
Proceedings of the 23rd Conference on Computational Natural Language Learning, pages 812–821
Hong Kong, China, November 3-4, 2019. c©2019 Association for Computational Linguistics

812

Putting the Horse Before the Cart:
A Generator-Evaluator Framework for Question Generation from Text

Vishwajeet Kumar1,2,3, Ganesh Ramakrishnan2, and Yuan-Fang Li3

1IITB-Monash Research Academy, Mumbai, India
2IIT Bombay, Mumbai, India

3Monash University, Melbourne, Australia

Abstract
Automatic question generation (QG) is a use-
ful yet challenging task in NLP. Recent neural
network-based approaches represent the state-
of-the-art in this task. In this work, we attempt
to strengthen them significantly by adopting a
holistic and novel generator-evaluator frame-
work that directly optimizes objectives that re-
ward semantics and structure. The generator
is a sequence-to-sequence model that incorpo-
rates the structure and semantics of the ques-
tion being generated. The generator predicts
an answer in the passage that the question can
pivot on. Employing the copy and coverage
mechanisms, it also acknowledges other con-
textually important (and possibly rare) key-
words in the passage that the question needs
to conform to, while not redundantly repeat-
ing words. The evaluator model evaluates
and assigns a reward to each predicted ques-
tion based on its conformity to the structure
of ground-truth questions. We propose two
novel QG-specific reward functions for text
conformity and answer conformity of the gen-
erated question. The evaluator also employs
structure-sensitive rewards based on evalua-
tion measures such as BLEU, GLEU, and
ROUGE-L, which are suitable for QG. In con-
trast, most of the previous works only optimize
the cross-entropy loss, which can induce in-
consistencies between training (objective) and
testing (evaluation) measures. Our evaluation
shows that our approach significantly outper-
forms state-of-the-art systems on the widely-
used SQuAD benchmark as per both automatic
and human evaluation.

1 Introduction

Automatic question generation (QG) is a very im-
portant yet challenging problem in NLP. It is de-
fined as the task of generating syntactically cor-
rect, semantically sound and relevant questions
from various input formats such as text, a struc-
tured database or a knowledge base (Mannem

et al., 2010). More recently, neural network
based techniques such as sequence-to-sequence
(Seq2Seq) learning have achieved remarkable suc-
cess on various NLP tasks, including question
generation. A recent deep learning approach
to question generation (Serban et al., 2016) in-
vestigates a simpler task of generating questions
only from a triplet of subject, relation and ob-
ject. Learning to ask (referred to as L2A here-
inafter) (Du et al., 2017) proposes a Seq2Seq
model with attention for question generation from
text. (Song et al., 2018) (in an approach re-
ferred to as NQGLC hereafter) encoded ground-
truth answers and employed bi-directional LSTMs
in a Seq2Seq setting. In addition, they use the
copy mechanism (See et al., 2017) and context
matching to capture interactions between the given
ground-truth answer and its context within the pas-
sage.

In the context of QG from paragraphs, (Zhao
et al., 2018) proposed maxout pointer network to
keep track of word coverage. Our previous work
(Kumar et al., 2018) (referred to as AutoQG here-
inafter) generates candidate answers from text us-
ing Pointer Networks (Vinyals et al., 2015) and en-
codes the answer in the question decoder for im-
proved performance.

We first present a framework in which a gen-
erator mechanism (the horse) that is employed
for generating a question-answer pair invokes or
pulls the evaluator mechanism (the cart) that is
employed for evaluating the generated pair. Our
clearly delineated generator-evaluator framework
lets us (a) easily incorporate several best practices
from the above referred previous models in the
generator while (b) also letting us employ in the
evaluator, other complex non-decomposable re-
wards that are consistent with performance mea-
sures (such as BLEU and ROUGE) on test data.
We also propose some novel reward functions that



813

evaluate the syntax of the question and semantics
of the question-answer pair in its entirety. More
specifically, since the generated question is in an-
ticipation of some specific answer, we find it most
natural to incorporate candidate answer genera-
tion (using Pointer Networks) alongside QG right
in our generator module, so that the evaluator
can optionally take into cognizance the conformity
of the generated answer to the ground-truth an-
swer, along with text conformity. Likewise, we
also incorporate copy and coverage mechanisms
for QG into the generator module so that they
can be specifically trained by leveraging a suite
of holistically designed and structure-sensitive re-
ward functions in the evaluator module.

The Generator
In Table 1, in rows 1 through 4, we illustrate
through examples, the incremental benefits of in-
troducing answer prediction and the copy and cov-
erage mechanisms (See et al., 2017) in the genera-
tor. The evaluator associated with the correspond-
ing three generator models employs the conven-
tional and simplistic cross-entropy loss. The moti-
vation for answer prediction in the generator mod-
ule is obvious and will be further discussed in Sec-
tion 2.1. In row 3 we illustrate the influence of our
copy mechanism, where a rare phrase ‘new ams-
terdam’ has been rightly picked up in association
with the name of the city.

We however note that in row 3, the word
‘new’ has been erroneously repeated twice, since
an encoder-decoder based model could generate
questions with meaningless repetitions.

We introduce a mechanism for discouraging
such repetitions in our generator by quantitatively
emphasizing the coverage of sentence words while
decoding. Row 4 shows the improved and relevant
question generated by our model trained by incor-
porating both the copy and coverage mechanisms.

Evaluator
In row 5 of Table 1, we observe the high-quality
question that is generated when the simplistic
cross-entropy loss in the evaluator is replaced with
the more complex and non-decomposable (across
words) BLEU reward that accounts for proximity
of ‘founded’ to ‘new york’.

In Table 2, we further illustrate the effect of em-
ploying other reward functions (described in Sec-
tion 2.2) in the evaluator. As can be seen, the
model that incorporates QG-specific reward func-

tions (QSS and ANSS) generates a significantly
better question when compared to the question
generated without these rewards.

Limitations of simple decomposable losses: A
Seq2Seq model trained using a vanilla cross-
entropy loss function (decomposable over words
in the question) generates the question “what year
was new york named ?” (row 1 in Table 1), which
is not addressed in the sentence. The passage talks
only about the founding of the city and its naming
two years later. The inaccuracy of the question is
possibly caused by the use of a loss that is agnos-
tic to sequence information. In other words, given
its decomposable nature, the cross-entropy loss on
the ground-truth question or any of its (syntacti-
cally invalid) anagrams will be the same. More-
over, use of the cross-entropy loss in the sequence
prediction model could make the process brittle,
since the model trained on a specific distribution
over words is used on a test dataset with a possi-
bly different distribution to predict the next word
given the current predicted word. This creates ex-
posure bias (Ranzato et al., 2015) during training,
since the model is only exposed to the data dis-
tribution and not the model distribution. Thus,
performance suffers due to inadequately evaluat-
ing the structure of the generated question against
the ground-truth question.

The standard metrics for evaluating the per-
formance of question generation models such
as BLEU (Papineni et al., 2002), GLEU, and
ROUGE-L (Lin, 2004) are based on degree of n-
gram overlaps between a generated question and
the ground-truth question. It would be desir-
able to be able to directly optimize these task-
specific metrics. However, these n-gram based
metrics do not decompose over individual words
and are therefore hard to optimize. We explic-
itly employ an evaluator that rewards each gen-
erated question based on its conformance to one
(or more than one using decomposable attention)
questions in the ground-truth set using these pos-
sibly non-decomposable reward functions. We
find such learning to be a natural instance of rein-
forcement learning (RL) (Sutton and Barto, 1998)
that allows us to use policy gradient to directly
optimize task-specific rewards (such as BLEU,
GLEU and ROUGE-L), which are otherwise non-
differentiable and hard to optimize. In Table 2
we illustrate questions generated using different
reward functions. It can be observed that ques-



814

Text: “new york city traces its roots to its 1624 founding as a trading post by colonists of the dutch republic and was
named new amsterdam in 1626 .”

Row Model Question generated
1 Seq2Seq model optimized on vanilla (cross entropy) loss without answer prediction in what 1624 did new york city traces its roots ?
2 Seq2Seq model optimized on vanilla (cross entropy) loss with answer prediction what year was new york named ?
3 Copy aware Seq2Seq model what year was new new amsterdam named ?
4 Coverage and copy aware Seq2Seq model in what year was new amsterdam named ?
5 Seq2Seq model optimized on BLEU (using RL) what year was new york founded ?

Table 1: Sample text and questions generated using variants of our model.

Text: “even with the five largest cities in sichuan suffering only minor damage from the quake , some
estimates of the economic loss run higher than us $ 75 billion , making the earthquake one of the costliest
natural disasters in chinese history .”

Expected answer: five
Row Model Question generated
1 GEBLEU how much did it making for the earthquake of the economic ?
2 GEBLEU+QSS+ANSS how many largest cities in sichuan experience only minor damage from the quake ?
3 GEDAS how many cities were in sichuan ?
4 GEDAS+QSS+ANSS how many largest cities in sichuan suffering only minor damage from the quake ?
4 GEROUGE how much did the economic loss run in sichuan ?
5 GEROUGE+QSS+ANSS what is the largest cities in sichuan ?

Table 2: Sample text and questions generated using different reward functions, with and without our new QG-
specific rewards QSS+ANSS.

tions generated using combination of standard re-
ward functions with reward functions specific to
QG quality (QSS+ANSS) exhibit higher quality.

Contributions We summarize our main contri-
butions as follows:

• A comprehensive, end-to-end generator-
evaluator framework naturally suited for
automated question generation. Whereas
earlier approaches employ some mechanism
(the horse) for generating the question, in-
tertwined with an evaluation mechanism (the
cart), we show that these approaches can ben-
efit from a much clearer separation of the
generator of the question from its evaluator.

• A generator founded on the semantics and
structure of the question by (a) identify-
ing target/pivotal answers (Pointer Network),
(b) recognizing contextually important key-
words in the answer (copy mechanism), and
(c) avoiding redundancy (repeated words) in
the question (coverage mechanism).

• An evaluator that (a) directly optimizes for
conformity to the structure of ground-truth
sequences (BLEU, GLEU, etc.), and (b)
matches against appropriate questions from a
set of ground-truth questions (Decomposable
Attention).

• Novel reward functions that ensure that the
generated question is relevant to the text and
conforms to the encoded answer.

When evaluated on the benchmark SQuAD
dataset (Rajpurkar et al., 2016), our system
considerably outperforms state-of-the-art question
generation models (Du et al., 2017; Kumar et al.,
2018; Song et al., 2018) in automatic and human
evaluation.

2 Our Approach

Our framework for question generation consists of
a generator and an evaluator. From the reinforce-
ment learning (RL) point of view, the generator
is the agent and the generation of the next word
is an action. The probability of decoding a word
Pθ(word) gives a stochastic policy. On every to-
ken that is output, an evaluator assigns a reward for
the output sequence predicted so far using the cur-
rent policy of the generator. Based on the reward
assigned by the evaluator, the generator updates
and improves its current policy. Let us denote the
reward (return) at time step t by rt. The cumula-
tive reward, computed at the end of the generated
sequence is represented by R =

∑T
t=0 rt. The

goal of our framework is to determine a generator



815

Generator

LSTM Question DecoderBi-LSTM Answer Encoded Sentence 
Encoder

Pcg
Attention distribution

Vocabulary DistributionContext Vector

Word Coverage Vector

Final DistributionEvaluator
YGold 

Reward Ysamples 

Training data

...

Pointer Network

Answer Encoder

Figure 1: Our generator-evaluator framework for ques-
tion generation. pcg is the probability which determines
whether to copy a word from source text or sample it
from vocabulary distribution.

(policy) that maximizes the expected return:

LossRL(θ) = −EPθ(Y0:T |X)

T∑
t=0

rt(Yt;X, Y0:t−1)

(1)
where X is the current input and Y0:t−1 is the
predicted sequence until time t − 1. This super-
vised learning framework allows us to directly op-
timize task-specific evaluation metrics (rt) such as
BLEU.

The generator is a sequence-to-sequence model,
augmented with (i) an encoding for the potentially
best pivotal answer, (ii) the copy mechanism (Gu
et al., 2016) to help generate contextually impor-
tant words, and (iii) the coverage mechanism (Tu
et al., 2016) to discourage word repetitions. The
evaluator provides rewards to fine-tune the gen-
erator. The reward function can be chosen to
be a combination of one or more metrics. The
high-level architecture of our question generation
framework is presented in Figure 1.

2.1 Generator
Similar to AutoQG (Kumar et al., 2018), we em-
ploy attention and boundary pointer network to
identify pivotal answer spans in the input sentence.
The generator then takes as input the sequence
of words in the sentence, each augmented with
encoding of most probable pivotal answer, along
with a set of linguistic features such as POS tag,
NER tag, etc. At each step, the generator out-
puts a word with the highest probability, to eventu-
ally produce a word sequence. Additionally, as we
will see, the generator employs copy and coverage
mechanisms.

Sentence Encoder: Each word in the input text
is fed sequentially into the encoder along with
its linguistic features as well as with the en-
coded pivotal answer (identified by the bound-
ary pointer network). Our encoder is a two-layer
bidirectional LSTM network, consisting of

−→
ht =

−−−−−→
LSTM2(xt,

−−→
ht−1) and

←−
ht =

←−−−−−
LSTM2(xt,

←−−
ht−1),

which generates a sequence of hidden states. Here
xt is the given input word at time step t, and

−→
ht

and
←−
ht are the hidden states at time step t for the

forward and backward passes respectively.

Question Decoder: Our question decoder is a
single-layer LSTM network, initialized with the
state s = [

−→
ht ;
←−
ht ], which is concatenation of hid-

den state from forward and backward passes.
We also model the attention (Bahdanau et al.,

2014) distribution over words in the source text.
We calculate the attention (ati) over the ith source
word as ati = softmax(eti), where

eti = vttanh(Wehhi +Wshst + batt) (2)

Here vt, Weh, Wsh and batt are model param-
eters to be learned, and hi is the concatenation
of forward and backward hidden states of the
encoder. We use this attention ati to generate
the context vector c∗t as a weighted sum of en-
coder hidden states: c∗t =

∑
i a
t
ihi. We further

use the c∗t vector to obtain a probability distribu-
tion over the words in the vocabulary as: P =
sofmax(Wv[st, c

∗
t ] + bv), where Wv and bv are

model parameters. Thus during decoding, the
probability of a word is P (qword). During the
training process for each timestamp, the loss is
calculated as Lt = − logP (qwordt). The loss
associated with the generated question is:

Loss =
1

T

T∑
t=0

Lt = −
1

T

T∑
t=0

logP (qwordt)

(3)

2.1.1 The Copy and Coverage Mechanisms:
The copy mechanism facilitates the copying of im-
portant entities and words from the source sen-
tence to the question. We calculate pcg ∈ [0, 1] as
the decision of a binary classifier that determines
whether to generate (sample) a word from the vo-
cabulary or to copy the word directly from the in-
put text, based on attention distribution ati:

pcg = sigmoid(W T
ehc
∗
t +W T

shst +Wxxt + bcg)
(4)



816

Here Weh, Wsh, Wx and bcg are trainable model
parameters. The final probability of decoding a
word is specified by the mixture model:

p∗(qword) = pcg
∑

i:wi=qword

ati+(1−pcg)p(qword)

(5)
Where p∗(qword) is the final distribution over the
union of the vocabulary and the input sentence.

As discussed earlier, Equation (5) addresses the
rare words issue, since a word not in vocabulary
will have probability p(qword) = 0. Therefore,
in such cases, our model will replace the <unk>
token for out-of-vocabulary words with a word in
the input sentence having the highest attention ob-
tained using attention distribution ati.

To discourage meaningless multiple repetitions
of words in the question (as illustrated in row 3
of Table 1), we maintain a word coverage vec-
tor (wcv) for the words already predicted as the
sum of all the attention distributions ranging over
timesteps 0 until t− 1. Specifically, at time step t,
wcv =

∑t−1
t′=0 a

t′ .
No word is generated before timestep 0, and

hence wcv will be a zero vector then. After stor-
ing the word coverage vector until t − 1, while
attending to the next word, we will need to inform
our attention mechanism about words covered un-
til then. Hence, equation (2) is now modified to
be:

eti = vttanh(Wwcvwcv
t
i+Wehhi+Wshst+ batt)

(6)
Here Wwcv are trainable parameters that inform
the attention mechanism about words that have
been previously covered while choosing to attend
over the next word. Following the incorporation
of the copy and coverage mechanism in our gen-
erator, the generator’s final loss function will be:

Losscopy+cov = −
1

T

T∑
t=0

logP ∗(wt) + λcLcov

(7)
where λc is the coverage hyperparameter and the
coverage loss Lcov is defined as:

Lcov =
∑
i

min(ati, wcv
t
i) (8)

We note that this cross-entropy based loss function
still does not include task-specific metrics such as
BLEU that were motivated earlier. We employ an

evaluator to refine the model pre-trained on this
loss function to directly optimize the task specific
reward. We also empirically show that the refine-
ment of maximum likelihood models using task-
specific rewards such as BLEU improves results
considerably. In the next subsection we describe
our evaluator.

2.2 Evaluator
The evaluator fine-tunes the parameters of the gen-
erator network by optimizing task-specific reward
functions through policy gradient. It takes as in-
put the predicted sequence and the gold sequence,
evaluates a policy, and returns a reward (a score
between 0 and 1) that reflects the quality of the
question generated. For question generation, the
choice of reward functions include task-specific
metrics BLEU, GLEU and ROUGE-L (Du et al.,
2017; Kumar et al., 2018), as well as the decom-
posable attention (Parikh et al., 2016) described
below. More importantly, we present two new re-
ward functions that are specifically designed for
question generation, QSS and ANSS, for the con-
formity of questions and answers respectively.

Combining Equation (7) with a reward func-
tion R (BLEU, GLEU, ROUGE, DAS, QSS and
ANSS), we obtain the overall loss function using
the expected reward objective as follows:

Loverall =α ∗ Losscopy+cov

− β ∗
N∑
i=0

∑
y∈Y

Pθ(y|X(i))R(y, y∗(i))

(9)

where R(y, y∗(i)) denotes per sentence score (re-
ward), Y is a set of sequences sampled from the
final distribution, and α and β are tunable hyper-
paramters.

2.2.1 Decomposable attention based
evaluator

The use of a lexical similarity based reward func-
tion such as BLEU or ROUGE does not provide
the flexibility to handle multiple possible versions
of the ground truth. For example, the questions
“who is the widow of ray croc?” and “ray croc
was married to whom?” have almost the same
meaning, but due to word order mismatch with
the gold question, at most one of them can be re-
warded using the BLEU score at the cost of the
other(s). Empirically, we find this restriction lead-
ing to models that often synthesize questions with



817

poor quality. We therefore, design a novel reward
function, a decomposable attention (Parikh et al.,
2016) based similarity scorer (DAS). Denoting by
q̂ a generated question and by q the ground-truth
question, we compute a cross attention based sim-
ilarity using the following steps:

Cross Attention: The generated question q̂ and
the ground-truth question q are inter-attended as:

q̂∗i =

Lq∑
j=0

ajie(qj), aji =
exp(e(q̂i)

T e(qj))∑Lq̂
k=0 exp(e(q̂i)

T e(qk))
,

q∗j =

Lq̂∑
i=0

bjie(q̂i), bji =
exp(e(q̂i)

T e(qj))∑Lq
k=0 exp(e(q̂k)

T e(qj))

(10)

where e(.) is the word embedding of dimension
size d, q̂∗ is the cross attention vector for a gener-
ated question q̂, and q∗ is the cross attention vector
for a question q in the ground truth.

Comparison: Each n-gram q̂i in the generated
question (through its embedding e(q̂i)) is com-
pared with its associated cross-attention vector q̂∗

using a feed forward neural network N1. Simi-
larly, each n-gram qj in the ground-truth question
(through its embedding e(qj)) is compared with its
associated attention vector q∗ using another net-
work N2 having the same architecture as N1. The
motivation for this comparison is that we would
like to determine the soft alignment between n-
grams in the generated question and the gold ques-
tion. As an illustration, while comparing the gold
question “why do rockets look white?” with a
generated question “why are rockets and boosters
painted white?”, we find that an n-gram “rockets
and boosters” is softly aligned to “rockets” while
“look” is softly aligned to “painted”.

q̂1,i = N1([e(q̂i), q̂
∗]), q2,j = N2([e(qj), q

∗])
(11)

where q̂1,i and q2,j are vectors containing com-
parison scores of aligned phrases in generated
question and gold question respectively and N1

and N2 are the feed forward neural nets.

Matching Score: The vectors q̂1,i and q2,j are
aggregated over each word or phrase in the pre-
dicted question and gold question respectively be-
fore feeding them to a linear function (L):

DAS = L(

Lq∑
i=1

q̂1,i,

Lq̂∑
j=1

q2,j) (12)

This matching score between the predicted ques-
tion and the gold question is the reward returned
by the decomposable attention based evaluator.

2.2.2 QG quality specific reward functions
We introduce two new reward functions that
specifically designed to evaluate the conformity of
the generated question (QSS) and answer (ANSS)
against the ground truth.

Question sentence overlap score (QSS): This
reward function is specific to QG. We compute
the sentence overlap score as the number of com-
mon n-grams between predicted question and the
source sentence. This reward ensures that gen-
erated question is relevant to the given sentence.
Thus, if precisionn(s, q) computes the n−gram
precision match between sentence and question,

QSS = (
n∏
i=1

precisioni(sentence, question))
1
n

(13)
Predicted and encoded answer overlap score

(ANSS): In order to ensure that the generated
question is about the pivotal answer/ground truth
answer we calculate answer overlap score. An-
swer overlap score is the number of common n-
grams between the encoded answer and the answer
predicted (ansqa) for the generated question us-
ing the best performing question answering model
over SQuAD1

ANSS = (
n∏
i=1

precisioni(ansqa, pivotal answer))
1
n

(14)

3 Experimental Setup

In this section, we present our evaluation frame-
work on the publicly available SQuAD (Rajpurkar
et al., 2016) dataset. We first explain various
reward functions employed in our experiments.
We then describe our baseline and the evaluation
methods.

Reward Functions: We experimented with the
five reward functions discussed in Section 2.2: (1)
BLEU, (2) GLEU, (3) ROUGE-L, (4) DAS, and
(5) the QG-specific reward QSS+ANSS. In our

1https://github.com/huggingface/
pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT


818

experiments we considered BLEU for up to 4-
grams. For the GLEU score, we recorded all sub-
sequences of up to 4-grams.

Baselines and Evaluation Methods: We reim-
plemented two state-of-the-art question generation
models as baselines for comparison: L2A (Du
et al., 2017) and AutoQG (Kumar et al., 2018). A
direct (and fair) comparison with another recent
technique, NQGLC (Song et al., 2018), is not fea-
sible, as unlike us, NQGLC requires ground-truth
answers, whereas both AutoQG and our model
predict pivotal answers. L2A does not consider
answers. Moreover, their context (input is some-
times more than one sentence) is different also the
train/test split is different from ours. Hence, we
only report the original numbers reported in their
paper. We also did not perform human evaluation
on NQGLC as their source code has not been made
available for reimplementation.

We also use an existing implementation of a
recent RL-based abstractive summarization tech-
nique (Paulus et al., 2018) to train baseline mod-
els SUMBLEU (with BLEU as reward function)
and SUMROUGE (with ROUGE as reward func-
tion). This comparison studies the effectiveness
of state-of-the-art abstractive summarization tech-
niques applied to question generation as-is, as the
two are conceptually similar tasks.

We report automatic and human evaluation re-
sults on eight variants of our model, each of which
is equipped with the copy and coverage mecha-
nism, the pointer network, as well as one of the
four reward functions: BLEU, GLEU, ROUGE-
L, DAS or one of the four rewards in combination
with QG quality specific rewards (QSS+ANSS).
Hence, our models are named GEBLEU, etc.

For automatic evaluation, we employ BLEU,
ROUGE-L and METEOR, which are standard
evaluation measures used to evaluate sequence
prediction tasks. We use the evaluation scripts re-
leased by (Chen et al., 2015) that was originally
used to evaluate the image captioning task.

We also performed human evaluation to fur-
ther analyze the quality of questions generated
for their syntactic correctness, semantic correct-
ness and relevance. Syntactic correctness mea-
sures the grammatical correctness of a generated
question, semantic correctness measures meaning-
fulness and naturalness of the question, and rel-
evance measures how relevant the question is to
the text. We perform human evaluation for each

model on a randomly selected subset of 100 sen-
tences. Each of the three judges is presented the
100 sentence-question pairs for each model and
asked for a binary response on each quality param-
eter. The responses from all the judges for each
parameter is then averaged for each model.

3.1 Ablation Analysis

We conducted an ablation analysis to study the ef-
fect of removing the copy and coverage mecha-
nisms. Table 4 summarizes the drop in perfor-
mance for GEROUGE. Without the copy mecha-
nism, there is a drop overall in every evaluation
measure, with BLEU-4 registering the largest drop
of 13.8% as against 13.4%, 6.9% and 4.7% in
BLEU-3, BLEU-2 and BLEU-1 respectively. On
the other hand, without the coverage mechanism,
we see a consistent but sufficiently lower drop (1-
2%) in each evaluation measure for GEROUGE.

4 Results and Discussion

We show and compare results on automatic evalu-
ation in Table 3. Note the numbers in parentheses
for L2A (Du et al., 2017), AutoQG (Kumar et al.,
2018), and NQGLC (Song et al., 2018) are those
reported in their original papers. The slight dif-
ference of up to 1.7% in the original and repro-
duced numbers can be attributed to reimplemen-
tation and different versions of various libraries
used. As can be seen, all our eight models out-
perform L2A and AutoQG on all evaluation met-
rics. Two of our models, GEGLEU and GEROUGE,
also outperform NQGLC . Hence, using evaluation
metrics as the reward function during reinforce-
ment based learning improves performance for all
metrics. We also observe that GEROUGE+QSS+ANSS,
the model reinforced with ROUGE-L (that mea-
sures the longest common sequence between the
ground-truth question and the generated question)
as the reward function in combination with QG
quality specific rewards(QSS+ANSS), is the best
performing model on all metrics, outperforming
existing baselines considerably. For example, it
improves over AutoQG on BLEU-4 by 29.98%,
on METEOR by 13.15%, and on ROUGE-L by
8.67%.

In Table 5 we present human evaluation results
for the models evaluated on three quality parame-
ters (a) syntactic correctness, (b) semantic correct-
ness, and (c) relevance.

Consistent with automatic evaluation results



819

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
L2A (Du et al., 2017) 43.21 (43.09) 24.77 (25.96) 15.93 (17.50) 10.60 (12.28) 16.39 (16.62) 38.98 (39.75)
AutoQG (Kumar et al., 2018) 44.68 (46.32) 26.96 (28.81) 18.18 (19.67) 12.68 (13.85) 17.86 (18.51) 40.59 (41.75)
NQGLC (Song et al., 2018) - - - - (13.98) - (18.77) - (42.72)
SUMBLEU (Paulus et al., 2018) 11.20- 3.50- 1.21- 0.45- 6.68- 15.25-
SUMROUGE (Paulus et al., 2018) 11.94- 3.95- 1.65- 0.082- 6.61- 16.17-
GEBLEU 46.84 29.38 20.33 14.47 19.08 41.07
GEBLEU+QSS+ANSS 46.59 29.68 20.79 15.04 19.32 41.73
GEDAS 44.64 28.25 19.63 14.07 18.12 42.07
GEDAS+QSS+ANSS 46.07 29.78 21.43 16.22 19.44 42.84
GEGLEU 45.20 29.22 20.79 15.26 18.98 43.47
GEGLEU+QSS+ANSS 47.04 30.03 21.15 15.92 19.05 43.55
GEROUGE 47.01 30.67 21.95 16.17 19.85 43.90
GEROUGE+QSS+ANSS 48.13 31.15 22.01 16.48 20.21 44.11

Table 3: Experimental results on the test set on automatic evaluation metrics. Best results for each metric (column)
are bolded. The numbers in parentheses for L2A, AutoQG and NQGLC are those from the best models reported
in their respective original papers. The slight difference of up to 1.7% from our reproduced numbers can be
attributed to reimplementation and different versions of various libraries used. Models with new QG-specific
reward functions (QSS+ANSS) are highlighted in gray for easy comparison.

Model
(GEROUGE)

∆ BLEU-1
(47.01)

∆ BLEU-2
(30.67)

∆ BLEU-3
(21.95)

∆ BLEU-4
(16.17)

∆ METEOR
(19.85)

∆ ROUGE-L
(43.90)

W/o copy 2.09 (4.7%) 2.13 (6.9%) 2.94 (13.4%) 2.23 (13.8%) 2.21 (11.1%) 2.58 (5.9%)
W/o coverage 0.31 (0.7%) 0.57 (1.9%) 0.94 (4.2%) 0.28 (1.7%) 0.84 (4.2%) 1.01 (2.3%)

Table 4: Ablation analysis results after removing (a) copy mechanism and (b) coverage mechanism from the system
(GEROUGE). Both absolute performance drop and percentage of drop (in parentheses) are reported.

shown in Table 3, seven of our eight models out-
perform the two baselines, with GEDAS+QSS+ANSS
being the best model on syntactic correctness and
semantic correctness quality metrics, outperform-
ing all the other models by a large margin. How-
ever, model GEBLEU+QSS+ANSS generates highly
relevant questions and is the best model on rele-
vance metrics.

It is noteworthy that for each of our models
(e.g. GEBLEU), adding QG-specific rewards (e.g.
GEBLEU+QSS+ANSS) significantly improves ques-
tion quality in human evaluation, even though
there is less noticeable improvements in automatic
evaluation. This clearly demonstrates the effec-
tivess of our new QG-specific reward functions.

We measure inter-rater agreement using Ran-
dolph’s free-marginal multirater kappa (Randolph,
2005). This helps in analyzing level of consistency
among observational responses provided by mul-
tiple judges. It can be observed that our quality
metrics for all our models are rated as moderate
agreement (Viera et al., 2005).

4.1 Analyzing Choice of Reward Function

BLEU(Papineni et al., 2002) measures precision
and ROUGE(Lin, 2004) measures recall, we be-
lieve that cross-entropy loss was already account-

ing for precision to some extent and using it in
conjunction with ROUGE (which improves recall)
therefore gives best performance.

Model
Syntax Semantics Relevance

Score Kappa Score Kappa Score Kappa
L2A 39.2 0.49 39 0.49 29 0.40
AutoQG 51.5 0.49 48 0.78 48 0.50
GEBLEU 47.5 0.52 49 0.45 41.5 0.44
GEBLEU+QSS+ANSS 82 0.63 75.3 0.68 78.33 0.46
GEDAS 68 0.40 63 0.33 41 0.40
GEDAS+QSS+ANSS 84 0.57 81.3 0.60 74 0.47
GEGLEU 60.5 0.50 62 0.52 44 0.41
GEGLEU+QSS+ANSS 78.3 0.68 74.6 0.71 72 0.40
GEROUGE 69.5 0.56 68 0.58 53 0.43
GEROUGE+QSS+ANSS 79.3 0.52 72 0.41 67 0.41

Table 5: Human evaluation results (column “Score”)
as well as inter-rater agreement (column “Kappa”) for
each model on the test set. The scores are between 0-
100, 0 being the worst and 100 being the best. Best
results for each metric (column) are bolded. The three
evaluation criteria are: (1) syntactically correct (Syn-
tax), (2) semantically correct (Semantics), and (3) rel-
evant to the text (Relevance). Models with new QG-
specific reward functions (QSS+ANSS) are highlighted
in gray for easy comparison.

DAS calculates semantic similarity between
generated question and the gound-truth question.
As discussed in section 2.2.1 DAS will give high
reward even though the generated question has
low BLEU score. Thus, the performance of the



820

model on automatic evaluation metrics does not
improve with DAS as the reward function, though
the quality of questions certainly improves. Fur-
ther, ROUGE in conjunction with the cross en-
tropy loss improves on recall as well as precision
whereas every other combination overly focuses
only on precision.

Error analysis of our best model reveals that
most errors can be attributed to intra-sentence de-
pendencies such as co-references, concept depen-
dencies etc. In a camera ready version of the pa-
per, we will share link to a detailed report con-
taining extensive experiments that include ablation
tests. Also link to the source code will be provided
then.

5 Related Work

Neural network-based methods represent the state-
of-the-art in automatic question generation (QG)
from text. Motivated by neural machine trans-
lation, Du et al (2017) proposed a sequence-to-
sequence (Seq2Seq) architecture for QG. In our
previous work, we (2018) proposed to augment
each word with linguistic features and encode the
most relevant pivotal answer to the text while gen-
erating questions. Similarly, Song et al (2018)
encode ground-truth answers (given in the train-
ing data), use the copy mechanism and addition-
ally employ context matching to capture interac-
tions between the answer and its context within
the passage. They encode ground truth answer for
generating questions which might not be available
for test set in contrast we train a Pointer Network
based model to predict the pivotal answer to gen-
erate question about. In our work (Kumar et al.,
2019a) we proposed a transformer based archi-
tecture to automatically generate complex multi-
hop questions from knowledge graphs. In (Kumar
et al., 2019b) we proposed a cross lingual train-
ing method for automatically generating questions
from text in low resource languages.

Very recently deep reinforcement learning has
been successfully applied to natural language
generation tasks such as abstractive summariza-
tion (Paulus et al., 2018; Celikyilmaz et al., 2018)
and dialogue generation (Li et al., 2016). In sum-
marization, one generates and paraphrases sen-
tences that capture salient points of the text. On
the other hand, generating questions additionally
involves determining question type such as what,
when, etc., being selective on which keywords to

copy from the input into the question, leaving re-
maining keywords for the answer. This also re-
quires the development of a specific probabilis-
tic generative model. (Yao et al., 2018) proposed
generative adversarial network (GAN) framework
with modified discriminator to predict question
type. Recently Fan et al (2018) proposed a bi-
discriminator framework for visual question gen-
eration. They formulate the task of visual ques-
tion generation as a language generation task with
some linguistic and content specific attributes.

6 Conclusion

We presented a novel, holistic treatment of ques-
tion generation (QG) using a generator-evaluator
framework. Our generator provisions for explic-
itly factoring in question syntax and semantics,
identifies pivotal answers, recognizes contextually
important words and avoids meaningless repeti-
tions. Our evaluator allows us to directly op-
timize for conformity towards the structure of
ground-truth question(s). We propose two novel
reward functions account for conformity with re-
spect to ground-truth questions and predicted an-
swers respectively. In conjunction, the evalua-
tor makes use of task-specific scores, including
BLEU, GLEU, ROUGE-L, and decomposable at-
tention (DAS) that are naturally suited to QG and
other seq2seq problems. Experimental results on
automatic evaluation and human evaluation on the
standard benchmark dataset show that our frame-
work, especially with the incorporation of the new
reward functions, considerably outperforms state-
of-the-art systems.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and
Yejin Choi. 2018. Deep communicating agents for
abstractive summarization. In NAACL 2016, pages
1662–1675. ACL.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft COCO cap-
tions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading



821

comprehension. In ACL, volume 1, pages 1342–
1352.

Zhihao Fan, Zhongyu Wei, Siyuan Wang, Yang Liu,
and Xuanjing Huang. 2018. A reinforcement learn-
ing framework for natural question generation us-
ing bi-discriminators. In 27th International Con-
ference on Computational Linguistics (COLING),
pages 1763–1774.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In ACL, volume 1,
pages 1631–1640.

Vishwajeet Kumar, Kireeti Boorla, Yogesh Meena,
Ganesh Ramakrishnan, and Yuan-Fang Li. 2018.
Automating reading comprehension by generating
question and answer pairs. In 22nd Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing (PAKDD).

Vishwajeet Kumar, Yuncheng Hua, Ganesh Ramakr-
ishnan, Guilin Qi, Lianli Gao, and Yuan-Fang Li.
2019a. Difficulty-controllable multi-hop question
generation from knowledge graphs. In ISWC.

Vishwajeet Kumar, N. Joshi, Arijit Mukherjee, Ganesh
Ramakrishnan, and Preethi Jyothi. 2019b. Cross-
lingual training for automatic question generation.
In ACL.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep re-
inforcement learning for dialogue generation. In
EMNLP 2016, pages 1192–1202. ACL.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. Text Summarization
Branches Out.

Prashanth Mannem, Rashmi Prasad, and Aravind Joshi.
2010. Question generation from paragraphs at
UPenn: QGSTEC system description. In Third
Workshop on Question Generation (QG 2000),
pages 84–91.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318. ACL.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In EMNLP
2016, pages 2249–2255.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In ICLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In EMNLP 2016,
pages 2383–2392. ACL.

Justus J Randolph. 2005. Free-marginal multirater
kappa (multirater k [free]): An alternative to fleiss’
fixed-marginal multirater kappa. Online submission.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 1073–1083.

Iulian Vlad Serban, Alberto Garcı́a-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating
factoid questions with recurrent neural networks:
The 30m factoid question-answer corpus. arXiv
preprint arXiv:1603.06807.

Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang,
and Daniel Gildea. 2018. Leveraging context infor-
mation for natural question generation. In NAACL
(Short Papers), volume 2, pages 569–574.

Richard S Sutton and Andrew G Barto. 1998. Introduc-
tion to reinforcement learning, volume 135. MIT
press Cambridge.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In ACL 2016, pages 76–85.
The Association for Computer Linguistics.

Anthony J Viera, Joanne M Garrett, et al. 2005. Under-
standing interobserver agreement: the kappa statis-
tic. Fam Med, 37(5):360–363.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Kaichun Yao, Libo Zhang, Tiejian Luo, Lili Tao, and
Yanjun Wu. 2018. Teaching machines to ask ques-
tions. In IJCAI, pages 4546–4552.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3901–3910.


