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Abstract

This paper describes an unsupervised algo-
rithm for placing unknown words into a taxon-
omy and evaluates its accuracy on a large and
varied sample of words. The algorithm works
by first using a large corpus to find semantic
neighbors of the unknown word, which we ac-
complish by combining latent semantic analy-
sis with part-of-speech information. We then
place the unknown word in the part of the tax-
onomy where these neighbors are most concen-
trated, using a class-labelling algorithm devel-
oped especially for this task. This method is
used to reconstruct parts of the existing Word-
Net database, obtaining results for common
nouns, proper nouns and verbs. We evaluate
the contribution made by part-of-speech tag-
ging and show that automatic filtering using the
class-labelling algorithm gives a fourfold im-
provement in accuracy.

1 Introduction

The importance of automatic methods for enriching lex-
icons, taxonomies and knowledge bases from free text is
well-recognized. For rapidly changing domains such as
current affairs, static knowledge bases are inadequate for
responding to new developments, and the cost of building
and maintaining resources by hand is prohibitive.

This paper describes experiments which develop auto-
matic methods for taking an original taxonomy as a skele-
ton and fleshing it out with new terms which are discov-
ered in free text. The method is completely automatic and
it is completely unsupervised apart from using the origi-
nal taxonomic skeleton to suggest possible classifications
for new terms. We evaluate how accurately our meth-
ods can reconstruct the WordNet taxonomy (Fellbaum,
1998).

The problem of enriching the lexical information in
a taxonomy can be posed in two complementary ways.

Firstly, given a particular taxonomic class (such asfruit)
one could seek members of this class (such asapple, ba-
nana). This problem is addressed by Riloff and Shepherd
(1997), Roark and Charniak (1998) and more recently by
Widdows and Dorow (2002). Secondly, given a partic-
ular word (such asapple), one could seek suitable tax-
onomic classes for describing this object (such asfruit,
foodstuff). The work in this paper addresses the second
of these questions.

The goal of automatically placing new words into a
taxonomy has been attempted in various ways for at least
ten years (Hearst and Schütze, 1993). The process for
placing a wordw in a taxonomyT using a corpusC often
contains some version of the following stages:

• For a wordw, find words from the corpusC whose
occurrences are similar to those ofw. Consider
these the ‘corpus-derived neighbors’N(w) of w.

• Assuming that at least some of these neighbors are
already in the taxonomyT , mapw to the place in
the taxonomy where these neighbors are most con-
centrated.

Hearst and Schütze (1993) added 27 words to Word-
Net using a version of this process, with a 63% ac-
curacy at assigning new words to one of a number of
disjoint WordNet ‘classes’ produced by a previous al-
gorithm. (Direct comparison with this result is prob-
lematic since the number of classes used is not stated.)
A more recent example is the top-down algorithm of
Alfonseca and Manandhar (2001), which seeks the node
in T which shares the most collocational properties with
the wordw, adding 42 concepts taken fromThe Lord of
the Ringswith an accuracy of 28%.

The algorithm as presented above leaves many degrees
of freedom and open questions. What methods should
be used to obtain the corpus-derived neighborsN(w)?
This question is addressed in Section 2. Given a col-
lection of neighbors, how should we define a “place in
the taxonomy where these neighbors are most concen-
trated?” This question is addressed in Section 3, which
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defines a robust class-labelling algorithm for mapping a
list of words into a taxonomy. In Section 4 we describe
experiments, determining the accuracy with which these
methods can be used to reconstruct the WordNet taxon-
omy. To our knowledge, this is the first such evaluation
for a large sample of words. Section 5 discusses related
work and other problems to which these techniques can
be adapted.

2 Finding semantic neighbors: Combining
latent semantic analysis with
part-of-speech information.

There are many empirical techniques for recognizing
when words are similar in meaning, rooted in the idea that
“you shall know a word by the company it keeps” (Firth,
1957). It is certainly the case that words which repeat-
edly occur with similar companions often have related
meanings, and common features used for determining
this similarity include shared collocations (Lin, 1999),
co-occurrence in lists of objects (Widdows and Dorow,
2002) and latent semantic analysis (Landauer and Du-
mais, 1997; Hearst and Schütze, 1993).

The method used to obtain semantic neighbors in our
experiments was a version of latent semantic analysis,
descended from that used by Hearst and Schütze (1993,
§4). First, 1000 frequent words were chosen as col-
umn labels (after removing stopwords (Baeza-Yates and
Ribiero-Neto, 1999, p. 167)). Other words were assigned
co-ordinates determined by the number of times they oc-
cured within the same context-window (15 words) as one
of the 1000 column-label words in a large corpus. This
gave a matrix where every word is represented by a row-
vector determined by its co-occurence with frequently oc-
curing, meaningful words. Since this matrix was very
sparse, singular value decomposition (known in this con-
text aslatent semantic analysis(Landauer and Dumais,
1997)) was used to reduce the number of dimensions
from 1000 to 100. This reduced vector space is called
WordSpace (Hearst and Schütze, 1993,§4). Similarity
between words was then computed using the cosine sim-
ilarity measure (Baeza-Yates and Ribiero-Neto, 1999, p.
28). Such techniques for measuring similarity between
words have been shown to capture semantic properties:
for example, they have been used successfully for recog-
nizing synonymy (Landauer and Dumais, 1997) and for
finding correct translations of individual terms (Widdows
et al., 2002).

The corpus used for these experiments was the British
National Corpus, which is tagged for parts-of-speech.
This enabled us to build syntactic distinctions into
WordSpace — instead of just giving a vector for the string
testwe were able to build separate vectors for the nouns,
verbs and adjectivestest. An example of the contribu-

tion of part-of-speech information to extracting seman-
tic neighbors of the wordfire is shown in Table 2. As
can be seen, the nounfire (as in the substance/element)
and the verbfire (mainly used to mean firing some sort
of weapon) are related to quite different areas of mean-
ing. Building a single vector for the stringfire confuses
this distinction — the neighbors offire treated just as a
string include words related to both the meaning offire as
a noun (more frequent in the BNC) and as a verb.

Part of the goal of our experiments was to investi-
gate the contribution that this part-of-speech information
made for mapping words into taxonomies. As far as we
are aware, these experiments are the first to investigate
the combination of latent semantic indexing with part-of-
speech information.

3 Finding class-labels: Mapping
collections of words into a taxonomy

Given a collection of words or multiword expressions
which are semantically related, it is often important to
know what these words have in common. All adults with
normal language competence and world knowledge are
adept at this task — we know thatplant, animalandfun-
gusare all living things, and thatplant, factoryandworks
are all kinds of buildings. This ability to classify objects,
and to work out which of the possible classifications of a
given object is appropriate in a particular context, is es-
sential for understanding and reasoning about linguistic
meaning. We will refer to this process asclass-labelling.

The approach demonstrated here uses a hand-built tax-
onomy to assign class-labels to a collection of similar
nouns. As with much work of this nature, the taxonomy
used is WordNet (version 1.6), a freely-available broad-
coverage lexical database for English (Fellbaum, 1998).
Our algorithm finds the hypernyms which subsume as
many as possible of the original nouns, as closely as pos-
sible 1. The conceptv is said to be ahypernymof w if
w is a kind ofv. For this reason this sort of a taxonomy
is sometimes referred to as an ‘IS A hierarchy’. For ex-
ample, the possible hypernyms given for the wordoak in
WordNet 1.6 are

oak ⇒ wood ⇒ plant material⇒ material,
stuff ⇒ substance, matter⇒ object, physical
object⇒ entity, something

1Another method which could be used for class-
labelling is given by the conceptual density algorithm of
Agirre and Rigau (1996), which those authors applied to word-
sense disambiguation. A different but related idea is presented
by Li and Abe (1998), who use a principle from information
theory to model selectional preferences for verbs using differ-
ent classes from a taxonomy. Their algorithm and goals are
different from ours: we are looking for a single class-labelfor
semantically related words, whereas for modelling selectional
preferences several classes may be appropriate.



fire (string only) fire nn1 fire vvi
fire 1.000000 fire nn1 1.000000 fire vvi 1.000000
flames 0.709939 flamesnn2 0.700575 gunsnn2 0.663820
smoke 0.680601 smokenn1 0.696028 firing vvg 0.537778
blaze 0.668504 brigadenn1 0.589625 cannonnn0 0.523442
firemen 0.627065 fires nn2 0.584643 gun nn1 0.484106
fires 0.617494 firemennn2 0.567170 fired vvd 0.478572
explosion 0.572138 explosionnn1 0.551594 detectorsnn2 0.477025
burning 0.559897 destroyedvvn 0.547631 artillery nn1 0.469173
destroyed 0.558699 burning aj0 0.533586 attackvvb 0.468767
brigade 0.532248 blazenn1 0.529126 firing nn1 0.459000
arson 0.528909 arsonnn1 0.522844 volley nn1 0.458717
accidental 0.519310 alarmsnn2 0.512332 trainedvvn 0.447797
chimney 0.489577 destroyedvvd 0.512130 enemynn1 0.445523
blast 0.488617 burning vvg 0.502052 alert aj0 0.443610
guns 0.487226 burnt vvn 0.500864 shootvvi 0.443308
damaged 0.484897 blastnn1 0.498635 defendersnn2 0.438886

Table 1: Semantic neighbors offire with different parts-of-speech. The scores are cosine similarities

oak, oak tree⇒ tree⇒ woody plant, ligneous
plant⇒ vascular plant, tracheophyte⇒ plant,
flora, plant life⇒ life form, organism, being,
living thing⇒ entity, something

Let S be a set of nouns or verbs. If the wordw ∈ S is
recognized by WordNet, the WordNet taxonomy assigns
to w an ordered set of hypernymsH(w).

Consider the union

H =
⋃

w∈S

H(w).

This is the set of all hypernyms of any member ofS. Our
intuition is that the most appropriate class-label for the
setS is the hypernymh ∈ H which subsumes as many
as possible of the members ofS as closely as possible
in the hierarchy. There is a trade-off here between sub-
suming ‘as many as possible’ of the members ofS, and
subsuming them ‘as closely as possible’. This line of rea-
soning can be used to define a whole collection of ‘class-
labelling algorithms’.

For eachw ∈ S and for eachh ∈ H, define theaffinity
score functionα(w, h) betweenw andh to be

α(w, h) =

{

f(dist(w, h)) if h ∈ H(w)
−g(w, h) if h /∈ H(w),

(1)

wheredist(w, h) is a measure of the distance betweenw
andh, f is some positive, monotonically decreasing func-
tion, andg is some positive (possibly constant) function.

The functionf accords ‘positive points’ toh if h sub-
sumesw, and the condition thatf be monotonically de-
creasing ensures thath gets more positive points the
closer it is tow. The functiong subtracts ‘penalty points’
if h does not subsumew. This function could depend in
many ways onw andh — for example, there could be a
smaller penalty ifh is a very specific concept than ifh is
a very general concept.

The distance measuredist(w, h) could take many
forms, and there are already a number of distance mea-
sures available to use with WordNet (Budanitsky and

Hirst, 2001). The easiest method for assigning a distance
between words and their hypernyms is to count the num-
ber of intervening levels in the taxonomy. This assumes
that the distance in specificity between ontological levels
is constant, which is of course not the case, a problem
addressed by Resnik (1999).

Given an appropriate affinity score, it is a simple matter
to define the bestclass-labelfor a collection of objects.

Definition 1 Let S be a set of nouns, letH =
⋃

w∈S
H(w) be the set of hypernyms ofS and letα(w, h)

be an affinity score function as defined in equation (1).
Thebest class-labelhmax(S) for S is the nodehmax ∈ H

with the highest total affinity score summed over all the
members ofS, sohmax is the node which gives the max-
imum score

max
h∈H

∑

w∈S

α(w, h).

SinceH is determined byS, hmax is solely determined
by the setS and the affinity scoreα.

In the event thathmax is not unique, it is customary to
take the most specific class-label available.

Example

A particularly simple example of this kind of algorithm
is used by Hearst and Schütze (1993). First they parti-
tion the WordNet taxonomy into a number of disjoint sets
which are used as class-labels. Thus each concept has
a single ‘hypernym’, and the ‘affinity-score’ between a
wordw and a classh is simply the set membership func-
tion, α(w, h) = 1 if w ∈ h and0 otherwise. A collection
of words is assigned a class-label by majority voting.

3.1 Ambiguity

In theory, rather than a class-label for related strings, we
would like one for related meanings — the concepts to
which the strings refer. To implement this for a set of
words, we alter our affinity score functionα as follows.
Let C(w) be the set of concepts to which the wordw



could refer. (So eachc ∈ C is a possible sense ofw.)
Then

α(w, h) = max
c∈C(w)

{

f(dist(c, h)) if h ∈ H(c)
−g(w, c) if h /∈ H(c),

(2)

This implies that the ‘preferred-sense’ ofw with respect
to the possible subsumerh is the sense closest toh. In
practice, our class-labelling algorithm implements this
preference by computing the affinity scoreα(c, h) for all
c ∈ C(w) and only using the best match. This selec-
tive approach is much less noisy than simply averaging
the probability mass of the word over each possible sense
(the technique used in (Li and Abe, 1998), for example).

3.2 Choice of scoring functions for the
class-labelling algorithm

The precise choice of class-labelling algorithm depends
on the functionsf and g in the affinity score function
α of equation (2). There is some tension here between
being correct and being informative: ‘correct’ but unin-
formative class-labels (such asentity, something) can be
obtained easily by preferring nodes high up in the hier-
archy, but since our goal in this work was to classify un-
known words in an informativeandaccurate fashion, the
functionsf andg had to be chosen to give an appropriate
balance. After a variety of heuristic tests, the functionf
was chosen to be

f =
1

dist(w, h)2
,

where for the distance functiondist(w, h) we chose the
computationally simple method of counting the number
of taxonomic levels betweenw and h (inclusively to
avoid dividing by zero). For the penalty functiong we
chose the constantg = 0.25.

The net effect of choosing the reciprocal-distance-
squared and a small constant penalty function was that
hypernyms close to the concept in question received mag-
nified credit, but possible class-labels were not penalized
too harshly for missing out a node. This made the algo-
rithm simple and robust to noise but with a strong prefer-
ence for detailed information-bearing class-labels. This
configuration of the class-labelling algorithm was used in
all the experiments described below.

4 Experiments and Evaluation

To test the success of our approach to placing unknown
words into the WordNet taxonomy on a large and signif-
icant sample, we designed the following experiment. If
the algorithm is successful at placing unknown words in
the correctnewplace in a taxonomy, we would expect it
to place already known words in theircurrent position.
The experiment to test this worked as follows.

• For a wordw, find the neighborsN(w) of w in
WordSpace. Removew itself from this set.

• Find the best class-labelhmax(N(w)) for this set
(using Definition 1).

• Test to see if, according to WordNet,hmax is a hy-
pernym of the original wordw, and if so check how
closelyhmax subsumesw in the taxonomy.

Since our class-labelling algorithm gives a ranked list
of possible hypernyms, credit was given for correct clas-
sifications in the top 4 places. This algorithm was tested
on singular common nouns (PoS-tagnn1), proper nouns
(PoS-tagnp0) and finite present-tense verbs (PoS-tag
vvb). For each of these classes, a random sample of words
was selected with corpus frequencies ranging from 1000
to 250. For the noun categories, 600 words were sam-
pled, and for the finite verbs, 420. For each wordw, we
found semantic neighbors with and without using part-of-
speech information. The same experiments were carried
out using 3, 6 and 12 neighbors: we will focus on the re-
sults for 3 and 12 neighbors since those for 6 neighbors
turned out to be reliably ‘somewhere in between’ these
two.

Results for Common Nouns
The best results for reproducing WordNet classifica-

tions were obtained for common nouns, and are sum-
marized in Table 2, which shows the percentage of test
wordsw which were given a class-labelh which was a
correct hypernym according to WordNet (so for which
h ∈ H(w)). For these words for which a correct clas-
sification was found, the ‘Height’ columns refer to the
number of levels in the hierarchy between the target word
w and the class-labelh. If the algorithm failed to find a
class-labelh which is a hypernym ofw, the result was
counted as ‘Wrong’. The ‘Missing’ column records the
number of words in the sample which are not in WordNet
at all.

The following trends are apparent. For finding any
correct class-label, the best results were obtained by
taking 12 neighbors and using part-of-speech informa-
tion, which found a correct classification for485/591 =
82% of the common nouns that were included in Word-
Net. This compares favorably with previous experiments,
though as stated earlier it is difficult to be sure we are
comparing like with like. Finding the hypernym which
immediately subsumesw (with no intervening nodes)
exactly reproduces a classification given by WordNet,
and as such was taken to be a complete success. Tak-
ing fewer neighbors and using PoS-information both im-
proved this success rate, the best accuracy obtained be-
ing 86/591 = 15%. However, this configuration actually
gave theworstresults at obtaining a correct classification
overall.



Height 1 2 3 4 5 6 7 8 9 10 Wrong Missing

Common Nouns(sample size 600)
3 neighbors
With PoS 14.3 26.1 33.1 37.8 39.8 40.6 41.5 42.0 42.0 42.0 56.5 1.5
Strings only 11.8 23.3 31.3 36.6 39.6 41.1 42.1 42.3 42.3 42.3 56.1 1.5
12 neighbors
With PoS 10.0 21.8 36.5 48.5 59.3 70.0 76.6 78.8 79.8 80.8 17.6 1.5
without PoS 8.5 21.5 33.6 46.8 57.1 66.5 72.8 74.6 75.3 75.8 22.6 1.5

Proper Nouns(sample size 600)
3 neighbors
With PoS 10.6 13.8 15.5 16.5 108 18.6 18.8 18.8 19.1 19.3 25.0 55.6
Strings only 9.8 14.3 16.1 18.6 19.5 20.1 20.8 21.1 21.5 21.6 22.1 55.6
12 neighbors
With PoS 10.5 14.5 16.3 18.1 22.0 23.8 25.5 28.0 28.5 29.3 15.0 55.6
Strings only 9.5 13.8 17.5 20.8 22.3 24.6 26.6 30.7 32.5 34.3 10.0 55.6

Verbs (sample size 420)
3 neighbors
With PoS 17.6 30.2 36.1 40.4 42.6 43.0 44.0 44.0 44.0 44.0 52.6 3.3
Strings only 24.7 39.7 43.3 45.4 47.1 48.0 48.3 48.8 49.0 49.0 47.6 3.3
12 neighbors
With PoS 19.0 36.4 43.5 48.8 52.8 54.2 55.2 55.4 55.7 55.9 40.7 3.3
Strings only 28.0 48.3 55.9 60.2 63.3 64.2 64.5 65.0 65.0 65.0 31.7 3.3

Table 2: Percentage of words which were automatically assigned class-labels which subsume them in the WordNet
taxonomy, showing the number of taxonomic levels between the target word and the class-label

Height 1 2 3 4 5 6 Wrong
Common Nouns 0.799 0.905 0.785 0.858 0.671 0.671 0.569
Proper Nouns 1.625 0.688 0.350 0.581 0.683 0.430 0.529
Verbs 1.062 1.248 1.095 1.103 1.143 0.750 0.669

Table 3: Average affinity score of class-labels for successful and unsuccessful classifications



In conclusion, taking more neighbors makes the
chances of obtaining some correct classification for a
wordw greater, but taking fewer neighbors increases the
chances of ‘hitting the nail on the head’. The use of part-
of-speech information reliably increases the chances of
correctly obtaining both exact and broadly correct classi-
fications, though careful tuning is still necessary to obtain
optimal results for either.

Results for Proper Nouns and Verbs

The results for proper nouns and verbs (also in Table
2) demonstrate some interesting problems. On the whole,
the mapping is less reliable than for common nouns, at
least when it comes to reconstructing WordNet as it cur-
rently stands.

Proper nouns are rightly recognized as one of the cat-
egories where automatic methods for lexical acquisition
are most important (Hearst and Schütze, 1993,§4). It
is impossible for a single knowledge base to keep up-to-
date with all possible meanings of proper names, and this
would be undesirable without considerable filtering abil-
ities because proper names are often domain-specific.

Ih our experiments, the best results for proper nouns
were those obtained using 12 neighbors, where a cor-
rect classification was found for206/266 = 77% of the
proper nouns that were included in WordNet, using no
part-of-speech information. Part-of-speech information
still helps for mapping proper nouns into exactly the right
place, but in general degrades performance.

Several of the proper names tested are geographical,
and in the BNC they often refer to regions of the British
Isles which are not in WordNet. For example,hampshire
is labelled as aterritorial division, which as an English
county it certainly is, but in WordNethampshireis in-
stead a hyponym ofdomestic sheep. For many of the
proper names which our evaluation labelled as ‘wrongly
classified’, the classification was in fact correct but a dif-
ferent meaning from those given in WordNet. The chal-
lenge for these situations is how to recognize when cor-
pus methods give a correct meaning which is different
from the meaning already listed in a knowledge base.
Many of these meanings will be systematically related
(such as the way a region is used to name an item or
product from that region, as with thehampshireexample
above) by generative processes which are becoming well
understood by theoretical linguists (Pustejovsky, 1995),
and linguistic theory may help our statistical algorithms
considerably by predicting whatsortof new meanings we
might expect a known word to assume through metonymy
and systematic polysemy.

Typical first names of people such aslisa andralph al-
most always have neighbors which are also first names
(usually of the same gender), but these words are not rep-
resented in WordNet. This lexical category is ripe for

automatic discovery: preliminary experiments using the
two names above as ‘seed-words’ (Roark and Charniak,
1998; Widdows and Dorow, 2002) show that by taking
a few known examples, finding neighbors and removing
words which are already in WordNet, we can collect first
names of the same gender with at least 90% accuracy.

Verbs pose special problems for knowledge bases. The
usefulness of anIS A hierarchy for pinpointing informa-
tion and enabling inference is much less clear-cut than
for nouns. For example,sleepingdoes entailbreathing
andarriving does implymoving, but the aspectual prop-
erties, argument structure and case roles may all be dif-
ferent. The more restrictive definition oftroponymyis
used in WordNet to describe those properties of verbs
that are inherited through the taxonomy (Fellbaum, 1998,
Ch 3). In practice, the taxonomy of verbs in WordNet
tends to have fewer levels and many more branches than
the noun taxonomy. This led to problems for our class-
labelling algorithm — class-labels obtained for the verb
play includedexhaust, deploy, moveandbehave, all of
which are ‘correct’ hypernyms according to WordNet,
while possible class-labels obtained for the verbappeal
includedkeep, defend, reassertandexamine, all of which
were marked ‘wrong’. For our methods, the WordNet
taxonomy as it stands appears to give much less reli-
able evaluation criteria for verbs than for common nouns.
It is also plausible that similarity measures based upon
simple co-occurence are better for modelling similarity
between nominals than between verbs, an observation
which is compatible with psychological experiments on
word-association (Fellbaum, 1998, p. 90).

In our experiments, the best results for verbs were
clearly those obtained using 12 neighbors and no part-
of-speech information, for which some correct classifi-
cation was found for273/406 = 59% of the verbs that
were included in WordNet, and which achieved better re-
sults than those using part-of-speech information even for
finding exact classifications. The shallowness of the tax-
onomy for verbs means that most classifications which
were successful at all were quite close to the word in
question, which should be taken into account when in-
terpreting the results in Table 2.

As we have seen, part-of-speech information degraded
performance overall for proper nouns and verbs. This
may be because combining all uses of a particular word-
form into a single vector is less prone to problems of data
sparseness, especially if these word-forms are semanti-
cally related in spite of part-of-speech differences2. It is
also plausible that discarding part-of-speech information

2This issue is reminiscent of the question of whether stem-
ming improves or harms information retrieval (Baeza-Yatesand
Ribiero-Neto, 1999) — the received wisdom is that stemming
(at best) improves recall at the expense of precision and our
findings for proper nouns are consistent with this.



shouldimprove the classification of verbs for the follow-
ing reason. Classification using corpus-derived neighbors
is markedly better for common nouns than for verbs, and
most of the verbs in our sample (57%) also occur as com-
mon nouns in WordSpace. (In contrast, only 13% of our
common nouns also occur as verbs, a reliable asymmetry
for English.) Most of these noun senses are semantically
related in some way to the corresponding verbs. Since
using neighboring words for classification is demonstra-
bly more reliable for nouns than for verbs, putting these
parts-of-speech together in a single vector in WordSpace
might be expected toimproveperformance for verbs but
degrade it for nouns.

Filtering using Affinity scores
One of the benefits of the class-labelling algorithm

(Definition 1) presented in this paper is that it returns not
just class-labels but an affinity score measuring how well
each class-label describes the class of objects in question.
The affinity score turns out to be signficantly correlated
with the likelihood of obtaining a successful classifica-
tion. This can be seen very clearly in Table 3, which
shows the average affinity score for correct class-labels of
different heights above the target word, and for incorrect
class-labels — as a rule, correct and informative class-
labels have significantly higher affinity scores than incor-
rect class-labels. It follows that the affinity score can be
used as an indicator of success, and so filtering out class-
labels with poor scores can be used as a technique for
improving accuracy.

To test this, we repeated our experiments using 3
neighbors and this time only using class-labels with an
affinity score greater than0.75, the rest being marked
‘unknown’. Without filtering, there were 1143 success-
ful and 1380 unsuccessful outcomes: with filtering, these
numbers changed to 660 and 184 respectively. Filtering
discarded some 87% of the incorrect labels and kept more
than half of the correct ones, which amounts to at least a
fourfold improvement in accuracy. The improvement was
particularly dramatic for proper nouns, where filtering re-
moved 270 out of 283 incorrect results and still retained
half of the correct ones.

Conclusions
For common nouns, where WordNet is most reliable,

our mapping algorithm performs comparatively well, ac-
curately classifying several words and finding some cor-
rect information about most others. The optimum num-
ber of neighbors is smaller if we want to try for an exact
classification and larger if we want information that is
broadly reliable. Part-of-speech information noticeably
improves the process of both broad and narrow classifi-
cation. For proper names, many classifications are cor-
rect, and many which are absent or incorrect according
to WordNet are in fact correct meanings which should

be added to the knowledge base for (at least) the domain
in question. Results for verbs are more difficult to inter-
pret: reasons for this might include the shallowness and
breadth of the WordNet verb hierarchy, the suitability of
our WordSpace similarity measure, and many theoretical
issues which should be taken into account for a successful
approach to the classification of verbs.

Filtering using the affinity score from the class-
labelling algorithm can be used to dramatically increase
performance.

5 Related work and future directions

The experiments in this paper describe one combination
of algorithms for lexical acquisition: both the finding
of semantic neighbors and the process of class-labelling
could take many alternative forms, and an exhaustive
evaluation of such combinations is far beyond the scope
of this paper. Various mathematical models and distance
measures are available for modelling semantic proxim-
ity, and more detailed linguistic preprocessing (such as
chunking, parsing and morphology) could be used in a
variety of ways. As an initial step, the way the granularity
of part-of-speech classification affects our results for lex-
ical acquistion will be investigated. The class-labelling
algorithm could be adapted to use more sensitive mea-
sures of distance (Budanitsky and Hirst, 2001), and corre-
lations between taxonomic distance and WordSpace sim-
ilarity used as a filter.

The coverage and accuracy of the initial taxonomy we
are hoping to enrich has a great influence on success rates
for our methods as they stand. Since these are precisely
the aspects of the taxonomy we are hoping to improve,
this raises the question of whether we can use automati-
cally obtained hypernyms as well as the hand-built ones
to help classification. This could be tested by randomly
removing many nodes from WordNet before we begin,
and measuring the effect of using automatically derived
classifications for some of these words (possibly those
with high confidence scores) to help with the subsequent
classification of others.

The use of semantic neighbors and class-labelling for
computing with meaning go far beyond the experimen-
tal set up for lexical acquisition described in this pa-
per — for example, Resnik (1999) used the idea of a
most informative subsuming node (which can be re-
garded as a kind of class-label) for disambiguation, as
did Agirre and Rigau (1996) with the conceptual density
algorithm. Taking a whole domain as a ‘context’, this
approach to disambiguation can be used for lexical tun-
ing. For example, using the Ohsumed corpus of medical
abstracts, the top few neighbors ofoperationareamputa-
tion, disease, therapyandresection. Our algorithm gives
medical care, medical aidandtherapyas possible class-
labels for this set, which successfully picks out the sense



of operationwhich is most important for the medical do-
main.

The level of detail which is appropriate for defining
and grouping terms depends very much on the domain in
question. For example, the immediate hypernyms offered
by WordNet for the wordtrout include

fish, foodstuff, salmonid, malacopterygian,
teleost fish, food fish, saltwater fish

Many of these classifications are inappropriately fine-
grained for many circumstances. To find a degree of
abstraction which is suitable for the waytrout is used
in the BNC, we found its semantic neighbors which in-
cludeherring swordfish turbot salmon tuna. The highest-
scoring class-labels for this set are

2.911 saltwater fish
2.600 food fish
1.580 fish
1.400 scombroid, scombroid
0.972 teleost fish

The preferred labels are the ones most humans would an-
swer if asked what atrout is. This process can be used
to select the concepts from an ontology which are ap-
propriate to a particular domain in a completely unsuper-
vised fashion, using only the documents from that do-
main whose meanings we wish to describe.

Demonstration

Interactive demonstrations of the class-labelling al-
gorithm and WordSpace are available on the web at
http://infomap.stanford.edu/classes and
http://infomap.stanford.edu/webdemo. An
interface to WordSpace incorporating the part-of-speech
information is currently under consideration.
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