACL workshop (SemEval).

Chandra Bhagavatula, Sergey Feldman, Russell Power,
and Waleed Ammar. 2018. Content-based citation
recommendation. In NAACL.

Chandra Bhagavatula, Thanapon Noraset, and Doug
Downey. 2015. TabEL: entity linking in web tables.
In ISWC.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. In JMLR.

Aron Culotta, Pallika Kanani, Robert Hall, Michael
Wick, and Andrew D. McCallum. 2007. Author
disambiguation using error-driven machine learning
with a ranking loss function. In IIWeb Workshop.

Hal Daumé. 2007. Frustratingly easy domain adapta-
tion. In ACL.

Dina Demner-Fushman, Willie J. Rogers, and Alan R.
Aronson. 2017. MetaMap Lite: an evaluation of a
new Java implementation of MetaMap. In JAMIA.

Oren Etzioni. 2011. Search needs a shake-up. Nature
476 7358:25–6.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME:
on-the-fly annotation of short text fragments (by
wikipedia entities). In CIKM.

Gus Hahn-Powell, Marco Antonio Valenzuela-
Escarcega, and Mihai Surdeanu. 2017. Swanson
linking revisited: Accelerating literature-based dis-
covery across domains using a conceptual influence
graph. In ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation .

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke S. Zettlemoyer. 2017.
Learning a neural semantic parser from user feed-
back. In ACL.

Antonio J. Jimeno-Yepes, Bridget T. McInnes, and
Alan R. Aronson. 2011. Exploiting mesh indexing
in medline to generate a data set for word sense dis-
ambiguation. BMC bioinformatics 12(1):223.

Martin Krallinger, Florian Leitner, Obdulia Rabal,
Miguel Vazquez, Julen Oyarzabal, and Alfonso Va-
lencia. 2015. CHEMDNER: The drugs and chemi-
cal names extraction challenge. In J. Cheminformat-
ics.

Guillaume Lample, Miguel Ballesteros, Sandeep K
Subramanian, Kazuya Kawakami, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. In HLT-NAACL.

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. Biocreative v cdr task cor-
pus: a resource for chemical disease relation extrac-
tion. Database : the journal of biological databases
and curation 2016.

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015.
Design challenges for entity linking. Transactions
of the Association for Computational Linguistics
3:315–328.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation extrac-
tion without labeled data. In ACL.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In EMNLP.

Matthew E. Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
In ACL.

Noah Siegel, Nicholas Lourie, Russell Power, and
Waleed Ammar. 2018. Extracting scientific figures
with distantly supervised neural networks. In JCDL.

Marco Valenzuela, Vu Ha, and Oren Etzioni. 2015.
Identifying meaningful citations. In AAAI Workshop
(Scholarly Big Data).

Xiang Wang, Yan Dong, Xiang qian Qi, Yi-Ming Li,
Cheng-Guang Huang, and Lijun Hou. 2013. Clin-
ical review: Efficacy of antimicrobial-impregnated
catheters in external ventricular drainage - a system-
atic review and meta-analysis. In Critical care.

Luca Weihs and Oren Etzioni. 2017. Learning to pre-
dict citation-based impact measures. In JCDL.

Jian Wu, Kyle Williams, Hung-Hsuan Chen, Madian
Khabsa, Cornelia Caragea, Alexander Ororbia, Dou-
glas Jordan, and C. Lee Giles. 2014. CiteSeerX: AI
in a digital library search engine. In AAAI.

Chenyan Xiong, Russell Power, and Jamie Callan.
2017. Explicit semantic ranking for academic
search via knowledge graph embedding. In WWW.

91


