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Abstract

We present a statistical framework to extract
information-rich citation sentences that sum-
marise the main contributions of a scientific
paper. In a first stage, we automatically dis-
cover salient keywords from a paper’s citation
summary, keywords that characterise its main
contributions. In a second stage, exploiting the
results of the first stage, we identify citation
sentences that best capture the paper’s main
contributions. Experimental results show that
our approach using methods rooted in quan-
titative statistics and information theory out-
performs the current state-of-the-art systems
in scientific paper summarisation.

1 Introduction and Motivation

Science is not an isolated endeavour, but benefits
from and expands on the work of others, with more
or less cross fertilisation between disciplines. The
interdependent nature of research has naturally re-
sulted in a network of scientific areas with dense in-
terconnections between related fields. Though re-
search is a highly specialised activity, researchers
find themselves constantly in need to explore the
network further from the core of their research.
Tools that can facilitate understanding the key con-
tributions of papers in those parts of the network be-
ing explored can only prove highly valuable.

As an example of such tools, we focus on an
application that automatically extracts information-
rich sentences describing the main contributions of
a given paper. From which corpus the extraction
could take place? A natural answer is the abstract of
the paper. However, the contributions as perceived
by the authors can significantly deviate from those
judged extrospectively by the community over time
(Mei and Zhai, 2008). Instead, we take as corpus
the set of citing sentences to the paper (from other
papers). Indeed, those sentences can arguably be
deemed as a form of crowd-sourced review of the

paper’s main contributions. The set of citing sen-
tences is referred to as the citation summary of the
target paper. Elkiss et al. (2008) carried out a large-
scale study and confirmed that citation summaries
contain extra information that does not appear in pa-
per abstracts. In addition, they found that the “self-
cohesion”, measured as the average cosine similar-
ity between sentences, is consistently higher in a pa-
per’s citation summary than in its abstract: the for-
mer is more focused than the latter in describing pa-
pers’ main contributions. This work presents our ef-
forts in advancing research along this direction.

Section 2 formally defines the problem we aim
to solve: summarise scientific papers using the
most informative and diversified part of their cita-
tion summaries. It surveys several prominent related
studies, and introduces the data used in our experi-
ments and evaluations. In Section 3, we present our
statistical framework built upon quantitative statis-
tics and information theory. In Section 4, we eval-
uate and compare the performance of our method
with state-of-the-art systems. We conclude and
point to future directions in Section 5.

2 Problem Statement

The problem we tackle in this paper is to generate
an extractive summary (usually, we will simply say
summary) from its citation summary. More specifi-
cally, we opt for a two stage approach. In the first
stage, we automatically discover salient keywords
from a paper’s citation summary, keywords that are
essential in characterising the paper’s main contribu-
tions. The second stage, exploiting the results of the
first stage, identifies citation sentences (to the paper)
that best capture the paper’s main contributions.

A word of caution: by utilising only citation sum-
maries, one should not expect to obtain well formu-
lated, readily consumable summaries of papers. In-
deed, a citation sentence may be not all about the
cited paper, but also talk about the citing paper and
other co-cited papers, which disqualify citation sum-
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maries as a premium source of sentences for build-
ing highly readable summaries (Siddharthan and
Teufel, 2007). Moreover, a summary built from cit-
ing sentences that come for a pool of multiple cit-
ing papers is bound to lack coherence. Therefore,
it is more appropriate to consider that the output of
such a system is to extrinsically gauge a system’s ef-
fectiveness in indexing information-rich citing sen-
tences containing keywords that facilitate rapidly
grasping a paper’s important contributions, rather
than be treated as a polished, readable summary for
human consumption (Qazvinian et al., 2013).

2.1 Related Work
Qazvinian and Radev (2008) first experimented
with citation summary based paper summarisations.
They proposed a graph-based method, C-LexRank,
that first generates a citation summary network for
a paper by mapping citing sentences to vertices and
creating edges from their lexical similarities. Clus-
ters of sentences capturing the same contribution
of the paper are then identified through link-based
community detection. Finally, the most central sen-
tence of each cluster is found using a weighted
random walk and selected to form a paper sum-
mary meant to comprehensively cover the paper’s
main contributions. Mohammad et al. (2009) further
adapted the C-LexRank to multi-document sum-
marisation in an attempt to generate surveys for sci-
entific paradigms.

In a later paper, Qazvinian et al. (2010) proposed
a more computationally efficient summariser that
does not require clustering citing sentences. As a
first step, key phrases are automatically identified
as significant n-grams with positive point-wise di-
vergence (Tomokiyo, 2003) from a foreground lan-
guage model estimated using the citation summary
of a paper w.r.t. a background language model built
from a large set of paper abstracts. A greedy algo-
rithm is subsequently applied to select citing sen-
tences and form a summary that maximises key
phrase coverage.

Mei and Zhai (2008) presented a sophisticated
generative approach that frames summarisation un-
der an Information Retrieval (IR) context. Specifi-
cally, an impact language model for a paper is first
built as a mixture of a language model estimated
from the paper’s own text, and a weighted citation
language model based on its collective citation con-
texts, using a compound coefficient reflecting both
a sentence’s proximity to the citation label (anchor)
in the citing paper and the citing paper’s authority

calculated from the citation network using PageR-
ank (Brin and Page, 1998). Finally, documents (sen-
tences in the target paper) that are closest to the
query (the impact language model of the target pa-
per) are extracted to form a summary using ad-hoc
document retrieval. Note that Mei and Zhai (2008)
utilised extra information (i.e., paper full texts and
citation networks) to produce summaries that con-
sist of sentences from papers’ own texts rather than
their citation summaries, making their task related
to but different to ours.

2.2 Data
The experiments and evaluations presented here
have been based on Qazvinian’s single paper sum-
marisation corpus1. The dataset consists of 25
highly cited papers in the ACL Anthology Network
(AAN) (Radev et al., 2009) from 5 different do-
mains: Dependency Parsing (DP), Phrase Based
Machine Translation (PBMT), Text Summarisation
(SUM), Question Answering (QA) and Textual En-
tailment (TE). There are two files provided for each
paper: a citation summary file containing all citing
sentences to it, and a manually constructed key fact
file containing its main contributions hand picked
by human annotators after reading the citation sum-
mary. The manual annotation has been performed
independently by annotators, and a phrase needed to
be marked by at least 2 annotators to be qualified as
capturing a paper’s key fact (Qazvinian and Radev,
2008). This corpus represents a gold standard in re-
search paper summarisation and it has been widely
used in system evaluations (Qazvinian and Radev,
2008; Qazvinian et al., 2010).

3 Our Approach

In this section, we first introduce our quantitative
statistical method to automatically construct a key-
word profile of a paper and statistically capture a
paper’s main contributions in terms of words from
its citation summary. We then discuss how we con-
struct a keyword profile language model. Finally, we
elaborate on how we cast the task of sentence selec-
tion from the citation summary as language model
divergence based IR in a probabilistic framework.

3.1 Paper Keyword Profile
As indicated in Section 1, the citation summary of a
paper can be deemed a collective review of its con-
tributions. Therefore, the main contributions of a

1http://www-personal.umich.edu/˜vahed/
data.html
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paper are salient keywords, those keywords which
are commonly used by its citers to refer to it and
are statistically over-represented in the paper’s cita-
tion summary w.r.t. the overall distribution of such
words across other papers’ citation summaries. Put
another way, the salience of a word in characteris-
ing a paper’s main contributions is qualified along
over-representedness and exclusiveness dimensions.
Clearly, a proper statistical model of words distribu-
tion is required in order to measure words’ salience
in a paper’s citation summary. Consider five papers,
D1, . . . , D5 with citation summaries CS1, . . . , CS5.
We aim at identifying salient keywords from D1’s
citation summary CS1, that map to D1’s main con-
tributions. To decide whether a word W is a charac-
terising keyword of D1, we first collect all n citing
sentences containing W from CS1, . . . , CS5; sup-
pose there are n = 20 of them. Then for each citing
sentence S amongst those 20, we perform the binary
test: success iff S belongs to CS1. Suppose that there
are k = 18 successes and 2 failures. This represents
a surprising observation: one would expect a word
of no characterising power to appear in roughly the
same number of sentences in CS1, . . . , CS5, assum-
ing all citation summaries have the same number of
sentences2. So one would heuristically conclude that
W is a good candidate keyword for D1, a keyword
that is likely to represent a main contribution.

The previous process can be abstracted as sam-
pling without replacement from a finite set whose
elements can be classified into mutually exclusive
binary categories, which itself follows a Hypergeo-
metric distribution. Let N be the total number of
citing sentences in citation summaries for papers be-
longing to collection C, K be the number of sen-
tences in paper D’s citation summary, n be the to-
tal number of citing sentences containing a certain
word W , and X be the number of citing sentences
containing W in D’s citation summary. The proba-
bility of observing exactly k citing sentences in D’s
citation summary containing W is:

H(X=k|N,K,n)=
(K

k )(N�K
n�k )

(N
n)

(1)

We can then calculate a p-value to the observed
number of x citing sentences in D’s citation sum-
mary that contain word W using the Hypergeomet-
ric test, which in turn is used to measure word W ’s
salience in characterising D’s main contributions:

S(W )
def
= P (X�x)=1�Px�1

i=0 H(X=i|N,K,n)) (2)
2This assumption is only made to simplify the discussion.

The smaller the value of S(W ), the more salient W
is. Also, words not appearing in D’s citation sum-
mary have a maximum p-value of 1.0, and common
words appearing in many papers’ citation summaries
are expected to have larger p-values than words that
are more exclusively used when citing paper D.

It is worth pointing out that the above formulation
can be equivalently expressed as applying the one-
tailed Fisher’s exact test to measure strengths of sta-
tistical associations between words and paper’s ci-
tation summaries at the sentence level. Our choice
of this statistical procedure has been informed by
(Moore, 2004). Prior to this work, Dunning (1993)
was pointing out that some commonly used meth-
ods such as the Pearson’s �2 test are inappropriate
for measuring textual associations due to the fact
that the underlying normality assumption is usu-
ally violated in textual data. He was subsequently
introducing the log-likelihood ratio test (LLR) and
showing that it can yield more reliable results. The
LLR was then and has since been widely adopted
in statistical NLP as a measure of strength of as-
sociation (Moore, 2004). For instance, Lin and
Hovy (2000) successfully applied LLR in mining
“topic signatures” of pre-classified document col-
lections. But to further verify LLR’s validity ap-
plied to rare events, Moore (2004) performed an em-
pirical study comparing results obtained using LLR
and Fisher’s exact test on bilingual word association
and found that albeit being a good approximation to
Fisher’s exact test, LLR can still introduce a sub-
stantial amount of error and the author went on to
advocate the use of Fisher’s exact test where com-
putationally feasible. Recall that we measured as-
sociational strengths at the sentence level. This re-
sulted in marginal frequencies in the order of only
hundreds for Qazvinian’s small corpus. We there-
fore followed this empirical advice and used the one-
tailed Fisher’s exact test (i.e., Hypergeometric test)
as our measure of textual association to perform key-
word profiling of a scientific paper.

To obtain a set of keywords likely to map to a
paper’s main contributions, one can simply sort all
words according to their statistical significance and
pick the top few (e.g., 10 words with the smallest p-
values). A more statistically tenable scheme would
be to identify the keywords of a paper as all words
appearing in its citation summary with p-values be-
low some significance level. A technicality here is
that in the identification of keywords, multiple Hy-
pergeometric tests have been performed. For exam-
ple, all unique words that appeared in the collection
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of citation summaries have been individually tested
for their salience in a target paper’s citation sum-
mary in succession. The significance level used to
qualify a word as a keyword thus requires correction
for multiple tests to reduce type I errors. However,
we shall show that the rigid statistical significance is
not crucial in our subsequent building of a keyword
language model for a paper, and so we did not per-
form multiple tests corrections, but simply used the
raw p-values in subsequent analysis.

Another technicality is special handling of cita-
tion anchors. Cited authors’ names, almost system-
atically appearing in citing sentences, are bound to
be identified as salient keywords. We thus substi-
tuted all citation anchors appearing in a paper’s cita-
tion summary with the pseudo token “targetanchor”
if they refer to the target paper, and “otheranchor” if
they refer to other co-cited papers.

Furthermore, our keyword profiling approach al-
lows for a flexible control of the level of selective-
ness in its statistical procedure through the choice
of the benchmarking collection C. For example,
we can choose to use a heterogeneous collection of
papers covering multiple domains. Words that are
salient in characterising a domain may then evalu-
ate to a high salience for a paper in C on that do-
main (e.g., word “parsing” for domain Dependency
Parsing (DP)). We can also choose C to be a homo-
geneous collection of papers from the same domain.
Only words that are salient in characterising a sin-
gle paper will then be evaluated to a high salience
for that paper (e.g., if C is on DP, “parsing” will
not show up as a salient word for any paper in C).
Recall from Section 2.2 that we use as data papers
from five domains. We exploited the homogeneity
of this data and performed keyword profiling intra-
domain. This effectively made the keyword profil-
ing all the more selective that the keywords identi-
fied for a paper only characterise its unique contribu-
tions w.r.t. its domain, using five highly cited papers.
We shall show in the next section that it is this high
selectiveness in keyword profiling that bestows our
approach its high discriminative power.

For paper P05-1013, Table 2 lists the top 10 key-
words identified from its citation summary using
our method, while Table 1 lists the humanly se-
lected gold standard key facts (Qazvinian and Radev,
2008). It can be seen that our method is highly ef-
fective in identifying the paper’s main contributions
which closely mirror those picked by human experts.
We term our word list ranked by p-values the key-
word profile of the paper; it statistically and objec-

tively captures words’ salience (measured along the
dimensions of over-representedness and exclusive-
ness) in characterising the paper’s main contribu-
tions using the statistical surprise given by Hyper-
geometric tests. While only unigram keywords were
considered here, our method can be easily extended
to cope with higher order n-gram “key phrases”.
This is left for future work.

Fact id Fact Occurence Pyramid
tier

1

non-projective 15

19

pseudo-projective 6
projectivizing 1
projective graphs 1
projectivization
transformation 1

4 czech 6 8swedish 5

2 data-driven 4 6training data 2
5 maltparser 4 4

3 nonterminal categories
in constituency 1 1

Table 1: Gold standard key facts of P05-1013 (Qazvinian
and Radev, 2008) ordered by importance. The pyramid
tier might not be the sum of the occurrences of facts, as
multiple facts can appear in the same sentence.

Salience rank Word P-value
1 non-projective 1.54e-08
2 pseudo-projective 5.61e-06
3 transformation 4.47e-05
4 transformations 1.26e-04
5 maltparser 3.48e-04
6 swedish 7.53e-04
7 danish 1.56e-03
8 following 2.64e-03
9 arcs 2.64e-03

10 dependencies 4.43e-03

Table 2: Extracted keywords for P05-1013, ranked by de-
creasing Hypergeometric test significance.

3.2 Keyword Profile Language Model
Each sentence in a paper’s citation summary covers
keywords (possibly none) that map to the paper’s
main contributions. Intuitively, a good summarisa-
tion should be short, and consist of citing sentences
that maximise keywords coverage w.r.t. an arbitrar-
ily imposed summary length limit (Qazvinian and
Radev, 2008). A good summariser should thus pick
citing sentences that contain as many non-redundant
keywords as possible. We have shown in the last sec-
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tion that not all keywords are of equal importance,
so a good summariser should favour sentences cov-
ering the most important ones. Intuitively, the key-
word profile of a paper containing valuable informa-
tion on words’ salience in characterising the paper’s
main contributions should be utilised to drive such a
discriminative sentence selection process.

Based on the previous considerations, we use a
paper’s keyword profile to build a discriminative un-
igram language model that directly encodes words’
salience as pseudo generative probabilities to facili-
tate the seamless incorporation of such information
into a generic probabilistic framework. More specif-
ically, we directly translate words’ salience (in the
form of p-values) into a discriminative unigram lan-
guage model of a paper that assigns high probabili-
ties to its characterising keywords. The pseudo gen-
erative probability of word W according to a paper
D’s keyword profile language model Mkp is:

P (W |Mkp)=� 1
Z

log(S(W )) (3)

where S(W ) denotes the salience of word W in
characterising paper D calculated using (2), and Z
is a normalisation factor. An intuitive interpreta-
tion of (3) is to deem � log(S(W )) a pseudo word
count of W , where more salient words have higher
pseudo counts; this makes Z the total length of the
pseudo document generated from the paper’s key-
word profile. We disregard actual word counts to
make the keyword profile language model directly
encode words’ salience. Also, in the previous step,
keyword profiling had already implicitly taken such
information into account, providing another justifi-
cation for this design decision. Table 3 shows a
miniature example to illustrate how a keyword pro-
file language model is built. In this example, W5

is automatically eliminated from the resulting lan-
guage model because it has lowest salience in char-
acterising the imaginary document. Any word S
with salience value S(W ) close to but strictly less
than 1.0 would still have a tiny pseudo probability in
the resulting keyword profile language model (e.g.,
W4). Words with low salience are not necessarily
stop words (e.g., W4 and W5), and neither is the
reverse true: a content word can possibly be used
across the document collection and thus evaluate to
a very low salience (and so have a nul or low pseudo
generative probability in the resulting keyword pro-
file language model) for the document under con-
sideration. For example, “parsing” would have a low
salience for any paper in a collection on Dependency
Parsing. It can be seen that our method amounts to

a highly adaptive data driven term weighting frame-
work. For brevity, from now on, we use KPLM to
refer to keyword profile language model.

Word Salience
S(W )

Pseudo count
� log(S(W ))

P (W |Mkp)

W1 0.01 4.61 0.605
W2 0.10 2.30 0.303
W3 0.50 0.69 0.091
W4 0.99 0.01 0.001
W5 1.00 0.00 0.000

Table 3: Keyword profile language model built for an
imaginary document consists of only 5 distinct words.

Although implicitly conveyed in the formulation
of KPLM above, it should be made clear that the
KPLM is a pseudo language model that encodes
words’ salience in the form of pseudo generative
probabilities, which functions as a language model,
yet should not be interpreted as a true language
model under the traditional definition. A traditional
unigram language model is constructed using the
actual term frequencies in the document, the re-
sulting model capturing generative probabilities. In
contrast, the KPLM of a document is built using
pseudo term frequencies that directly encode words’
salience in characterising a document’s contents,
measured using a sophisticated quantitative statisti-
cal procedure. It can thus be interpreted as a proba-
bilistic description of the document’s keywords with
significantly boosted discriminative power. Having
clarified the nature of KPLM, we treat it as a lan-
guage model in the rest of the paper.

3.3 KPLM Based Summarisation
3.3.1 Sentence Selection

The KPLM of a paper is a discriminative gen-
erative model that incorporates words’ salience in
characterising a paper’s main contributions. It thus
represents an effective language model from which
a model citing sentence covering the paper’s main
contributions could be sampled from3. So by mea-
suring the statistical surprise between the realistic
language model estimated from each citing sentence
with the KPLM of a paper, we can select the set
of citing sentences that conform best to the optimal
model given by the the KPLM and build a sum-
mary that well captures keywords. More specifi-
cally, we adopt the negative cross entropy retrieval
model (Zhai, 2008), use the KPLM of a paper as the

3A pseudo citing sentence sampled from KPLM in this man-
ner would simply be a bag of words, not a grammatical sen-
tence. So here “model” has the favour of keywords coverage.
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sole document model, and measure the cross entropy
of multiple query models from it (one for each citing
sentence in that paper’s citation summary). Citing
sentences whose Maximum Likelihood Estimation
(MLE) language models are closest to the paper’s
KPLM are taken as building blocks of the summary.

Formally, let S be a citing sentence and let
c(W, S) denote the number of occurrences of word
W in S. The MLE language model Mmle of S is the
relative frequency of word W in S:

P (W |Mmle)=
c(W,S)

|S| (4)

Subsequently, the score for a citing sentence S is
given by its negative cross entropy with the Mkp:

Score(S)=�H(Mmle ||Mkp)

=
P

W2V P (W |Mmle) log(P (W |Mkp)) (5)

The larger a citing sentence’s score, the closer it is
to the cited paper’s KPLM, thus the higher the citing
sentence would be ranked. To summarise a paper,
one can just pick the top k ranked citing sentences
where k is the imposed summary length limit.

We are not the first to cast the task of summarisa-
tion as document retrieval. Mei and Zhai (2008) pi-
oneered in utilising language models and divergence
based IR to select sentences to build summaries.
While similar in the fundamental methodology, our
approach should be distinguished from this work.
First, Mei and Zhai cast the task as ad-hoc retrieval,
using the “impact language model” of a paper as sole
query, while the paper’s sentences are treated as doc-
uments whose Kullback-Leibler divergence (Kull-
back and Leibler, 1951) with the query model is
measured in turn. Estimating reliable language mod-
els for short documents is challenging due to data
sparseness and thus requires prudent smoothing. We
purposefully reversed the roles of sentence model
and document model, using the shorter sentences
as queries and measuring their cross entropy with
a sole document model (the KPLM)4. This repre-
sents a more natural formulation resulting in sim-
pler language models that require fewer parame-
ter estimations. Second, while the impact language
model in (Mei and Zhai, 2008) is partially weighted

4Kullback-Leibler divergence, used in (Mei and Zhai, 2008),
is unsuitable to our task, as it is not formalised as ad-hoc re-
trieval (i.e., single query, multiple documents). Instead we com-
pare multiple query models (MLE’s of citing sentences) to a
single document model (KPLM of the cited paper), making KL-
divergence scores not comparable due to query specific entropy
terms. See (Zhai, 2008) for a detailed analysis.

using citing paper authority and sentence proxim-
ity to the citation anchor in the citing paper, it is
still largely based on actual word occurrences. In
contrast, KPLM directly models words’ salience in
characterising a paper’s main contributions using its
keyword profile, with expectedly more discrimina-
tive power. Last, Mei and Zhai’s estimation of an
impact language model for a paper assumes the reli-
able estimation of its citing papers’ authority, which
cannot always be guaranteed, for example when a
paper receives citations from new papers that them-
selves have not been cited enough. Furthermore,
while a citation network can be unavailable, the es-
timation of KPLM requires only the citation sum-
maries of papers, which is arguably more robust.

3.3.2 Top Sentence Re-ranking
As discussed in Section 3.2, a good summary

should capture the most salient keywords of a pa-
per, but also cover as many non-redundant keywords
as possible. A summary built using our method is
likely to contain citing sentences that concentrate on
and repetitively cover salient keywords of the target
paper, which may fall short in keywords diversity.
Indeed, we can see in the top part of Table 4 that
the summary of paper P05-1012 repetitively covers
a single keyword, “Minimum Spanning Tree”, while
it fails to capture other key concepts.

To leverage the diversity in keywords captured in
a summary, a simple heuristic is to select the next
sentence from a pool of top ranked sentences least
similar to the existing summary. From an informa-
tion theoretic point of view, this amounts to choos-
ing the next sentence that carries the most extra in-
formation (i.e., statistical surprise), w.r.t. the current
contents of the summary. This formulation intu-
itively suggests that cross entropy, as a natural mea-
sure of statistical surprise, could again be employed.

We first need to abstract a citing sentence and the
citation summary into probabilistic distributions be-
fore their cross entropy can be measured. Again we
use unigram language modelling. Since both texts
are small in size, data sparseness becomes a ma-
jor issue, as nul dimensions in the MLE language
models would make cross entropy not measurable.
Smoothing as a way to alleviate data sparseness is
thus required. Another issue that also arises from
the texts’ small size is the non-negligible amount of
cross entropy contributed from non-content words in
both texts (English stop words plus the two pseudo
tokens: “targetanchor” and “otheranchor”). We
therefore remove those non-content words prior to
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language model construction to eliminate their noise
in the cross entropy calculation. Experiments did
support this design decision, and better results have
been achieved with non-content words removed.

We perform Dirichlet Prior Smoothing (Zhai and
Lafferty, 2001) to both the citing sentence MLE and
the summary MLE using the KPLM of the paper as
a background model using a Dirichlet Prior (DP) of
20. The choice of 20 has been based on the obser-
vation that citing sentences are short (32 words on
average) and a large DP is prone to generate overly
smoothed language models that are dominated by
the KPLM, thus lack discriminative power. Here we
choose to use this empirically selected DP parameter
without attempting to fine-tune it for best results.

In summary, we implement a top sentence re-
ranking heuristic that iteratively selects the next sen-
tence to be appended to the existing summary whose
smoothed language model is with the largest cross
entropy (so it contains most extra information) with
a smoothed language mode built for the summary
at its current stage. We shall demonstrate how our
top sentence re-ranking method introduces a major
performance boost in the next section. For a quick
inspection of the effectiveness of this method, com-
pare the summaries constructed for paper P05-1012
with and without sentence re-reranking in Table 4.
It shows that the summary constructed with sen-
tence re-ranking covers key facts more comprehen-
sively. The pseudo code for our re-ranking strategy
is shown in Algorithm 1. It adopts a straightforward
re-ranking approach that simply uses the top k+5 re-
trieved citing sentences in the previous step as the
candidate pool; at each iteration, it selects the best
sentence based on its cross entropy with the sum-
mary at the current stage. A more sophisticated re-
ranking method is to combine the two cross entropy
scores in some way (e.g., Maximal Marginal Rele-
vance (Carbonell and Goldstein, 1998)) so that the
final score for a citing sentence reflects its value in
capturing salient keywords that have not yet been in-
cluded in the summary. We leave the study of a more
sophisticated re-ranking scheme for future work.
4 Experimental Setup

4.1 Evaluation Method
Following Qazvinian et al. (2008; 2010), we use the
pyramid method (Nenkova and Passonneau, 2004)
at sentence level to evaluate our system’s perfor-
mance. The pyramid score is a fact-based eval-
uation method that has been especially popular in
evaluating extractive summarisation systems. It has

Algorithm 1 Top Sentence Re-ranking
1: function TOPSENTENCERERANKER
2: k  summary length limit
3: top sent top k plus 5 sents[0]
4: es top sent
5: cp top k plus 5 sents - top sent
6: for s in cp do
7: cp lms[s] DPSmoothed(s)
8: for i = 2 to k do
9: es lm DPSmoothed(es)

10: s argmaxs2cp(CE(cp lms||es lm))
11: es es + s
12: cp cp� s
13: cp lms cp lms� cp lms[s]

return es

been widely adopted because it incorporates both
fact coverage and fact importance into the scoring
process, which resonates well with the goals of sum-
marisation (Qazvinian et al., 2010). More specifi-
cally, the pyramid method scores a summary using
the ratio between the total facts weights of the facts
it covers and that of an optimal summary. First a fact
weights pyramid is built using some facts weighting
method and each fact is subsequently put into its per-
spective pyramid tier. Qazvinian et al. (2008; 2010)
built a weights pyramid for each paper and assigned
each humanly discovered fact into a tier according
to the number of citing sentences the fact occurs in
that paper’s citation summary. For example, fact fi

appearing in |fi| citing sentences in the citation sum-
mary of paper D is assigned to the tier T|fi| in D’s
fact weights pyramid PD. Let Fi denotes the num-
ber of facts in the summary ES in tier Ti of PD. The
total facts weights ES covers is calculated as:

W (ES)=
Pn

i=1 i·Fi (6)

where n is the highest tier of PD. Let ESoptimal

be the optimal summary for D w.r.t. the summary
length limit (ESoptimal can be found using heuristic-
driven exhaustive search). The pyramid score for
ES is finally calculated as:

Score(ES)=W (ES)/W (ESoptimal ) (7)

Note again that we used exactly the same corpus
and evaluation method as in (Qazvinian and Radev,
2008; Qazvinian et al., 2010), which makes our re-
sults directly comparable to those described in those
papers. Furthermore, both papers report on perfor-
mance of various baseline methods which are also
directly comparable to ours (see next section). We
compare our results with the current state-of-the-
art; readers are encouraged to refer to (Qazvinian
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Rank Summary
KPLM without sentence re-ranking (Pyramid score: 0.23)

1 3.1 decoding mcdonald et al (2005b) use the chu-liuedmonds (cle) algorithm to solve the maximum spanning tree problem.
2 thus far, the formulation follows mcdonald et al (2005b) and corresponds to the maximum spanning tree (mst) problem.

3 while we have presented signi cant improvements using additional constraints, one may won5even when caching
feature extraction during training mcdonald et al (2005a) still takes approximately 10 minutes to train.

4 we have successfully replicated the state-of-the-art results for dependency parsing (mcdonald et al, 2005a) for both
czech and english, using bayes point machines.

5 the search for the best parse can then be formalized as the search for the maximum spanning tree (mst)
(mcdonald et al, 2005b).

KPLM with sentence re-ranking (Pyramid score: 0.73)
1 3.1 decoding mcdonald et al (2005b) use the chu-liuedmonds (cle) algorithm to solve the maximum spanning tree problem.

2 to learn these structures we used online large-margin learning (mcdonald et al, 2005) that empirically provides
state-of-the-art performance for czech.

3 while we have presented signi cant improvements using additional constraints, one may won5even when caching
feature extraction during training mcdonald et al (2005a) still takes approximately 10 minutes to train.

4 mcdonald et al (2005a) introduce a dependency parsing framework which treats the task as searching for the
projective tree that maximises the sum of local dependency scores.

5 we take as our starting point a re-implementation of mcdonald’s state-of-the-art dependency parser (mcdonald et al, 2005a).

Table 4: Summaries of paper P05-1012 produced using KPLM. Key facts in citing sentences are highlighted and OCR
and sentence segmentation errors have been retained as they originally appeared in the corpus.

and Radev, 2008; Qazvinian et al., 2010) for cross-
referencing results from a broader set of systems.

4.2 Results and Discussion
Table 5 shows the pyramid score evaluation re-
sults for the 25 papers. To facilitate comparison
and cross-referencing, the table has been format-
ted as close as possible to Table 7 in (Qazvinian
and Radev, 2008) with figures in the Gold and C-
LexRank columns directly copied over. Note that a
Gold pyramid score less than 1 suggests that there
are more facts than can be covered using k sen-
tences for that paper’s citation summary. It can
be seen that KPLM based summarisation achieves
quite comparable results (especially in terms of the
median score) with C-LexRank, even without top
sentence re-ranking. When the re-ranking is intro-
duced, our system outperforms the current state-of-
the-art C-LexRank by a measurable margin. Al-
beit the perceived differences in the results, a one-
tailed Wilcoxon signed-rank test indicated that our
results are not statistically superior at significance
level 0.05 (Z=-1.22, P=0.11). A power analysis re-
veals that in order to achieve a statistically signif-
icant result on this small sample of 25 papers, a
system would need to score a medium to large ef-
fect size (Cohen’s d > 0.53), which is a challenging
task considering C-LexRank’s strong baseline per-
formance. We hope this analysis can inform future
studies using Qazvinian’s 25 papers corpus. Never-
theless, it should be pointed out that our approach
is not only substantially simpler than C-LexRank, it
also yields more interpretable results.

We know of a more recent set of results reported
in (Qazvinian et al., 2013), which again confirmed

C-LexRank’s state-of-the-art status with a mean
pyramid score of 0.799 (cf. Table 6 in (Qazvinian
et al., 2013)). However those results are not com-
parable with ours for the following reasons. First,
Qazvinian et al. (2013) used a slightly different cor-
pus with 30 papers (5 extra papers from the Condi-
tional Random Field domain). Second, results were
based on a summary length limit of 200 words, so
roughly equivalent to 6.3 sentences per paper, giv-
ing evaluations an extra edge. Both changes boosted
system performance in those evaluations, as evi-
denced by comparing Table 7 in (Qazvinian and
Radev, 2008) and Table 6 in (Qazvinian et al., 2013).

Qazvinian et al. (2010) used the same corpus and
evaluation method as our work; however the re-
sults have been presented as box plots (cf. Figure 1
in (Qazvinian et al., 2010)) from which only the five-
number summary (i.e., minimum, lower quartile,
median, upper quartile and maximum) of the pyra-
mid scores can be reconstructed and consequently
no significance test can be performed. Compared
with the best performing variants of the system de-
vised in (Qazvinian et al., 2010) based on unigrams,
bigrams and trigrams, our system (KPLM+TSR)
achieves a higher median score (0.86 vs. 0.80), as
well as a lower score variation across the 25 papers.

An arbitrarily imposed constraint in the eval-
uations is the summary length limit, which may
be changed to suit a specific application context.
The summarisation task becomes increasingly more
challenging when summary length limit is further
tightened as this would require a summariser to pin-
point the best sentences from a potentially large cita-

130



D
om

ai
n

Pa
pe

r

G
ol

d

C
-L

ex
R

an
k

K
PL

M

K
PL

M
+T

SR

DP

C96-1058
P97-1003
P99-1065
P05-1013
P05-1012

1.00
1.00
0.94
1.00
0.95

0.73
0.40
0.67
0.67
0.62

0.33
0.79
0.62
0.66
0.23

0.56
0.79
0.76
0.66
0.73

PBMT

N03-1017
W03-0301
J04-4002
N04-1033
P05-1033

0.96
1.00
1.00
1.00
1.00

0.64
1.00
0.48
0.85
0.85

0.60
0.80
0.86
0.57
0.97

0.60
0.80
0.89
0.86
0.97

SUMM

A00-1043
A00-2024
C00-1072
W00-0403
W03-0510

1.00
1.00
1.00
1.00
1.00

0.95
0.60
0.93
0.70
0.83

0.50
0.60
0.87
0.81
1.00

0.50
0.60
0.93
0.54
1.00

QA

A00-1023
W00-0603
P02-1006
D03-1017
P03-1001

1.00
1.00
1.00
1.00
1.00

0.86
0.60
0.87
0.85
0.59

0.88
0.44
0.93
0.70
0.94

1.00
0.94
0.93
0.90
0.44

TE

D04-9907
H05-1047
H05-1079
W05-1203
P05-1014

1.00
1.00
1.00
1.00
1.00

0.94
1.00
0.56
0.71
0.78

0.77
0.83
0.78
1.00
0.89

0.91
0.83
0.89
1.00
1.00

Mean 0.99 0.75 0.73 0.80
Median 1.00 0.73 0.79 0.86

Table 5: Summary pyramid score evaluation results with
summary length limit k = 5.

tion summary. A desirable property of a good sum-
mariser is thus the ability in maintaining its perfor-
mance while the task becomes increasingly demand-
ing. To further evaluate KPLM’s performance un-
der increasingly more stringent summary length lim-
its, we gathered the pyramid scores with summary
length limit k decreasing from 5 to 1 and visualised
the results in Figure 1. We can see that KPLM’s
performance decays quite gracefully as more strin-
gent limits are imposed. Even under the harshest
constraint with the summary length limit sets to 1,
our system still managed a mean pyramid score of
close to 0.6 across the 25 papers. Indeed, it can
be seen that the variance in pyramid scores gradu-
ally spreads wider (the dark band in the figure marks
out 95% confidence interval of the mean scores), but
this phenomenon is expected as the error margin also
shrinks along with the summary length limit.

5 Conclusion and Future Work

We designed a statistical framework to summarise
scientific papers, using methods rooted in quanti-
tative statistics and information theory. We first
built a keyword profile for a paper using a quan-
titative statistical method that captures its charac-
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●
●
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5 4 3 2 1
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Figure 1: Pyramid scores of KPLM+TSR under different
summary length limits.

terising keywords that are both overly represented
and relatively exclusively used in the paper’s cita-
tion summary. We then used the keyword profile
of a paper to build a discriminative pseudo unigram
language model that directly incorporates words’
salience in characterising a paper’s main contribu-
tions into pseudo generative probabilities. Based on
the fact that a paper’s KPLM represents an effec-
tive language model from which pseudo citing sen-
tences with good coverage of important keywords
could be sampled, we cast the task of summarisa-
tion as language model divergence based IR. Finally,
we implemented an information-driven sentence re-
ranking algorithm that can effectively leverage di-
versity in keyword coverage in summaries produced.
Experimental results show that our approach outper-
forms the current state-of-the-art systems in scien-
tific paper summarisation, which is also with good
resilience to more stringent summary length limits.

In the future, we plan to extend our approach to
higher order n-grams and see whether larger infor-
mation units (phrases) would help boost summarisa-
tion performance. We also plan to apply our method
to the problem of multi-document summarisation. In
particular, we are very interested to test our system’s
performance on automatically generating a technical
survey of a scientific paradigm, which thanks to the
authors of (Mohammad et al., 2009; Qazvinian et al.,
2013), has been established as a well-defined task
with high-quality open data. Finally, while we have
shown that our approach is effective in summarising
a scientific paper’s major contributions using its cita-
tion summary text, further experiments are required
to test our method’s effectiveness on more generic
summarisation tasks and texts genres.
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