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Abstract

Sequential transduction tasks, such as
grapheme-to-phoneme conversion and ma-
chine transliteration, are usually addressed
by inducing models from sets of input-output
pairs. Supplemental representations offer valu-
able additional information, but incorporating
that information is not straightforward. We
apply a unified reranking approach to both
grapheme-to-phoneme conversion and ma-
chine transliteration demonstrating substantial
accuracy improvements by utilizing heteroge-
neous transliterations and transcriptions of the
input word. We describe several experiments
that involve a variety of supplemental data
and two state-of-the-art transduction systems,
yielding error rate reductions ranging from
12% to 43%. We further apply our approach to
system combination, with error rate reductions
between 4% and 9%.

1 Introduction

Words exist independently of writing, as abstract enti-
ties shared among the speakers of a language. Those
abstract entities have various representations, which
in turn may have different realizations. Orthographic
forms, phonetic transcriptions, alternative transliter-
ations, and even sound-wave spectrograms are all
related by referring to the same abstract word and
they all convey information about its pronunciation.

Figure 1 shows various representations of the word
Dickens. The primary (canonical) orthographic rep-
resentation of the word corresponds to the language
to which the word belongs. The secondary ortho-
graphic representations in different writing scripts
are transliterations of the word, which exhibit phono-

orthography

Dickens

�डक� स
ディケンズ
Диккенс
Ντίκενς

⁞

transliterations

/dɪkɪnz/
dIkInz

D IH K AH N Z
dIk@nz

d I k x n z
⁞

transcriptions

MT
L G2P

Figure 1: Several NLP tasks involve conversion between
various word representations. The tasks on which we focus
are shown in black.

logical adaptation to the target language. The vari-
ous phonetic transcriptions consist of sequences of
phonemes representing the pronunciation of the word.
Transcription schemes may differ in the number and
coverage of various phonemes, as well as the choice
of the underlying speech variety. The spoken pro-
nunciation (represented by the waveform) presents a
common latent influence on the representations.

Several well-known NLP tasks involve matching,
alignment, and conversion between different word
representations. Grapheme-to-phoneme conversion
(G2P) aims at generating a transcription of a word
from its orthographic representation. The reverse
task is phoneme-to-grapheme conversion (P2G). Ma-
chine transliteration (MTL) deals with conversion be-
tween orthographic representations in different writ-
ing scripts; forward transliteration proceeds from the
primary representation to secondary representations,
while the reverse task is called back-transliteration
(BTL). The conversion between a sound and an or-
thography is the goal of text-to-speech synthesis
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(TTS) and speech recognition (SR), where transcrip-
tions are often used as intermediate forms.

Although both MTL and G2P take orthographic
representations as input, the two tasks are rarely con-
sidered in conjunction. Traditionally, G2P has been
investigated in the context of text-to-speech systems,
while MTL is of interest to the information retrieval
and machine translation communities. In addition, un-
like phonetic transcription schemes, which are often
specific to a particular pronunciation lexicon, writing
systems are well-standardized, with plenty of translit-
eration examples available in text corpora and on
the Web (Kumaran et al., 2010b). While the goal of
G2P is producing a maximally faithful representa-
tion of the pronunciation, transliterations are often
influenced by other factors, such as the phonological
constraints of the target language, the orthographic
form in the source language, the morphological adap-
tations related to the translation process, and even the
semantic connotations of the output in the case of lo-
gographic scripts. In spite of those differences, both
transcriptions and transliterations contain valuable
information about the pronunciation of the word.

In this paper, we show that it is possible to improve
the accuracy of both G2P and MTL by incorporating
supplemental representations of the word pronuncia-
tion. Our method is based on SVM reranking of the
n-best output lists of a base transduction system, with
features including similarity scores between repre-
sentations and n-grams derived from accurate align-
ments. We describe a series of experiments in both
G2P and MTL contexts, demonstrating substantial
reductions in error rate for these base tasks when aug-
mented with various supplemental representations.
We then further test the effectiveness of the same ap-
proach for combining the results of two independent
base systems.

2 Related work

Because of its crucial role in speech synthe-
sis, grapheme-to-phoneme conversion has been re-
searched extensively. Most out-of-vocabulary words
are names, which often exhibit idiosyncratic pronun-
ciation (Black et al., 1998). Excepting languages
with highly transparent orthographies, the number
of letter-to-sound rules appears to grow geometri-
cally with the lexicon size, with no asymptotic limit

(Kominek and Black, 2006). A number of machine
learning approaches have been proposed for G2P, in-
cluding neural networks (Sejnowski and Rosenberg,
1987), instance-based learning (van den Bosch and
Daelemans, 1998), pronunciation by analogy (Marc-
hand and Damper, 2000), decision trees (Kienappel
and Kneser, 2001), hidden Markov models (Taylor,
2005), joint n-gram models (Bisani and Ney, 2008),
and online discriminative learning (Jiampojamarn et
al., 2008). The current state-of-the-art is represented
by the latter two approaches, which are available as
the SEQUITUR and DIRECTL+ systems, respectively.

Machine transliteration has also received much at-
tention (Knight and Graehl, 1998; Li et al., 2004;
Sproat et al., 2006; Klementiev and Roth, 2006; Ze-
lenko and Aone, 2006). In the last few years, the
Named Entities Workshop (NEWS) Shared Tasks on
Transliteration have been the forum for validating
diverse approaches on common data sets (Li et al.,
2009; Li et al., 2010; Zhang et al., 2011). Both SE-
QUITUR and DIRECTL+, originally G2P systems,
have been successfully adapted to MTL (Finch and
Sumita, 2010; Jiampojamarn et al., 2010b).

Most of the research on both G2P and MTL as-
sumes the existence of a homogeneous training set of
input-output pairs. However, following the pivot ap-
proaches developed in other areas of NLP (Utiyama
and Isahara, 2007; Cohn and Lapata, 2007; Wu and
Wang, 2009; Snyder et al., 2009), the idea of tak-
ing advantage of other-language data has recently
been applied to machine transliteration. Khapra et
al. (2010) construct a transliteration system between
languages A and B by composing two transliteration
systems A → C and C → B, where C is called
a bridge or pivot language, resulting in a relatively
small drop in accuracy. Zhang et al. (2010) and Ku-
maran et al. (2010a) report that combinations of pivot
systems A → C → B with direct systems A → B
produce better results than using the direct systems
only. The models, which are composed using a linear
combination of scores, utilize a single pivot language
C, and require training data between all three lan-
guages A, B, and C. However, such a pivot-based
framework makes it difficult to incorporate multiple
pivot languages, and has shown most promising re-
sults for cases in which data for the original A→ B
task are limited. Lastly, Finch and Sumita (2010) de-
veloped an MTL approach that combined the output
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input word n-best outputs re-ranked n-best list

Sudan sud@n
sud{n
⁞

sud#n

sud#n
sUd#n
⁞

sud@n

supplemental
representations

sudAn
S UW D AE N
スーダン
सूडान
Судан
⁞

base system re-ranker

Figure 2: An overview of our approach on an example from the G2P task. The correct output is shown in bold.

of two systems using a linear combination of system
scores and a manually-tuned weight.

On the G2P side, Loots and Niesler (2009) investi-
gate the problem of leveraging transcriptions from a
different dialect of English, while Bhargava and Kon-
drak (2011) focus on leveraging transliterations from
multiple writing scripts. Bhargava et al. (2011) show
that the reranking method proposed by Bhargava and
Kondrak (2011) can increase the accuracy of MTL as
well. In this paper, we aim to confirm the generality
of the same method by testing it on a broad range of
tasks: a) leveraging transcriptions for both G2P and
MTL; b) utilizing supplemental transcriptions and
transliterations simultaneously; c) improving G2P in
general, rather than just G2P of names; and d) com-
bining different transduction systems.

3 Leveraging supplemental data

Incorporating supplemental information directly into
an existing system is not always feasible. With gener-
ative approaches, one would have to find some way of
modelling the relationship between the system inputs,
outputs, and the supplemental data. Discriminative
approaches are not necessarily easier: DIRECTL+, a
discriminative G2P system, needs to be able to gener-
ate features on-the-fly for partial grapheme-phoneme
sequence pairs during the decoding. Instead, we inte-
grate an existing system as a black box that generates
n-best lists of candidate outputs, resulting in a modu-
lar and general post hoc approach that can be applied
to multiple tasks and settings.

3.1 Task definition

The task is to convert an input string s into a target
string t, where both strings are representations of a
word w. In G2P, s is a string of graphemes while
t consists of phonemes; in MTL, both s and t are
grapheme sequences, although in different scripts.
We assume that we have a base system T (s) that at-
tempts this task and produces an n-best list of outputs
t̂1, t̂2, . . . , t̂n for the input s. T is imperfect, i.e., the
correct output t may appear in a position in the list
other than the first. It is reasonable to expect that such
a system also provides a list of scores corresponding
to the outputs. We further assume that we have access
to supplemental representations of w; both transliter-
ations and transcriptions may serve this purpose. Our
objective is to improve the accuracy on the task in
question with respect to the base system T (s).

3.2 Reranking

For the purpose of exposition, we reiterate here the
particulars of the reranking approach of Bhargava and
Kondrak (2011) that we apply to the various tasks and
supplemental data sources. The method uses SVM
reranking of the n-best lists produced by the base sys-
tem in order to to move the correct output to the top
of the list using supplemental data. SVM reranking
(Joachims, 2002) facilitates the exploitation of multi-
ple sources of supplemental data, as shown in Figure
2. The feature construction process is performed for
each candidate output in the n-best list, as well as
each pairing of a candidate output with a supplemen-
tal representation. The features used for reranking
may or may not overlap with the features used by the
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base system. While we focus on the G2P and MTL
tasks in this paper, this method is general enough as
to potentially be applied to other sequence prediction
tasks.

3.3 Alignment

In order to construct the feature vectors, we need
the alignments between the alternative representa-
tions of the same word. For the alignment of supple-
mental data with candidate outputs, we apply M2M-
ALIGNER (Jiampojamarn et al., 2007). We use the
same method for the alignment between the input and
the candidate outputs, unless the base system already
provides this information.

M2M-ALIGNER is a generalization of the learned
edit distance algorithm of Ristad and Yianilos (1998).
It iteratively refines the alignment of a set of
string pairs in an unsupervised manner using the
expectation-maximization (EM) approach. In addi-
tion to the alignment, M2M-ALIGNER produces an
alignment probability, which reflects the similarity
between two strings. Intuitively, if two strings contain
symbols or n-grams that often co-occur in the train-
ing data, their alignment score will be higher. The
strings in question are often of completely different
scripts, which precludes the application of standard
similarity measures such as Levenshtein distance.

3.4 Score features

The similarity of candidate outputs to alternative rep-
resentations of a word is probably the most intuitive
feature for reranking. We include a real-valued simi-
larity feature for each pairing between a supplemental
representation and a candidate output, which is set
according to the M2M-ALIGNER alignment score.

Another important set of features are the confi-
dence scores assigned to each candidate output by
the base system. In addition to the original scores, we
also include a set of features that indicate the differ-
ences between scores for all pairs of outputs in the
n-best list. This allows the reranker to incorporate a
notion of relative confidence with respect to the other
candidate outputs. Similarly, we compute differences
between the similarity scores of candidate outputs
and supplemental representations.

3.5 N -gram features

Following (Jiampojamarn et al., 2010a), we include
several types of n-gram features. The features are
defined on substrings occurring in pairs of aligned
strings. Each feature is binary, indicating the presence
or absence of the particular feature type in the given
aligned pair, which could be either the original base
system’s input and output, or else a candidate output
and a supplemental representation.

We can divide the n-gram features into four cate-
gories. Context features bind an output symbol with
input n-grams in a focus window centred around the
input-output alignment; the input n-grams represent
the context in which the output character is gener-
ated. Markov features are n-grams of output symbols,
which allow previously generated output characters
to influence the current output character. Linear chain
features associate the context and Markov features.
Joint n-gram features combine aligned input and out-
put n-grams of the same length on both sides.

In the standard string transduction task, the output
string t is generated incrementally from the input
s. In contrast, in the reranking setting, both strings
are complete and available. This allows us to reverse
the direction of the context and linear chain features,
allowing us to associate output n-grams with single
input symbols. In addition, we can apply those fea-
tures in both directions across candidate outputs and
supplemental representations, further increasing the
amount of information provided to the reranker.

4 Experiments

Our experiments aim at comprehensive evaluation
of the reranking approach on both MTL and G2P
tasks, employing various supplemental representa-
tions. Relevant code and scripts associated with our
experimental results are available online1.

4.1 Data

We extract transcriptions from two lexica: Combilex
(Richmond et al., 2009), which includes both Re-
ceived Pronunciation (RP) and General American
(GA) pronunciation variants, and CELEX (Baayen et
al., 1996), which includes RP only. After discarding
duplicates and letter diacritics, the total number of

1http://www.cs.toronto.edu/˜aditya/
g2p-tl-rr
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Language Corpus size Japanese Overlap

Bengali 13,624 2,152
Chinese 40,214 14,056
Hebrew 10,501 3,997
Hindi 13,427 2,507
Japanese 28,013 —
Kannada 11,540 2,170
Korean 7,778 7,733
Persian 12,386 4,047
Tamil 11,642 2,205
Thai 28,932 10,378

Table 1: The number of unique entries in each translit-
eration corpus, and the number of common single-word
entries (overlap) with the Japanese corpus.

word-transcription pairs are 114,094 for Combilex,
and 66,859 for CELEX. We use 10% of the data for
development, 10% for testing, and the remaining 80%
for training. The development set is merged with the
training set for final testing.

Our transliteration data come from the shared tasks
of the 2011 NEWS workshop (Zhang et al., 2011).
The number of entries in each transliteration corpus
is shown in the middle column of Table 1.

4.2 Base systems

In order to verify the generality of our approach,
we perform all experiments using two different base
transduction systems described in Section 2: SE-
QUITUR and DIRECTL+. Both systems are set to
provide 10-best output lists along with scores for
each output.2 SEQUITUR is modified to provide
log-probabilities instead of regular probabilities. DI-
RECTL+ is run with the complete set of features
described by Jiampojamarn et al. (2010a). System
parameters, such as maximum number of iterations,
are determined during development.

M2M-ALIGNER is used throughout for the align-
ment of various representations. The aligner is trained
on an intersection of a relevant pair of data sets. For
example, the intersection of the English-to-Japanese
and English-to-Hindi corpora on the basis of common

2While running times prevented us from extensively ana-
lyzing reranking performance vs. n-best list size, our initial
tests produced almost identical results for n = 5, n = 10, and
n = 20.

entries on the English side yields a corpus matching
Japanese transliterations with Hindi transliterations.
M2M-ALIGNER, after having been trained on this
corpus, is able to produce a similarity score for an
arbitrary Japanese-Hindi pair. We set a lower limit
of −100 on the M2M-ALIGNER log-probabilities,
and use the default of 2-2 alignments; deletions are
enabled for the supplemental data side of the align-
ment.

4.3 MTL experiments

When faced with the task of transliterating a word
from the original script to a secondary script, we
would like to leverage the information encoded in
transliterations of the same word that are available
in other scripts. For example, consider the problem
of automatically generating a Wikipedia stub article3

in Hindi about guitarist John Petrucci. We assume
that we have access to an MTL system trained on the
English-Hindi transliterations, but we also want to
take advantage of the existing transliterations of the
name that are easy to extract from the corresponding
articles on the topic in Japanese and other languages.
In this case, the orthography of the last name reflects
its Italian origins, but the pronunciation depends on
its degree of assimilation to English phonology. This
type of information is often difficult to determine
even for humans, and we posit that it may be inferred
from other transliterations.

Similarly, phonetic transcriptions more directly en-
code the pronunciation and thus present an important
resource for exploitation. In fact, some transliteration
systems use a phonetic transcription as an interme-
diate representation (Knight and Graehl, 1998), al-
though these methods do not generally fare as well
as those that perform the transliteration process di-
rectly (Al-Onaizan and Knight, 2002; Li et al., 2009).
Transcriptions are often available; larger pronuncia-
tion dictionaries contain tens of thousands of entries,
including some proper names (for which machine
transliteration is most relevant), and many names in
Wikipedia are accompanied by an IPA transcription.

Our first experiment aims at improving the translit-
eration accuracy from English to Japanese Katakana.
The English-Japanese corpus has one of the largest
overlaps (number of entries with a common input)

3A stub article is a skeleton article with little content.
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SEQUITUR DIRECTL+

Acc. ERR Acc. ERR

BASE 49.6 51.1
RERANKED 56.2 13.5 57.3 12.7
ORACLE 85.0 70.3 80.4 60.0

Table 2: Word accuracies and error rate reductions (ERR)
in percentages for English-to-Japanese MTL augmented
by corresponding transliterations from other languages.
BASE is the base system while RERANKED represents the
same system with its output reranked using supplemental
transliterations. ORACLE represents an oracle reranker.

with the other transliteration and transcription cor-
pora, the former of which is shown in Table 1. In
total, there are 18,505 entries for which at least one
transliteration from a non-Japanese language is avail-
able and 6,288 for which at least one transcription is
available. The reranker is trained on an intersection
of the English-Japanese training set and the supple-
mental data; similarly, the reranking test set is an
intersection of the English-Japanese test set and the
supplemental data. Note that we compute word ac-
curacy on these intersected sets, so the results of the
base systems that we report here may not represent
their performance on the full data set.

Table 2 shows the results4 on the test set of 1,891
entries, including the performance of an oracle (per-
fect) reranker for comparison. This same approach
applied to the English-to-Hindi transliteration task
yields an error rate reduction of 9% over the base
performance of DIRECTL+ (Bhargava et al., 2011)5,
which confirms that our reranking method’s applica-
bility is not limited to a particular language.

In the second experiment, instead of supplemental
transliterations, we use supplemental transcriptions
from the RP and GA Combilex corpora as well as
CELEX. The number of common elements with the
English-Japanese transliteration corpus was 6,288
for Combilex and 2,351 for CELEX; in total, there
were 6,384 transliteration entries for which at least

4Unless otherwise noted, all improvements reported in this
paper are statistically significant with p < 0.01 using the McNe-
mar test.

5Note that this result is computed over the full English-Hindi
data set, so is in fact slightly diluted compared to the results we
present here.

SEQUITUR DIRECTL+

Acc. ERR Acc. ERR

BASE 57.9 58.6
RERANKED 65.6 18.4 63.9 12.8
ORACLE 89.9 51.5 84.6 62.6

Table 3: Word accuracies and error rate reductions (ERR)
in percentages for English-to-Japanese MTL augmented
by corresponding transcriptions.

one transcription was available. Table 3 shows the
results, giving a similar error rate reduction as for
using supplemental transliterations.

Surprisingly, if we proceed to the next logical step
and use both transcriptions and transliterations as
supplemental representations simultaneously, the er-
ror rate reduction is slightly lower than in the above
two experiments. This difference is so small as to
be statistically insignificant. We have no convincing
explanation for this phenomenon, although we note
that, in general, significant heterogeneity in data can
increase the difficulty of a given task.

4.4 G2P experiments

Consider the example of an automatic speech synthe-
sis system tasked with generating an audio version of
a news article that contains foreign names. Often, for-
eign versions of the same news article already exist;
in these, the name will have been transliterated. These
transliterations could then be leveraged to guide the
system’s pronunciation of the name. The same is con-
ceivable of other types of words, although translitera-
tions are generally mostly available for names only.

On the other hand, transcription schemes are not
consistent across different pronunciation lexica. Their
phonemic inventories often differ, and it is not always
possible to construct a consistent mapping between
them. In addition, because of pronunciation variation
and dialectal differences, a substantial fraction of
transcriptions fail to match across dictionaries. Nev-
ertheless, if a phonetic transcription is already avail-
able, even in an alternative format, it could facilitate
the task of generating a new pronunciation.

The first G2P experiment concerns the application
of supplemental transcriptions. The goal is to quan-
tify the improvements achieved using our reranking
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approach, and to compare reranking to two other
methods of utilizing supplemental transcriptions, to
which we refer as MERGE and P2P, respectively.

MERGE implements the most intuitive approach
of merging different lexica into a single training set.
In order to make this work, we first need to make
sure that all data is converted to a single transcription
scheme. Combilex and CELEX make different dis-
tinctions among phonemes, making it unclear how
some phonemes might be mapped from CELEX into
Combilex; fortuitously, the opposite conversion is
more agreeable.6 This allows us to convert Combilex
to CELEX’s format via a simple rule-based script
and then merge the two corpora together. This pro-
vides an alternative method against which we can
compare our reranking-based approach which would
treat Combilex as a source of supplemental represen-
tations.

P2P is a phoneme-to-phoneme conversion ap-
proach inspired by the work of Loots and Niesler
(2009). In that approach, a phoneme-to-phoneme
model is derived from a training set of phonetic tran-
scription pairs representing two different pronuncia-
tion lexicons. We use such model to convert the Com-
bilex transcriptions to the scheme used by CELEX
for the words that are missing from CELEX. Where
Loots and Niesler (2009) use decision trees for both
the base system and the corpus converter, we use the
much higher-performing state-of-the-art SEQUITUR

and DIRECTL+ systems.
The two transcription corpora have 15,028 en-

tries in common. As with the MTL experiments, the
reranker is trained on an intersection of the Combilex
G2P data and the supplemental data.

The results on the intersected set of 1,498 words
are shown in Table 4. We can see that merging the
corpora provides a clear detriment in performance
for data where an alternative transcription is avail-
able from another corpus. Even if we look at the full
CELEX test set (as opposed to the intersected subset
used in Table 4), DIRECTL+ trained only on CELEX
achieves 93.0% word accuracy on the CELEX test
set where DIRECTL+ trained on CELEX merged
with Combilex achieves 87.3%. Evidently, the dis-

6In particular, Combilex distinguishes between [l] and the
velarized (“dark”) [ l&]. These can be collapsed into the single
/l/ phoneme for CELEX, but it is not clear how to handle the
conversion in the reverse direction.

SEQUITUR DIRECTL+

Acc. ERR Acc. ERR

BASE 87.3 88.1
MERGE 74.2 — 71.6 —
P2P 85.7 — 87.0 —
RERANKED 92.7 42.9 92.0 32.6
ORACLE 97.6 81.2 96.7 72.5

Table 4: Word accuracies and error rate reductions (ERR)
in percentages for CELEX G2P augmented by Combilex
transcriptions.

parate conventions of the two corpora “confuse” the
base G2P systems. In contrast, our reranker performs
well, yielding spectacular error reductions of 32%
and 42%.

The differences between the two corpora account
for the inadequate performance of the P2P approach.
Inducing a full transduction model requires much
more training data that simply reranking the exist-
ing outputs, but in this case models for these two
approaches (P2P and reranking) are trained on the
same amount of data. Furthermore, when the supple-
mental transcription is radically different from the
n-best outputs, the alignment simply fails, and the
reranking approach gracefully falls back to the origi-
nal G2P model. In contrast, the P2P approach has no
such option.

It may be interesting to note what happens when
the P2P model is replaced with our rule-based
Combilex-to-CELEX converter. Such an approach
has the advantage of being fast and not dependent on
the training of any base system. However, it achieves
only 64.8% word accuracy, which is lower than any
of the results in Table 4. Clearly, a simple mapping
script fails to capture the differences between the
corpora.

Turning to supplemental transliterations, Bhargava
and Kondrak (2011) have already shown that supple-
mental transliterations can improve G2P accuracy on
names. It is interesting to verify whether this conclu-
sion also applies to other types of words that occur
in the G2P data set. Performing this test with DI-
RECTL+ as the base system shows good error rate
reduction on names (about 12%) as reported, but a
much smaller statistically insignificant error rate re-

402



duction on core vocabulary words (around 2%). In
other words, the supplemental transliterations are
able to help only for names.

This discrepancy is attributable to the fact that
names (and, more generally, named entities) are the
raison d’être of transliterations. Because the pro-
cess of transliteration occurs primarily for names
that must be “translated” phonetically, we expect
transliterations’ utility as supplemental representa-
tions to apply mostly for names. The smaller num-
ber of transliterations for core vocabulary words also
makes it difficult for any system to learn how to apply
transliterations of such words.

4.5 Base system matters

While our SVM reranking approach demonstrates
significant improvements for all tasks and all tested
base systems, the magnitude of the performance in-
crease is dependent on the base system. In particular,
we see a common thread recurring throughout all
experiments: SEQUITUR sees higher improvements
than does DIRECTL+. Although reranking treats the
base system as a black box, we are limited by the
amount of room for improvement available in the
base system’s outputs. Our results above show that
the performance of an oracle reranker (a reranker
that automatically selects the correct output from
the n-best list) is consistently higher for SEQUITUR

than for DIRECTL+. Higher oracle reranker scores
indicate greater reranking potential, and we observe
a corresponding higher error reduction, sometimes
leading SEQUITUR to outperform DIRECTL+ after
reranking despite having been the lower performer
prior to reranking.

We hypothesize that another reason for the greater
influence of reranking on SEQUITUR is the fact that
the reranker’s features are related to those used in
DIRECTL+. Because SEQUITUR implements a dia-
metrically different, generative approach to transduc-
tion, it benefits more from reranking. However, DI-
RECTL+ still sees significant performance increases
despite the feature similarity, which demonstrates
that the supplemental representations do provide use-
ful additional information.

4.6 System combination

Although the reranking approach was developed for
the purpose of leveraging supplemental data, it can

SEQUITUR DIRECTL+

Acc. ERR Acc. ERR

BASE 45.5 47.3
LINCOMB 49.4 7.2 49.4 4.0
RERANKED 50.2 8.7 49.2 3.7
ORACLE 82.4 67.7 77.3 56.9

Table 5: Word accuracies and error rate reductions (ERR)
in percentages for English-to-Japanese MTL augmented
by predicted transliterations from the other base system.

also increase the accuracy when no genuine supple-
mental data is available. The idea is to perform sys-
tem combination by treating the output of one of
the systems as the supplemental data for the other
system, effectively casting the system combination
problem into our reranking framework. In our last
experiment, we test the combination of DIRECTL+
and SEQUITUR for English-to-Japanese MTL by des-
ignating either of them as the base system. Since the
supplemental data are generated, we are not limited
to a particular subset, and can conduct the experiment
on the entire English-to-Japanese set, with the test set
having 2,801 entries. For comparison, we also test a
linear combination of the (normalized) system scores
with a manually tuned weight parameter (LINCOMB).
This baseline is similar to the system combination
method of Finch and Sumita (2010).

Table 5 contains the results for English-to-
Japanese transliterations, which indicate a significant
increase in accuracy in both cases, thereby demon-
strating the viability of our approach for system com-
bination. This experiment extends the system com-
bination result on English-to-Hindi transliteration
reported by Bhargava et al. (2011), in which DI-
RECTL+ served as the base system while SEQUITUR

provided the supplemental data. The system in ques-
tion yielded nearly a 4% error rate reduction, which
made it the top-ranking submission at the NEWS
2011 Shared Task on Transliteration.

On the other hand, LINCOMB turns out to be a
strong baseline, which is evidenced by the fact that
the differences between our reranking approach and
LINCOMB are statistically insignificant. This is likely
because LINCOMB can take advantage of the full
n-best lists provided by both systems, whereas the
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reranking approach uses only the top-1 result from
the “supplemental” system. Combining the two n-
best lists in this way also gives a higher oracle score
of 86.4%, suggesting that this may be a good and
computationally cheap first step prior to reranking
using proper supplemental data as described above.

5 Future work

We plan on investigating a more parsimonious
method of incorporating supplemental data. There
are two aspects to this. First, while our experiments in
this paper treated base systems as black boxes for the
purposes of examining the effect of the supplemen-
tal data in isolation, reranking is limited by its post
hoc nature. After all, if the correct output does not
appear in the base systems’ n-best list, even a perfect
reranker would be unable to find it. Incorporating the
supplemental data earlier in the process would allow
us to overcome this limitation at the expense of being
a solution specific to the base system.

Second, we would like to be able to incorporate
general supplemental information rather than being
limited by the existence of relevant data. In partic-
ular, a good transliteration model should encode a
general version of the information provided by a sin-
gle transliteration, so being able to apply that infor-
mation would allow us to overcome our dependence
on existing data as well as provide more potentially
useful information even when a transliteration or tran-
scription already exists.

Finally, we plan on examining other potential sup-
plemental resources. Given the success of our ap-
proach in the face of sometimes-noisy transliteration
data7, other noisy data may be applicable as well.
For example, IPA transcriptions could be mined from
Wikipedia despite the fact that different transcrip-
tions may have been written by different people. Sim-
ilarly, difficult-to-pronounce names or words are of-
ten accompanied by ad hoc approximately-phonetic
re-spellings, which may also prove useful.

6 Conclusion

In this paper, we examined the relevance of alter-
native, supplemental representations for the tasks

7Jiampojamarn et al. (2009) found a significant increase in
English-to-Hindi transliteration performance after applying a
simple rule-based cleaning script.

of grapheme-to-phoneme conversion and machine
transliteration, both of which have pronunciation
as an important underlying influence. We applied
an SVM reranking approach that leverages the sup-
plemental data using features constructed from n-
grams as well as from similarity and system scores.
The approach yielded excellent improvements when
used with both the SEQUITUR and DIRECTL+ base
systems. Over the state-of-the-art DIRECTL+, we
achieved significant error rate reductions of 13%
for English-to-Japanese MTL using supplemental
transliterations, 13% using supplemental transcrip-
tions, and 33% for English G2P using supplemental
transcriptions. For system combination, we found a
smaller but still significant error rate reduction of 4%.
The fact that the improvements vary systematically
by base system help confirm that the supplemental
data do provide inherently useful information.

We can also take a step back to take a broader
look at our approach. It applies similar features as
those used in the standard generation task in a new,
orthogonal direction (supplemental data) with suc-
cessful results. This notion is general enough that it
may potentially be applicable to other tasks, such as
part-of-speech tagging or machine translation.

Acknowledgements

We thank Sittichai Jiampojamarn and Shane Bergsma
for helpful discussions. This research was supported
by the Natural Sciences and Engineering Research
Council of Canada.

References
Yaser Al-Onaizan and Kevin Knight. 2002. Machine

transliteration of names in Arabic texts. In Proceed-
ings of the ACL-02 Workshop on Computational Ap-
proaches to Semitic Languages, Philadelphia, Penn-
sylvania, USA, July. Association for Computational
Linguistics.

R. Harald Baayen, Richard Piepenbrock, and Leon Gulik-
ers. 1996. The CELEX2 lexical database. LDC96L14.

Aditya Bhargava and Grzegorz Kondrak. 2011. How
do you pronounce your name? Improving G2P with
transliterations. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 399–408,
Portland, Oregon, USA, June. Association for Compu-
tational Linguistics.

404



Aditya Bhargava, Bradley Hauer, and Grzegorz Kondrak.
2011. Leveraging transliterations from multiple lan-
guages. In Proceedings of the 3rd Named Entities
Workshop (NEWS 2011), pages 36–40, Chiang Mai,
Thailand, November. Asian Federation of Natural Lan-
guage Processing.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conversion.
Speech Communication, 50(5):434–451, May.

Alan W. Black, Kevin Lenzo, and Vincent Pagel. 1998.
Issues in building general letter to sound rules. In The
Third ESCA/COCOSDA Workshop (ETRW) on Speech
Synthesis, Jenolan Caves House, Blue Mountains, New
South Wales, Australia, November.

Trevor Cohn and Mirella Lapata. 2007. Machine trans-
lation by triangulation: Making effective use of multi-
parallel corpora. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguis-
tics, pages 728–735, Prague, Czech Republic, June.
Association for Computational Linguistics.

Andrew Finch and Eiichiro Sumita. 2010. Transliteration
using a phrase-based statistical machine translation sys-
tem to re-score the output of a joint multigram model.
In Proceedings of the 2010 Named Entities Workshop,
pages 48–52, Uppsala, Sweden, July. Association for
Computational Linguistics.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden Markov models to letter-to-phoneme con-
version. In Human Language Technologies 2007: The
Conference of the North American Chapter of the As-
sociation for Computational Linguistics; Proceedings
of the Main Conference, pages 372–379, Rochester,
New York, USA, April. Association for Computational
Linguistics.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz Kon-
drak. 2008. Joint processing and discriminative train-
ing for letter-to-phoneme conversion. In Proceedings of
ACL-08: HLT, pages 905–913, Columbus, Ohio, USA,
June. Association for Computational Linguistics.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou, Ken-
neth Dwyer, and Grzegorz Kondrak. 2009. DirecTL:
a language independent approach to transliteration. In
Proceedings of the 2009 Named Entities Workshop:
Shared Task on Transliteration (NEWS 2009), pages 28–
31, Suntec, Singapore, August. Association for Com-
putational Linguistics.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz Kon-
drak. 2010a. Integrating joint n-gram features into
a discriminative training framework. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 697–700, Los Ange-

les, California, USA, June. Association for Computa-
tional Linguistics.

Sittichai Jiampojamarn, Kenneth Dwyer, Shane Bergsma,
Aditya Bhargava, Qing Dou, Mi-Young Kim, and Grze-
gorz Kondrak. 2010b. Transliteration generation and
mining with limited training resources. In Proceedings
of the 2010 Named Entities Workshop, pages 39–47,
Uppsala, Sweden, July. Association for Computational
Linguistics.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 133–142, Edmon-
ton, Alberta, Canada. Association for Computing Ma-
chinery.

Mitesh M. Khapra, A Kumaran, and Pushpak Bhat-
tacharyya. 2010. Everybody loves a rich cousin: An
empirical study of transliteration through bridge lan-
guages. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
420–428, Los Angeles, California, June. Association
for Computational Linguistics.

Anne K. Kienappel and Reinhard Kneser. 2001. De-
signing very compact decision trees for grapheme-to-
phoneme transcription. In EUROSPEECH-2001, pages
1911–1914, Aalborg, Denmark, September.

Alexandre Klementiev and Dan Roth. 2006. Named
entity transliteration and discovery from multilingual
comparable corpora. In Proceedings of the Human
Language Technology Conference of the NAACL, Main
Conference, pages 82–88, New York City, USA, June.
Association for Computational Linguistics.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4):599–
612, December.

John Kominek and Alan W. Black. 2006. Learning pro-
nunciation dictionaries: Language complexity and word
selection strategies. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Main
Conference, pages 232–239, New York City, New York,
USA, June. Association for Computational Linguistics.

A. Kumaran, Mitesh M. Khapra, and Pushpak Bhat-
tacharyya. 2010a. Compositional machine translit-
eration. 9(4):13:1–13:29, December.

A Kumaran, Mitesh M. Khapra, and Haizhou Li. 2010b.
Report of news 2010 transliteration mining shared task.
In Proceedings of the 2010 Named Entities Workshop,
pages 21–28, Uppsala, Sweden, July. Association for
Computational Linguistics.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint
source-channel model for machine transliteration. In
Proceedings of the 42nd Meeting of the Association

405



for Computational Linguistics (ACL’04), Main Volume,
pages 159–166, Barcelona, Spain, July.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and Min
Zhang. 2009. Report of NEWS 2009 machine translit-
eration shared task. In Proceedings of the 2009 Named
Entities Workshop: Shared Task on Transliteration
(NEWS 2009), pages 1–18, Suntec, Singapore, August.
Association for Computational Linguistics.

Haizhou Li, A Kumaran, Min Zhang, and Vladimir Per-
vouchine. 2010. Report of NEWS 2010 transliteration
generation shared task. In Proceedings of the 2010
Named Entities Workshop, pages 1–11, Uppsala, Swe-
den, July. Association for Computational Linguistics.

Linsen Loots and Thomas R. Niesler. 2009. Data-driven
phonetic comparison and conversion between south
african, british and american english pronunciations. In
Proceedings of Interspeech, Brighton, UK, September.

Yannick Marchand and Robert I. Damper. 2000. A multi-
strategy approach to improving pronunciation by anal-
ogy. Computational Linguistics, 26(2):195–219, June.

Korin Richmond, Robert Clark, and Sue Fitt. 2009. Ro-
bust LTS rules with the Combilex speech technology
lexicon. In Proceedings of Interspeech, pages 1295–
1298, Brighton, UK, September.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learning
string edit distance. IEEE Transactions on Pattern
Recognition and Machine Intelligence, 20(5):522–532,
May.

Terrence J. Sejnowski and Charles R. Rosenberg. 1987.
Parallel networks that learn to pronounce english text.
Complex Systems, 1(1):145–168.

Benjamin Snyder, Tahira Naseem, Jacob Eisenstein, and
Regina Barzilay. 2009. Adding more languages im-
proves unsupervised multilingual part-of-speech tag-
ging: a bayesian non-parametric approach. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
83–91, Boulder, Colorado, USA, June. Association for
Computational Linguistics.

Richard Sproat, Tao Tao, and ChengXiang Zhai. 2006.
Named entity transliteration with comparable corpora.
In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
pages 73–80, Sydney, Australia, July. Association for
Computational Linguistics.

Paul Taylor. 2005. Hidden Markov models for grapheme
to phoneme conversion. In Proceedings of Interspeech,
pages 1973–1976, Lisbon, Portugal, September.

Masao Utiyama and Hitoshi Isahara. 2007. A comparison
of pivot methods for phrase-based statistical machine
translation. In Human Language Technologies 2007:

The Conference of the North American Chapter of the
Association for Computational Linguistics; Proceed-
ings of the Main Conference, pages 484–491, Rochester,
New York, USA, April. Association for Computational
Linguistics.

van den Bosch and Walter Daelemans. 1998. Do not
forget: Full memory in memory-based learning of
word pronunciation. In D.M.W. Powers, editor, NeM-
LaP3/CoNLL98: New Methods in Language Processing
and Computational Natural Language Learning, pages
195–204, Sydney, Australia. Association for Computa-
tional Linguistics.

Hua Wu and Haifeng Wang. 2009. Revisiting pivot lan-
guage approach for machine translation. In Proceed-
ings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP, pages
154–162, Suntec, Singapore, August. Association for
Computational Linguistics.

Dmitry Zelenko and Chinatsu Aone. 2006. Discrimina-
tive methods for transliteration. In Proceedings of the
2006 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 612–617, Sydney, Australia,
July. Association for Computational Linguistics.

Min Zhang, Xiangyu Duan, Vladimir Pervouchine, and
Haizhou Li. 2010. Machine transliteration: Leveraging
on third languages. In Coling 2010: Posters, pages
1444–1452, Beijing, China, August. Coling 2010 Orga-
nizing Committee.

Min Zhang, Haizhou Li, A Kumaran, and Ming Liu. 2011.
Report of NEWS 2011 machine transliteration shared
task. In Proceedings of the 3rd Named Entities Work-
shop (NEWS 2011), pages 1–13, Chiang Mai, Thailand,
November. Asian Federation of Natural Language Pro-
cessing.

406


