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Abstract

The OPT submission to the Shared Task
of the 2016 Conference on Natural Lan-
guage Learning (CoNLL) implements a
‘classic’ pipeline architecture, combining
binary classification of (candidate) explicit
connectives, heuristic rules for non-explicit
discourse relations, ranking and ‘editing’
of syntactic constituents for argument iden-
tification, and an ensemble of classifiers to
assign discourse senses. With an end-to-
end performance of 27.77 F1 on the En-
glish ‘blind’ test data, our system advances
the previous state of the art (Wang & Lan,
2015) by close to four F1 points, with par-
ticularly good results for the argument iden-
tification sub-tasks.

1 Introduction

Being able to recognize aspects of discourse struc-
ture has recently been shown to be relevant for
tasks as diverse as machine translation, question-
answering, text summarization, and sentiment anal-
ysis. For many of these applications, a ‘shallow’
approach as embodied in the PDTB can be effective.
It is shallow in the sense of making only very few
commitments to an overall account of discourse
structure and of having annotation decisions con-
centrate on the individual instances of discourse
relations, rather than on their interactions.

Previous work on this task has usually broken it
down into a set of sub-problems, which are solved
in a pipeline architecture (roughly: identify connec-
tives, then arguments, then discourse senses; Lin
et al., 2014). While adopting a similar pipeline
approach, the OPT discourse parser also builds on
and extends a method that has previously achieved
state-of-the-art results for the detection of spec-
ulation and negation (Velldal et al., 2012; Read

et al., 2012). It is interesting to observe that an
abstractly similar pipeline—disambiguating trig-
ger expressions and then resolving their in-text
‘scope’—yields strong performance across linguis-
tically diverse tasks. At the same time, the origi-
nal system has been substantially augmented for
discourse parsing as outlined below. There is no
closely corresponding sub-problem to assigning
discourse senses in the analysis of negation and
speculation; thus, our sense classifier described has
been developed specifically for OPT.

2 System Architecture

Our system overview is shown in Figure 1. The
individual modules interface through JSON files
which resemble the desired output files of the Task.
Each module adds the information specified for
it. We will describe them here in thematic blocks,
while the exact order of the modules can be seen
in the figure. Relation identification (§3) includes
the detection of explicit discourse connectives and
the stipulation of non-explicit relations. Our argu-
ment identification module (§4) contains separate
subclassifiers for a range of argument types and
is invoked separately for explicit and non-explicit
relations. Likewise, the sense classification mod-
ule (§5) employs separate ensemble classifiers for
explicit and non-explicit relations.

3 Relation Identification

Explicit Connectives Our classifier for detect-
ing explicit discourse connectives extends the work
by Velldal et al. (2012) for identifying expressions
of speculation and negation. The approach treats
the set of connectives observed in the training data
as a closed class, and ‘only’ attempts to disam-
biguate occurrences of these token sequences in
new data. Connectives can be single- or multi-
token sequences (e.g. ‘as’ vs. ‘as long as’). In cases
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Figure 1: OPT system overview: Dotted boxes indicate sections that describe particular components.

of overlapping connective candidates, OPT deter-
ministically chooses the longest sequence. The
Shared Task defines a notion of heads in complex
connectives, for example just the final token in
‘shortly after’. As evaluation is in terms of match-
ing connective heads only, these are the unit of dis-
ambiguation in OPT. Disambiguation is performed
as point-wise (‘per-connective’) classification us-
ing the support vector machine implementation of
the SVMlight toolkit (Joachims, 1999). Tuning of
feature configurations and the error-to-margin cost
parameter (C) was performed by ten-fold cross
validation on the Task training set.

The connective classifier builds on two groups of
feature templates: (a) the generic, surface-oriented
ones defined by Velldal et al. (2012) and (b) the
more targeted, discourse-specific features of Pitler
& Nenkova (2009), Lin et al. (2014), and Wang &
Lan (2015). Of these, group (a) comprises n-grams
of downcased surface forms and parts of speech
for up to five token positions preceding and follow-
ing the connective; and group (b) draws heavily on
syntactic configurations extracted from the phrase
structure parses provided with the Task data. Dur-
ing system development, a few thousand distinct
combinations of features were evaluated, including
variable levels of feature conjunction (called inter-
action features by Pitler & Nenkova, 2009) within
each group. These experiments suggest that there
is substantial overlap between the utility of the vari-
ous feature templates, and n-gram window size can
to a certain degree be traded off with richer syn-
tactic features. Many distinct configurations yield
near-identical performance in cross-validation on
the training data, and we selected our final model
by (a) giving preference to configurations with
smaller numbers of features and lower variance
across folds and (b) additionally evaluating a dozen

candidate configurations against the development
data. The model used in the system submission
includes n-grams of up to three preceding and fol-
lowing positions, full feature conjunction for the
‘self’ and ‘parent’ categories of Pitler & Nenkova
(2009), but limited conjunctions involving their
‘left’ and ‘right’ sibling categories, and none of the
‘connected context’ features suggested by Wang
& Lan (2015). This model has some 1.2 million
feature types.

Non-Explicit Relations According to the PDTB
guidelines, non-explicit relations must be stipulated
between each pair of sentences iff four conditions
hold: two sentences (a) are adjacent; (b) are lo-
cated in the same paragraph; and (c) are not yet
‘connected’ by an explicit connective; and (d) a co-
herence relation can be inferred or an entity-based
relation holds between them. We proceed straight-
forwardly: We traverse the sentence bigrams, fol-
lowing condition (a). Paragraph boundaries are
detected based on character offsets in the input
text (b). We compute a list of already ‘connected’
first sentences in sentence bigrams, extracting all
the previously detected explicit connectives whose
Arg1 is located in the ‘previous sentence’ (PS;
see §4). If the first sentence in a candidate bi-
gram is not yet ‘connected’ (c), we posit a non-
explicit relation for the bigram. Condition (d) is ig-
nored, since NoRel annotations are extremely rare
and EntRel vs. Implicit relations are disam-
biguated in the downstream sense module (§5). We
currently do not attempt to recover the AltLex
instances, because they are relatively infrequent
and there is a high chance for false positives.

4 Argument Identification

Our approach to argument identification is rooted
in previous work on resolving the scope of spec-
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Explicit Non-Explicit

Arg1 Arg2 Arg1 Arg2

Ambiguity 3.4 4.6 3.1 3.2

Sentence spanning .033 .070 .021 .015
Non-SS/PS Arg1 .116 .047

Align. w/o edits .483 .535 .870 .900
Align. with edits .813 .840 .882 .900

Upper-bound .692 .781 .822 .887

Table 1: Observations of arguments in the training
data. Alignment rates are with respect to all argu-
ments that do not span sentence boundaries and are
located in SS or PS, while the upper-bound is with
respect to all arguments.

ulation and negation, in particular work by Read
et al. (2012): We generate candidate arguments by
selecting constituents from a sentence parse tree,
apply an automatically-learned ranking function
to discriminate between candidates, and use the
predicted constituent’s surface projection to deter-
mine the extent of an argument. Like for explicit
connective identification, all classifiers trained for
argument identification use the SVMlight toolkit
and are tuned by ten-fold cross-validation against
the training set.

Predicting Arg1 Location For non-explicit re-
lations we make the simplifying assumption that
Arg1 occurs in the sentence immediately preced-
ing that of Arg2 (PS). However, the Arg1s of
explicit relations frequently occur in the same sen-
tence (SS), so, following Wang & Lan (2015), we
attempt to learn a classification function to pre-
dict whether these are in SS or PS. Considering
all features proposed by Wang & Lan, but under
cross-validation on the training set, we found that
the significantly informative features were limited
to: the connective form, the syntactic path from
connective to root, the connective position in sen-
tence (tertiles), and a bigram of the connective and
following token part-of-speech.

Candidate Generation and Ranking Candi-
dates are limited to clausal constituents as these
account for the majority of arguments, offering
substantial coverage while restricting the ambigu-
ity (i.e., the mean number of candidates per argu-
ment; see Table 1). Candidates whose projection
corresponds to the true extent of the argument are
labeled as correct; others are labeled as incorrect.

Exp. PS Exp. SS Non-Exp.

Arg1 Arg2 Arg1 Arg2 Arg1 Arg2

Connective Form •
Connective Category •
Connective Precedes •
Following Token •
Initial Token •
Path to Root • • • •
Path to Connective • • •
Path to Initial Token • •
Preceding Token • • • •
Production Rules • • • •
Size •

Table 2: Feature types used to describe candidate
constituents for argument ranking.

We experimented with various feature types
to describe candidates, using the implementation
of ordinal ranking in SVMlight (Joachims, 2002).
These types comprise both the candidate’s sur-
face projection (including: bigrams of tokens in
candidate, connective, connective category (Knott,
1996), connective part-of-speech, connective pre-
cedes the candidate, connective position in sen-
tence, initial token of candidate, final token of can-
didate, size of candidate projection relative to the
sentence, token immediately following the candi-
date, token immediately preceding the candidate,
tokens in candidate, and verbs in candidate) and
the candidate’s position in the sentence’s parse tree
(including: path to connective, path to connective
via root, path to initial token, path to root, path
between initial and preceding tokens, path between
final and following tokens, and production rules of
the candidate subtree).

An exhaustive search of all permutations of the
above feature types requires significant resources.
Instead we iteratively build a pool of feature types,
at each stage assessing the contribution of each fea-
ture type when added to the pool, and only add a
feature type if its contribution is statistically signif-
icant (using a Wilcoxon signed-rank test, p < .05).
The most informative feature types thus selected
are syntactic in nature, with a small but significant
contribution from surface features. Table 2 lists the
specific feature types found to be optimal for each
particular type of argument.

Constituent Editing Our approach to argument
identification is based on the assumption that ar-
guments correspond to syntactically meaningful
units, more specifically we require arguments to be
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clausal constituents (S/SBAR/SQ). In order to test
this assumption, we quantify the alignment of argu-
ments with constituents in en.train, see Table 1.
We find that the initial alignment (Align w/o edits)
is rather low, in particular for Explicit arguments
(.48 for Arg1 and .54 for Arg2). We therefore
formulate a set of constituent editing heuristics, de-
signed to improve on this alignment by including or
removing certain elements from the candidate con-
stituent. We apply the following heuristics, with
conditions by argument type (Arg1 vs. Arg2),
connective type (explicit vs. non-explicit) and posi-
tion (SS vs. PS) in parentheses.

- add conjunction (CC) preceding constituent
(Arg1)

- cut clause headed by connective (Arg1, ex-
plicit, SS)

- cut constituent-final CC (Arg1)

- cut constituent-final wh-determiner (Arg1)

- cut constituent-initial CC (Arg2, explicit)

- cut relative clause, i.e. SBAR initiated by
WHNP/WHADVP

- cut connective

- cut initial and final punctuation

Following editing, the alignment of arguments with
the edited constituents improves considerably for
explicit Arg1s (.81) and Arg2s (.84), see Table 1.

Limitations The assumptions of our approach
mean that the system upper-bound is limited in
three respects. Firstly, some arguments span sen-
tence boundaries (see Sent. Span in Table 1) mean-
ing there can be no single aligned constituent. Sec-
ondly, not all arguments correspond with clausal
constituents (approximately 1.7% of arguments
in en.train align with a constituent of some
other type). Finally, as reported in Table 1, sev-
eral Arg1s occur in neither the same sentence nor
the immediately preceding sentence. Table 1 pro-
vides system upper-bounds taking each of these
limitations into account.

5 Relation Sense Classification

In order to assign senses to the predicted relations,
we apply an ensemble-classification approach. In
particular, we use two separate groups of classifiers:
one group for predicting the senses of explicit re-
lations and another one for analyzing the senses

of non-explicit relations. Each of these groups
comprises the same types of predictors (presented
below) but uses different feature sets.

Majority Class Senser The first classifier in-
cluded in both of our ensembles is a simplistic
system which, given an input connective (none
for non-explicit relations), returns a vector of con-
ditional probabilities of its senses computed on the
training data.

W&LLSVC Another prediction module is a reim-
plementation of the Wang & Lan (2015) system—
the winner of the previous iteration of the ConNLL
Shared Task on shallow discourse parsing. In con-
trast to the original version, however, which relies
on the Maximum Entropy classifier for predict-
ing the senses of explicit relations and utilizes the
Naïve Bayes approach for classifying the senses of
the non-explicit ones, both of our components (ex-
plicit and non-explicit) use the LIBLINEAR sys-
tem (Fan et al., 2008)—a speed-optimized SVM
(Boser et al., 1992) with linear kernel. In our de-
rived classifier, we adopt all features1 of the origi-
nal implementation up to the Brown clusters, where
instead of taking the differences and intersections
of the clusters from both arguments, we use the
Cartesian product (CP) of the Brown groups simi-
larly to the token-CP features of the UniTN system
from last year (Stepanov et al., 2015). Additionally,
in order to reduce the number of possible CP at-
tributes, we take the set of 1,000 clusters provided
by the organizers of the Task instead of differen-
tiating between 3,200 Brown groups as was done
originally by Wang & Lan (2015).

Unlike the upstream modules in our pipeline,
whose model parameters are tuned by 10-fold cross-
validation on the training set, the hyper-parameters
of the sense classifiers are tweaked towards the de-
velopment set, while using the entire training data
for computing the feature weights. This decision
is motivated by the wish to harness the full range
of the training set, since the number of the target
classes to predict is much bigger than in the pre-
ceding sub-tasks and because some of the senses,
e.g. Expansion.Exception, only appear a dozen of
times in the provided dataset. For training the final
system, we use the Crammer-Singer multi-class
strategy (Crammer & Singer, 2001) with L2-loss,

1A detailed description of these features can be found
in the original paper by Wang & Lan (2015) and their code
posted on github: https://github.com/lanmanok/
conll2015_discourse.
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WSJ Test Set Blind Test Set

2015 2016 OPT 2015 2016 OPT
F1 F1 P R F1 F1 F1 P R F1

Explicit Connectives 94.8 98.9 96.4 92.5 94.4 91.9 98.4 93.5 90.1 91.8
Explicit Arg1 Extraction 50.7 53.8 53.1 50.9 52.0 49.7 52.4 53.4 51.5 52.4
Explicit Arg2 Extraction 77.4 76.7 74.1 71.1 72.6 74.3 75.2 76.6 73.8 75.2
Explicit Both Extraction 45.2 45.3 44.9 43.0 43.9 41.4 44.0 44.9 43.2 44.0
Explicit Sense Micro-Average 38.6 40.2 39.4 33.9 35.1 34.5
Non-Explicit Arg1 Extraction 67.2 69.9 72.0 68.0 69.9 60.9 66.8 63.7 65.5 64.6
Non-Explicit Arg2 Extraction 68.4 71.5 73.5 69.5 71.5 74.6 79.1 75.3 77.5 76.4
Non-Explicit Both Extraction 53.1 53.5 55.0 52.0 53.5 50.4 58.1 51.3 52.8 52.0
Non-Explicit Sense Micro-Average 17.5 18.6 18.0 22.0 21.6 21.9
All Both Extraction 49.4 49.6 50.2 47.8 48.9 46.4 50.6 48.3 48.1 48.2
Overall Parser Performance 29.7 30.7 27.5 28.9 28.2 24.0 27.8 27.8 27.8 27.8

Table 3: Per-component breakdown of system performance, compared to top performers in 2015/16.

optimizing the primal objective and setting the er-
ror penalty term C to 0.3.

W&LXGBoost Even though linear SVM systems
achieve competitive results on many important clas-
sification tasks, these systems can still experience
difficulties with discerning instances that are not
separable by a hyperplane. In order to circumvent
this problem, we use a third type of classifier in
our ensembles—a forest of decision trees learned
by gradient boosting (XGBoost; Friedman, 2000).
For this part, we take the same set of features as
in the previous component and optimize the hyper-
parameters of this module on the development set
as described previously. In particular, we set the
maximum tree depth to 3 and take 300 tree estima-
tors for the complete forest.

Prediction Merging To compute the final pre-
dictions, we first obtain vectors of the estimated
sense probabilities for each input instance from the
three classifiers in the respective ensemble and then
sum up these vectors, choosing the sense with the
highest final score. More formally, we compute
the prediction label ŷi for the input instance xi as
ŷi = arg max

∑n
j=1 ~vj , where n is the number of

classifiers in the ensemble (in our case three), and
~vj denotes the output probability vector of the j-
th predictor. Since the XGBoost implementation
we use, however, can only return classifications
without actual probability estimates, we obtain a
probability vector for this component by assigning
the score 1−ε to the predicted sense class (with the
ε-term determined on the development and set to
0.1) and uniformly distributing the ε-weight among
the remaining senses.

6 Experimental Results

Overall Results Table 3 summarizes OPT sys-
tem performance in terms of the metrics computed
by the official scorer for the Shared Task, against
both the WSJ and ‘blind’ test sets. To compare
against the previous state of the art, we include
results for the top-performing systems from the
2015 and 2016 competitions (as reported by Xue
et al., 2015, and Xue et al., 2016, respectively).
Where applicable, best results (when comparing
F1) are highlighted for each sub-task and -metric.
The highlighting makes it evident that the OPT sys-
tem is competitive to the state of the art across the
board, but particularly so on the argument identi-
fication sub-task and on the ‘blind’ test data: In
terms of the WSJ test data, OPT would have ranked
second in the 2015 competition, but on the ‘blind’
data it outperforms the previous state of the art on
all but one metric for which contrastive results are
provided by Xue et al.. Where earlier systems tend
to drop by several F1 points when evaluated on the
non-WSJ data, this ‘out-of-domain’ effect is much
smaller for OPT. For comparison, we also include
the top scores for each submodule achieved by any
system in the 2016 Shared Task.

Non-Explicit Relations In isolation, the stipula-
tion of non-explicit relations achieves an F1 of 93.2
on the WSJ test set (P = 89.9, R = 96.8). Since
this sub-module does not specify full argument
spans, we match gold and predicted relations based
on the sentence identifiers of the arguments only.
False positives include NoRel and missing rela-
tions. About half of the false negatives are relations
within the same sentence (across a semicolon).
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WSJ Test Set Blind Set

Arg1 Arg2 Both Arg1 Arg2 Both

Explicit (SS) .683 .817 .590 .647 .783 .519
Explicit (PS) .623 .663 .462 .611 .832 .505
Explicit (All) .572 .753 .474 .586 .782 .473

Non-explicit (All) .744 .743 .593 .640 .758 .539

Overall .668 .749 .536 .617 .769 .509

Table 4: Isolated argument extraction results (PS
refers to the immediately preceding sentence only).

Arguments Table 4 reports the isolated perfor-
mance for argument identification. Most results
are consistent across types of arguments, the two
data sets, and the upper-bound estimates in Table 1,
with Arg1 harder to identify than Arg2. However
an anomaly is the extraction of Arg2 in explicit
relations where the Arg1 is in the immediately
preceding sentence, which is poor in the WSJ Test
Set but better in the blind set. This may be due to
variance in the number of PS Arg1s in the respec-
tive sets, but will be investigated further in future
work on error analysis.

Sense Classification The results of the sense
classification subtask without error propagation are
shown in Table 5. As can be seen from the table,
the LIBLINEAR reimplementation of the Wang &
Lan system was the strongest component in our en-
semble, outperforming the best results on the WSJ
test set from the previous year by 0.89 F1. The
XGBoost variant of that module typically achieved
the second best scores, being slightly better at pre-
dicting the sense of non-explicit relations on the
blind test set. The majority class predictor is the
least competitive part, which, however, is made up
for by the simplicity of the model and its relative
robustness to unseen data.

Finally, we report on a system variant that was
not part of the official OPT submission, shown in
the bottom rows of Table 5.

In this configuration, we added more features
(types of modal verbs in the arguments, occurrence
of negation, as well as the form and part-of-speech
tag of the word immediately following the con-
nective) to the W&L-based classifier of explicit
relations, re-adjusting the hyper-parameters of this
model afterwards; increased the ε-term of the XG-
Boost component from 0.1 to 0.5; and, finally, re-
placed the majority class predictor with a neural
LSTM model (Hochreiter & Schmidhuber, 1997),

System
WSJ Test Set Blind Set

Exp Non-
Exp

All Exp Non-
Exp

All

2015 90.79 34.45 61.27 76.44 36.29 54.76
Majority 89.30 21.40 54.02 75.91 30.46 51.39
W&LLSVC 89.63 37.18 62.29 77.86 33.05 53.66
W&LXGB 89.41 34.12 60.64 76.27 34.42 53.62
OPT 89.95 33.53 60.64 76.81 33.66 53.54

LSTM∗ 89.90 33.76 60.78 77.63 33.69 53.29
OPT∗ 90.01 41.12 64.70 77.06 37.20 55.55

Table 5: Isolated results for sense classification (the
bottom∗ model was not part of the submission).

using the provided Word2Vec embeddings as in-
put. This ongoing work shows clear promise for
substantive improvements in sense classification.

7 Conclusion & Outlook

The most innovative aspect of this work, arguably,
is our adaptation of constituent ranking and edit-
ing from negation and speculation analysis to the
sub-task of argument identification in discourse
parsing. Premium performance (relatively speak-
ing, comparing to the previous state of the art) on
this sub-problem is in no small part the reason for
overall competitive performance of the OPT sys-
tem, despite its relatively simplistic architecture.
The constituent ranker (and to some degree also the
‘targeted’ features in connective disambiguation)
embodies a strong commitment to syntactic anal-
ysis as a prerequisite to discourse parsing. This is
an interesting observation, in that it (a) confirms
tight interdependencies between intra- and inter-
utterance analysis and (b) offers hope that higher-
quality syntactic analysis should translate into im-
proved discourse parsing. We plan to investigate
these connections through in-depth error analysis
and follow-up experimentation with additional syn-
tactic parsers and types of representations. Another
noteworthy property of our OPT system submission
appears to be its relative resilience to minor differ-
ences in text type between the WSJ and ‘blind’ test
data. We attribute this behavior at least in part
to methodological choices made in parameter tun-
ing, in particular cross-validation over the training
data—yielding more reliable estimates of system
performance than tuning against the much smaller
development set—and selective, step-wise inclu-
sion of features in model development.
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