
Computing with Features as Formulae

Mark Johnson*
Brown University

This paper extends the approach to feature structures developed in Johnson (1991a), which uses
SchO'nfinkel-Bernays' formulae to express feature structure constraints. These are shown to be a
disjunctive generalization of Datalog clauses, as used in database theory. This paper provides a
fixed-point characterization of the minimal models of these formulae that serves as the theoretical
foundation of a forward-chaining algorithm for determining their satisfiability. This algorithm,
which generalizes the standard attribute-value unification algorithm, is also recognizable as a
nondeterministic variant of the semi-naive bottom-up algorithm for evaluating Datalog programs,
further strengthening the connection between the theory of feature structures and databases.

1. Introduction

Despite their simplicity, a surprisingly wide range of linguistic phenomena can be de-
scribed in terms of simple equality constraints on values in attribute-value structures,
which are a particularly simple kind of feature structure (see Shieber 1986; Johnson
1988; Uszkoreit 1986; and Bresnan 1982 for examples of some of these analyses). But
some phenomena do not seem to be able to be described in such a pure 'unification'
framework. For example, the analysis of conjunctions in LFG (Kaplan and Maxwell
1988b) and the formalizations of Discourse Representation Theory (Kamp 1981) pre-
sented in Johnson and Klein (1986) and Johnson and Kay (1990) require additional
mechanisms for representing and manipulating aggregates or sets of values in ways
that are beyond the capability of such "pure" attribute-value systems. Further, sortal
constraints (which also cannot be expressed as simple equality constraints) can be used
to formulate simpler and more comprehensible grammars (Carpenter 1992; Carpenter
and Pollard 1991; Pollard and Sag 1987, 1992).

Versions of both of these kinds of constraint, as well as the familiar attribute-value
constraints, can be expressed as Scho'nfinkel-Bernays'formulae (as demonstrated in John-
son 1991a, 1991b), so that the problem of determining the satisfiability of a system of
such constraints is reduced to the satisfiability problem for the corresponding formula.
This class of formulae (defined in Section 3.1) seems to be expressive enough for most
linguistic purposes when used with an external phrase-structure backbone. That is,
these formulae are used as annotations on phrase structure rules in the manner de-
scribed in, e.g., Kaplan and Bresnan (1982), Shieber (1986), and Johnson (1988). This
paper extends the author's previous paper on the topic (Johnson 1991a) by sketch-
ing several other linguistic applications of Sch6nfinkel-Bernays' formulae (including a
version of D-theory [Marcus, Hindle, and Fleck 1983; Vijay-Shanker 1992]), and pre-
senting a least-fixed-point theorem that serves as the theoretical basis for a "forward-
chaining" algorithm for determining satisfiability of Sch6nfinkel-Bernays' formulae.
Interestingly, this algorithm can be viewed both as a straightforward generalization

* Cognitive and Linguistic Sciences, Box 1978, Brown University, Providence, RI. E-mail:
Mark_Johnson@brown.edu

Q 1994 Association for Computational Linguistics

Computational Linguistics Volume 20, Number 1

of the standard attribute-value unification algorithm and also as a nondeterministic
variant of the semi-naive evaluation method for Datalog clauses.

Several extended "unification-based" constraint formalisms have been developed.
In this paper, the term "feature structure" denotes any kind of structured entity used as
a component of a category label. An attribute-value structure is a particularly simple
kind of feature structure of the kind used in "pure" unification-based frameworks
(Shieber 1986). Some extensions to the basic attribute-value framework are rather weak,
e.g., allowing disjunctive and negative constraints and preserving decidability. 1 Such
systems require an "off-line" phrase structure backbone to which these constraints are
attached. It seems that most of the constraints that can be expressed in these formalisms
can be expressed as Sch6nfinkel-Bernays' formulae, the constraint formalism described
below.

A second class of extended constraint formalisms has been devised to be capable
of expressing the entire grammar as systems of constraints and as far as I know, for all
of these systems the problem of determining the satisfiabihty of an arbitrary system
of constraints that they can express is undecidable. 2 This is because the recognition
problem for an arbitrary "unification-based" grammar is undecidable unless the size
of the phrase structure tree is constrained somehow, e.g., by the offiine parsability
constraint (Johnson 1988; Kaplan and Bresnan 1982; Pereira 1982; Shieber 1992), but
there seems to be no natural way to impose such constraints in these systems because
the encoding of the phrase structure tree in the feature structure is not distinguished
from other features. 3 Thus in order to maintain decidability the system described
here is not designed to be capable of expressing phrase structure constraints directly,
and must be used with an external phrase-structure component, as in LFG (Bresnan
1982). (However, Bob Carpenter [p.c.] points out that one can impose a bound on the
size of the feature structure that can serve as an analysis [say, some polynomial of
the length of the input], and so ensure decidability.) Interestingly, a first-order logic-
based approach similar to the one presented in this paper can also be developed for
extended constraint formalisms capable of expressing the entire grammar, but this is
not discussed further here; see Johnson (in press b) for details.

In the approach developed here Sch6nfinkel-Bernays' formulae are used to express
a variety of feature structure constraints. Previous work has shown that these formulae
are expressive enough to define arbitrary disjunctions and negations of constraints
(Johnson 1990a, 1990b), a kind of 'set-valued' entity (Johnson 1991a), and they can be
used to impose useful sort constraints (Johnson 1991b). The expression of D-theory
constraints on nodes in trees is discussed in this paper.

This paper extends the ideas in these earlier papers with theoretical results that
suggest a forward-chaining algorithm for determining the satisfiability of an arbi-
trary Sch6nfinkel-Bernays' formula. This generalizes the standard feature-graph uni-
fication algorithm and is closely related to the semi-naive bottom-up algorithm used
in database theory.

1 For examples of this approach see Dawar and Vijay-Shanker (1990), D6rre and Eisele (1990), Johnson
(1988, 1990a, 1990b, 1991a, 1991b, in press a), Karttunen (1984), Kasper (1987a, 1987b, 1988), Kasper and
Rounds (1986, 1990), Langholm (1989), Pereira (1987), and Smolka (1992).

2 Examples of this approach are Carpenter, Pollard, and Franz (1991), D6rre (1991), D6rre and Eisele
(1991), Johnson (in press b), Kay (1979, 1985a, 1985b), Pollard and Sag (1987), Rounds and
Manaster-Ramer (1987), Smolka (1988), and Zajac (1992).

3 While it may well be that the universal recognition and parsing problems for natural language are
undecidable (Chomsky [1986, 1988] points out that there is no contrary evidence), I know of no
evidence that this is actually the case. It seems reasonable then to also investigate formalisms that can
only express decidable systems of constraints (and for which there exist satisfiability-testing algorithms)
if linguistically adequate systems can be found.

2

Mark Johnson Computing with Features as Formulae

Specifically, it is shown that the satisfying Herbrand models of an arbitrary Sch6n-
finkel-Bernays' formula are the fix points of certain functions, and that the least fixed
points of these functions are all of the models of the formula that are "minimal" in
a certain sense. This leads to a forward-chaining algori thm for comput ing all of the
atomic consequences of a Sch6nfinkel-Bernays' formula; the fixed-point theorem shows
that this suffices to determine the satisfiability of an arbitrary Sch6nfinkel-Bernays'
formula.

2. Constraints, Partial Information, and Feature Structures

This approach exploits the fact that constraints on well-formed linguistic structures
(e.g., well-formedness constraints imposed by the grammar) do not need to be isomor-
phic to the structures that satisfy them. Although the distinction between constraints
and structures that satisfy them might seem too obvious to warrant comment , it is not
made in most work on feature structures.

A common view holds that feature structures are inherently "partially specified"
entities, which "unify" or merge with other feature structures to yield more instan-
tiated feature structures in an "information-preserving" way (Shieber 1986). If two
feature structures contain "contradictory information," then it is impossible to merge
them to produce a consistent object; unification is then said to fail. The feature struc-
ture for an utterance is the result (if one exists) of unifying all of the feature structures
for the lexical entries and syntactic rules in appropriate ways. Thus in this view fea-
ture structures play two roles; not only do they serve as linguistic structures, but they
are also used to encode constraints that the linguistic structures must satisfy (see Sec-
tion 2.10 of Johnson (1988) for an extended discussion).

That is, under this view feature structures serve not only as linguistic structures
that may or may not satisfy a constraint, but are also interpreted as ' representing' or
'describing' all of the feature structures that they subsume. Given this dual role for
feature structures, it is impor tant in this approach that if a feature structure S satis-
fies a constraint o~, then every feature structure subsumed by S should also satisfy o~
(Pereira 1987). If this "upward closure" proper ty holds, then the set of feature struc-
tures satisfying any constraint can be represented by the set of its "minimal models."
Unfortunately, ma ny useful constraints do not have this property. For example, un-
der a classical interpretation, the set of feature structures satisfying negated feature
structure constraints are not upward-closed (Moshier and Rounds 1987).

The work described in this paper pursues a different approach. Following Kaplan
and Bresnan (1982), feature structures are only (components of) linguistic structures,
and not partial descriptions of (other) linguistic structures. As such, a feature struc-
ture either does or does not satisfy any particular set of constraints. An utterance is
well-formed just in case there is some linguistic structure that satisfies all of the con-
straints imposed by the grammar and has the phonological form of that ut terance as
its phonological form (which itself is just another constraint that the structure must
satisfy). Since the relationship between a feature structure and a constraint that it satis-
fies is essentially the same as the relationship between an interpretation and a formula
that is true under that interpretation, it seems natural to conceive of a constraint as
a kind of formula (in a format that allows efficient computat ional manipulat ion) that
has feature structures as its intended interpretations.

This approach is more general in that it does not rely on the upward-closure
property, and it allows constraints on feature structures to have a structure quite
different f rom the feature structures that they constrain. The subsumpt ion relation on

Computational Linguistics Volume 20, Number 1

feature structures plays no special role in this approach; specifically, it is not required
that the set of structures that satisfy a constraint be upward-closed.

In general, a linguistic structure S must satisfy several constraints, say oaT... ~ o~,~,
in order to be well formed, so in order to solve the recognition and parsing problems,
all we need do is determine if there are any S that satisfy oq~... ~ O~n, and if so, describe
them somehow.

It is convenient to devise a language for expressing constraints, so that the o~i
are well-formed formulae of this language, and its satisfaction relation is exactly the
satisfaction relation ment ioned above. Viewed from this perspective, the problem of
determining if there is a structure S that satisfies the constraints o~1~ . . . ~ O~n is the same
as the problem of determining if the formula c~ is satisfiable, where o~ is Oq A " ' " /X O~ n

and conjunction is given the s tandard interpretation. Algori thms for deciding the sat-
isfiability of arbitrary formulae in this language (if they exist) can therefore be used to
determine the satisfiability of the linguistic constraints. Moreover, if o~ ~ c~ ~ then o / i s
a true description of every model of c~, i.e., the logical consequences of o~ are descrip-
tions of every well-formed linguistic structure that satisfies the constraints. Thus the
logic of the constraint language provides in principle all the necessary tools for deter-
mining if a set of constraints are satisfiable, and if they are, providing descriptions of
the satisfying structures.

From this perspective, an "information state" is a kind of formula, and "unify-
ing" two such information states is accomplished by conjoining them and simplifying
the resulting formula, not by some manipulat ion of their models. Partial information
states are those that are satisfied by more than one interpretation. The consequence
relation corresponds to the subsumpt ion relation of traditional unification g rammar (a
formula o~ "contains more information" than formula o / i f f o~ ~ a') , and unsatisfiability
corresponds to unification failure.

3. Languages for Expressing Feature Structure Constraints

There are ma ny different possible constraint languages. Specialized languages can be
constructed specifically for the task of expressing feature structure constraints (such
as Kasper and Rounds 's FDL [Kasper and Rounds 1990] and Johnson's attr ibute-value
languages [Johnson 1988]). Alternatively, the constraints may be able to be expressed
in some standard language, so that the satisfiability problem for linguistic constraints
is reduced to the satisfiability problem for that language, as is done here. 4

Johnson (1990a), following a suggestion first made in Kaplan and Bresnan (1982),
showed how attribute-value constraints could be formalized in the quantifier-free sub-
set of first-order logic, while later work (Johnson 1991a, 1991b) proposed a different
formalization in the Sch6nfinkel-Bernays' subset of first-order formulae. 5

Roughly speaking, there is a trade-off be tween the expressive power of a language
and its computat ional tractability. For example, the satisfiability problem for the lan-
guage consisting of conjunctions of equalities and inequalities of first-order terms can

4 A third approach, developed by Smolka (1992), is to define a specialized language tailored for
expressing attribute-value constraints and note its translation into some standard language, in this case,
also the Sch6nfinkel-Bernays' class.

5 Of course, there is no a priori reason for these subsets of first-order logic to be optimally suited for
expressing feature structure constraints. Kasper and Rounds (1990) and more recently Blackburn (1991)
and Blackburn and Spaan (1992) have suggested that it may be useful to express feature structure
constraints in a special kind of modal logic. Johnson (1991b) also discusses the application of general
first-order logic and nonmonotic logics to the specification of more complex constraints on feature
structures.

4

Mark Johnson Computing with Features as Formulae

be decided in quasi-linear time using the congruence-closure algorithm, but this lan-
guage can only express conjunctions of feature-value equalities and inequalities. If
this language is extended to allow disjunctions (so that disjunctive feature-value con-
straints can be expressed), the satisfiability problem becomes NP-complete (Gallier
1986; Kasper and Rounds 1990; Nelson and Oppen 1980).

Since disjunctive constraints seem to be a practical necessity for describing natural
languages (Barton, Berwick, and Ristad 1987; Karttunen 1984), most practical feature
structure systems will probably have NP-hard satisfiability problems. Given that we
have to solve an NP-hard problem anyway, it seems reasonable to investigate the most
expressive feature structure constraint language that has an NP-complete satisfiability
problem. The Sch6nfinkel-Bernays' class, used in the manner described here, appears
to be the most expressive language for feature structure constraints proposed in the
literature so far whose satisfiability problem is no harder than NP.

3.1 The SchSnfinkel-Bernays' Class
The Sch6nfinkel-Bernays' class (hereafter SB) is the class of first-order closed prenex
formulae without function symbols in which no existential quantifier occurs in the
scope of any universal quantifier. That is, a formula is in SB iff it has no free variables
and is of the form

3 V l . . . 3 V m V X 1 . . . VXnOL,

where a contains no quantifier symbols or function symbols. SB formulae are a proper
subset of first-order formulae, and they are interpreted in exactly the same way as first-
order formulae. The body a may contain boolean connectives (including negation),
which can be used to express arbitrary boolean combinations of constraints.

Unlike the satisfiability problem for full first-order logic, which is undecidable
(co-recursively enumerable), the satisfiability problem for SB is decidable; in fact it is
PSPACE-complete (Lewis and Papadimitriou 1981). Further, if SBn is the class of SB
formulae with n or fewer universal quantifiers, then for any fixed n the satisfiability
problem for SBn is NP-complete (Lewis 1980). In the applications described here, the
number of universal quantifiers is fixed (i.e., it does not vary with the utterance or even
with the grammar), so the corresponding satisfiability problems are all NP-complete.

The class of SB formulae is interesting for other reasons besides its ability to express
a wide range of linguistic constraints. As shown below, the class of SB formulae in
clausal form constitute an extension of Datalog that allows disjunctive consequents.

3.2 Formalizing Attribute-Value Structures Using SB
SB is both simple and expressive enough that grammar designers might choose to
state linguistic constraints directly in SB, rather than in terms of attributes and val-
ues. Nevertheless, it is important to understand how the properties of attribute-value
structures can be stated in SB, since many of the techniques used to formalize them
can be applied to other linguistically interesting structures as well.

In fact there are several ways of formalizing attribute-value structures in SB, all of
which seem to be linguistically equivalent. What follows is a formalization in SB that
allows values to be used as attributes and allows attributes to be quantified over (this
is handy for stating "sort constraints"), but no special claims are made for it over and
above any other SB formalization.

Following Johnson (1991b), attribute-value feature structures can be specified in
SB in the following way. We can conceptualize of attribute-value arcs as instances of

Computat ional Linguistics Volume 20, Number 1

a t h r e e - p l a c e r e l a t ion arc, w h e r e arc(x, a~ y) m e a n s tha t the re is an arc l e a v i n g n o d e x
l a b e l e d a p o i n t i n g to n o d e y.6

Of course , no t al l i n t e r p r e t a t i o n s qua l i fy as a t t r i b u t e - v a l u e s t ruc tu res ; e.g., t hose
w h i c h sa t i s fy b o t h arc(x~ a~ y) a n d arc(x~ a~ z) for s o m e y ~ z v io l a t e the r e q u i r e m e n t
tha t t he re is a t m o s t one arc w i t h a n y g i v e n labe l l e a v i n g a n y node . We can e x p r e s s
th is r e q u i r e m e n t as an SB f o r m u l a tha t is t rue in the i n t e n d e d i n t e r p r e t a t i o n s (n a m e l y
a t t r i b u t e - v a l u e f ea tu re s t ruc tures) .

Vx Va Vy Vz arc(x~a~y) A a r c (x , a , z) ~ y = z. (1)

Simi lar ly , w e can exp re s s the p r o p e r t i e s of the " a t t r i b u t e - v a l u e c ons t a n t s " w i t h SB
f o r m u l a e . Let con be a p r o p e r t y (i.e., a o n e - p l a c e re la t ion) t rue of the " a t t r i b u t e - v a l u e
c o n s t a n t " e l emen t s . These e l e m e n t s a re r e q u i r e d to h a v e no arcs l e a v i n g them. The
f o l l o w i n g f o r m u l a e x p r e s s e s th is r e q u i r e m e n t .

V x V a Vy ~,, (c o n (x) A a r c (x ~ a ~ y)) . (2)

N o t e tha t the w o r d " cons t an t " in the n a m e " a t t r i b u t e - v a l u e c o n s t a n t " is m i s l e a d i n g
here , s ince in th is f r a m e w o r k no t al l SB c o n s t a n t s y m b o l s wi l l d e n o t e a t t r i b u t e - v a l u e
"cons t an t s . " M o r e prec ise ly , b e i n g an ' a t t r i b u t e - v a l u e c o n s t a n t ' is a p r o p e r t y of a n
i n d i v i d u a l in an i n t e r p r e t a t i o n (i.e., an e l e m e n t of a f ea tu re s t ruc tu re) , w h e r e a s b e i n g
a c o n s t a n t is a p r o p e r t y of a s y m b o l in a fo rmu la . C o n s t a n t s can be u s e d to d e n o t e
c o m p l e x a t t r i b u t e - v a l u e en t i t i e s as w e l l as a t t r i b u t e - v a l u e cons tan t s .

Final ly , w e r equ i r e tha t the n a m e s of a t t r i b u t e - v a l u e c o n s t a n t s d e n o t e d i s t i nc t
a t t r i b u t e - v a l u e cons tan t s . We r e se rve a f ini te s u b s e t N of the c o n s t a n t s of o u r l a n g u a g e
for u se as the n a m e s of a t t r i b u t e - v a l u e cons tan t s , a n d r e qu i r e tha t t h e y sa t i s fy t he
f o l l o w i n g s c h e m a t a . 7

Fo r each c in N, con(c). (3)

Fo r each d i s t i nc t p a i r Cl, c2 in N, cl ~ C2. (4)

S c h e m a (3) r equ i r e s each s y m b o l in N to d e n o t e a n a t t r i b u t e - v a l u e cons tan t , a n d
s c h e m a (4) enforces d i s t i nc tne s s in e s sen t i a l l y the s a m e m a n n e r as tha t u s e d in the
spec i f i ca t ion s y s t e m s of a l g e b r a i c d a t a - t y p e t h e o r y (K a p u r a n d M u s s e r 1987).

F o r m u l a s (1) a n d (2) a n d the i n s t ances of s c h e m a t a (3) a n d (4) can be r e g a r d e d
as defining a t t r i b u t e - v a l u e f ea tu re s t ruc tu res . These a x i o m s are qu i t e p e r m i s s i v e : in

6 Johnson (1991a) and Smolka (1992) propose that an attribute-value arc labeled a from x to y be
conceptualized as an instance of a two-place relation a(x, y). For most applications there is little
substantive difference between these two approaches; the approach taken here allows attributes to be
quantified over, e.g., to state sortal constraints, and permits values to be used as attributes, as in e.g.,
LFG (Kaplan and Bresnan 1982); for discussion and linguistic applications see also Johnson (1988).

7 As Patrick Blackburn (p.c.) points out, one consequence of this is that every model of these constraints
will contain individuals corresponding to each attribute-value constant (since each constant symbol
will be assigned a denotation). Whether this is desirable or problematic is debatable, but as he pointed
out, it is easy to devise a conceptualization in which each attribute-value constant ci is conceptualized
as a one-place predicate ci(.) that is true of at most one element. Under such a conceptualization
(which can be formalized in SB as shown below) attribute-value constants would be the unique
members of one-element sorts.

(i) For each c in N, Vx Vy c(x) A c(y) ~ x = y. (Uniqueness)
(ii) For each c in N, Vx c(x) ~ con(x). (Constant property)
(iii) For each distinct pair cl, c2 in N, Vx ~ (cl (x) A c2 (x)). (Disjointness)

Mark Johnson Computing with Features as Formulae

arc(n,al,bl) arc(n,al,n') ^ arc(n,a2,n')
n n

all a x ~ a2

b! n'

arc(n,a2,b2)
n

b2

Figure 1
Three constraints expressed as formulae and also depicted graphically.

addit ion to the usual finite acyclic feature structures, they allow infinite structures,
cyclic structures, structures in which complex values serve as attributes, etc. While
ruled out by fiat in s tandard treatments, admitt ing these additional structures causes
no linguistic difficulties that I am aware of (in fact, some analyses crucially depend
on their existence, as described in section 2.1.3 of Johnson [1988]), so in the interests
of pars imony additional constraints that forbid them are not stipulated.

In fact, because SB formulae possess the finite model proper ty (i.e., if an SB formula
has a model, then it has a finite model), restricting attention to finite models does not
change the set of satisfiable SB formulae. Therefore it could have no effect on the set of
well-formed utterances. Cyclic feature structures can be prohibited with a constraint
formalizable in SB, as described in Johnson (1991b), and one can express a constraint
in SB that requires that all attributes are "attribute-value constants" (even though there
appears to be no linguistic motivat ion for such a constraint, and indeed, some analyses
crucially depend on this not being the case, as pointed out in Johnson [1988]).

To summarize, the simplest SB axioms defining attribute-value structures are quite
permissive, allowing a wider range of structures to count as attribute-value structures
than many other formalizations. However , all of the major restrictions on attribute-
value structures discussed in the literature either have no effect whatsoever in this
framework, or else can be directly stated as additional SB constraints.

3.3 Expressing Feature Structure Constraints with SB
In this approach, simple attribute-value constraints are represented by quantifier-free
atomic formulae. For example, a constraint that the value of n's al arc is bl would be
represented by the atom arc(n,al,bl), a constraint that the value of n's a2 arc is b2 is
represented by arc(n, a2, b2), and a constraint that the value of n's al arc is the same
as the value of its a2 arc is represented by the conjunction arc(n, all n') A arc(n, a2~ n')
(n ~ is the single value of both arcs). These three constraints are depicted graphically in
Figure 1. Note that the graphs in this figure are (depictions of) formulae, not attribute-
value feature structures.

Attribute-value "unification" is the conjunction and simplification of the formu-
lae expressing the constraints to be unified. If all three constraints in the example of
Figure 1 are conjoined together with axioms (1-3) above, then by (1) it follows that
bl = n ~ = b2. Further, if bl and b2 are distinct constant symbols in N (thus they name
attribute-value constants), then bl ~ b2 is an instance of (4), and the conjunction is
therefore unsatisfiable. For further examples and a discussion of how the disjunc-
tion and negat ion of attr ibute-value constraints are t ransparently representable as SB
formulae, see Johnson (1991a, 1991b).

Computational Linguistics Volume 20, Number 1

A major motivation for using SB is that a wide variety of constraints, in addi-
tion to standard attribute-value constraints, can be expressed using it. This allows a
grammar developer to introduce a wide variety of "designer features" with possibly
idiosyncratic, customized properties, while guaranteeing that the composite system is
decidable (usually in NP-time, as noted above).

For example, suppose we want to impose sort restrictions of the following kind.
To abbreviate the lexical entries of verbs we might introduce the one-place predicate
3rd-sg, where 3rd-sg(x) indicates that the value of x's person attribute is 3rd and x's
number attribute is singular. This constraint can be expressed using the following SB
formula.

Vx 3rd-sg(x) ~ arc(x, person, 3rd) A arc(x, number, singular). (5)

Similarly, constraints that restrict the possible values of certain attributes can be im-
posed. For example, one might want to require that the value of every arc labeled
number is either singular or plural. This constraint can be expressed as the following
SB formula.

Vx Vy arc(x, number, y) ~ y = singular V y = plural. (6)

These examples demonstrate only a small fraction of the variety of the feature structure
constraints that can be expressed in SB. Even though all of these examples are based
on attribute-value features, other sorts of features can be described in SB as well. For
example, Johnson (1991a) shows how to formulate a variety of constraints on 'set-
valued' features in SB.

3.4 Expressing Tree Structure Constraints with SB Formulae
Inspired by the work on description theory or 'D-theory' (Marcus, Hindle, and Fleck
1983; Vijay-Shanker 1992), this section shows how some elementary constraints on
precedence and dominance in a tree can be expressed as SB formulae. It differs from
that work in that different kinds of constraints are expressible (Vijay-Shanker was
concerned with the formalization of a different kind of grammar), and that all of the
constraints expressible in the system described below are decidable (this follows from
the fact that they are defined and expressed using Sch6nfinkel-Bernays' formulae).
These constraints are intended to appear as annotations on phrase structure rules (in
the same way that attribute-value constraints do) and could be used to enforce a va-
riety of "long-distance" relationships, such as the co- and contra-indexing constraints
of binding theory (i.e., equality and inequality constraints on the values of index at-
tributes).

The axiomatization begins by defining the primitive tree structure relations precedes
and dominates. Once these primitive tree structure relations are defined, they can be
used to approximate more complex relationships such as c-commands, as described
below. All of these axioms are in the Sch6nfinkel-Bernays' class, so the satisfiability of
arbitrary boolean combinations of such constraints is decidable.

First, note that the standard definition of trees in terms of the binary relations
< (linear precedence) and D (domination) can be expressed directly as Sch6nfinkel-
Bernays' formulae. The axioms presented below are just the definitions of trees given
in Partee, ter Meulen, and Wall (1990) and Wall (1972) using the syntax of first-order
logic. Axioms (7a-c) require that < is a strict partial order, and axioms (8a-c) require

Mark Johnson Computing with Features as Formulae

that D is a weak partial order over the nodes in a tree. In what follows, N(x) is
interpreted as meaning that x is a tree node.

VX "~X K X

Vx Vy x < y ~ ~y < x
V x V y V z x < y A y < z - + x < z
Vx D(x, x) +-+ N(x)
Vx Vy D(x,y) A D(y,x) ~ x = y
Vx Vy Vz D(x, y) A D(y,z) ~ D(x,z)

(irreflexivity) (7a)
(asymmetry) (7b)
(transitive closure) (7c)
(reflexivity) (8a)
(antisymmetry) (8b)
(transitive closure) (8c)

Axiom (9) requires that there is a node that dominates all other nodes, and axiom
(10) requires that for each pair of nodes either one precedes the other or one dominates
the other. Axiom (11) enforces the "no tangling" constraint.

3 x X(x) A Vy X(y) + D(x, y)
Vx Vy X(x) A X(y) + ((x < y v y < x)

-~(D(x, y) v D(y, x)))
Vw Vx Vy Vz w < x A D(w,y) A D (x , z) ~ y < z

(single root condition) (9)

(exclusivity) (10)
(nontangling condition) (11)

Finally, the following axioms (implicit in the standard treatments cited above)
require the precedence and dominance relations to range over tree nodes.

vx Vy x < y + X(x) A X(y) (12a)

Vx Vy D(x, y) -~ N(x) A N(y) (12b)

This concludes the specification of linear precedence and dominance relations over
nodes. We now turn to the specification of other relations in terms of these. The proper
dominance relation P can be defined in terms of dominance as follows.

Vx Vy p(x, y) ~ x # y A D(x, y). (13)

However, many interesting linguistic relations cannot be defined by Sch6nfinkel-Ber-
nays' axioms. For example, the c-commands relation C is defined by the following
formula (which says that x c-commands y iff x does not dominate y, and every node
z that properly dominates x also properly dominates y).

Vx vy C(x, y) ~ ~D(x, y) A Vz e(z, x) ~ P(z, y). (14)

It is easy to see that this definition is not equivalent to a Sch6nfinkel-Bernays' for-
mula by expanding the equivalence into two implications and moving the embedded
quantifier out.

Vx Vy Vz C(x,y) + (-~D(x,y) A (P(z,x) ~ P(z,y))). (14a)

Vx Vy 3z (~D(x, y) A P(z, x) ~ P(z, y)) ~ C(x, y). (14b)

Formula (14b) is not in SB because it contains an existential quantifier inside the scope
of a universal quantifier. There are a number of ways to respond to this problem.

First, we can abandon the attempt to work within the Sch6nfinkel-Bernays' class,
and work with some other language. Rounds (1988) describes such a language called
LFP, whose decidability follows from the fact that the domain of quantification is

Computational Linguistics Volume 20, Number 1

restricted (just as in SB). However, it seems to be difficult to devise a decidable system
capable of simultaneously expressing both tree structure and the variety of feature
structure constraints that the SB approach described here can. Blackburn, Gardent,
and Meyer-viol (1993) introduce a modal language L T for describing trees decorated
with feature structures, whose satisfiability problem is undecidable. In the long run,
such specialized "designer logics" may provide the most satisfying integration of tree
structure and feature structure constraints.

Second, the 'one-sided' approximation (14a) can be used in place of the correct
axiom (14). The effect of using such one-sided approximations was investigated in
Johnson (1991a). It was shown there that if ~ is a formula such as the one in (14) and
~/is the one-sided approximation (14a), then for any formula ~+(C) in which C only
appears positively, ~ A ~+ (C) is satisfiable iff ~' A ~+ (C) is satisfiable. That is, if we are
concerned only with positively occurring constraints, we can simplify (14) to (14a),
i.e., ignore (14b), without affecting constraint satisfiability.

Third, we can regard formulae such as (14) as the "macro" (15), used to expand
constraints at the interface between the syntactic rules and the constraint solver. This
"macro expansion" rewrites c-commands constraints into boolean combinations of con-
straints that the constraint solver can handle.

C(x,y) ~ -@(x~y) A vz p(z~x) ~ P(z~y). (15a)

-~C(x~y) ~ D(x~y) v 3z (P(z~x) A -~P(z~y)). (15b)

The second and the third approaches differ in important ways. In the second ap-
proach, c-commands is a relation that is "understood" by the constraint solver (albeit
only in its one-sided form), so it can be used to define other relations. In the third
approach, c-commands constraints are not primitive constraints, so relations defined in
terms of c-commands must also be expressible in terms of "macro expansion." In the
second approach, constraints are quantifier-free formulae (quantifiers appear only in
the axioms), so the satisfiability problem is in NP. But in the third approach, macro
expansion produces formulae that contain additional quantifiers, so the satisfiability
problem may be PSPACE-complete.

3.5 Limitat ions o n Constraints Express ible w i t h SB Formulae
Of course, SB is not as expressive as full first-order logic. It is incapable of expressing
functional relationships, since these require an existential quantifier inside the scope of
a universal quantifier. This means, among other things, that it is impossible to state a
constraint in SB requiring that a certain node must exist (as was noted in the discussion
of c-command in the previous section) or that all nodes possess certain attributes. Thus
for example, the following constraint, which requires that every tensed entity possess
number and person attributes, is a first-order formula that is not in SB, since it requires
a functional relationship between entities with tense attributes and the values of their
number and person attributes.

Vx Vy arc(x~ tensG y) ~ (3z arc(x~ number~ z)) A (3z arc(x~ person~ z)) (16)

Similarly, a number of other extensions to the basic attribute-value framework dis-
cussed in the literature cannot be formalized in SB. Subsumption constraints, used in
the treatment of (natural language) conjunction, are not expressible as SB formulae
because the satisfiability problem for conjunctions of subsumption and attribute-value
constraints is undecidable (D6rre and Rounds 1992). Positively occurring functional

10

Mark Johnson Computing with Features as Formulae

(El) V x x = x .

(E2) V x V y x = y ~ y = x .

(E3) V x 0 . . . VXn xj = x 0 A P (X l ~ . . . ~ xj~...~ xn) ~ P(Xl~...~ Xo~...~ Xn)
for j = 1~...~ n, for every predicate symbol P appearing in ~.

(E4) VXo...VXn xj = x 0 --~ f(xl~...~Xj~...~Xn) =f(Xl~...~Xo~...~Xn)
for j = 1~...~ n, for every function symbol f appearing in ~.

Figure 2
Equality axiom schemata for a first-order formula ~.

uncertainty constraints, used in the LFG treatment of long-distance dependencies (Kap-
lan and Zaenen 1989) appear to have a decidable satisfiability problem (Kaplan and
Maxwell 1988a), but the satisfiability problem for arbitrary boolean combinations of
functional uncertainty constraints is undecidable (Keller 1991), so these cannot be ex-
pressed using SB formulae either (since the quantifier-free subclass of SB is closed
under boolean operations).

3.6 The Equality Relation
In this paper the intended interpretation of the equality relation is identity; i.e., a = b
if and only if a and b denote the same individual. However, for some purposes (e.g.,
in the least-fixed-point characterization of minimal models given below) this "special"
interpretation of the equality complicates matters, and it is more convenient to treat
the equality relation as a "normal" relation that is defined by a set of axioms E.

The idea is that E has the property that a formula ~ is satisfiable under the identity
interpretation of equality if and only if {9~} U E is satisfiable in an interpretation in
which equality is not given any special treatment. In effect, the axioms E require
that the equality relation denotes an equivalence relation, and permit the substitution
of equals for equals. Together these imply that no predicate can distinguish equal
individuals. This means that in terms of satisfiability and the consequence relation,
exactly the same results are obtained irrespective of whether equality is treated as
identity or defined by the axioms E.

Such treatments of equality in first-order logic are well known and described in
standard texts. For example, Chang and Lee (1973) give the axiom schemata in Figure 2,
which generates syntactic equality axioms E for a first-order formula 9~, and prove that
E has the properties just described, s

What is important here is that for an SB formula ~ the instances of the axiom
schemata are all SB formulae, and there are only finitely many instances of these
schemata.

This means that for an arbitrary SB formula ~ there is another SB formula ~ such
that ~ is satisfiable with respect to an identity interpretation of equality if and only if

A ~ is satisfiable with respect to an interpretation in which equality is treated like any
other relation. Thus a method for determining the satisfiability of SB formulae without
equality can be used to determine satisfiability of SB formulae in which equality is
interpreted as identity.

8 Of course, (E4) has no ins tances if ~ is an SB formula, since SB formulae do not contain funct ion
symbols .

11

Computational Linguistics Volume 20, Number 1

(17) Vx x = x.

(18) Vx Vy x = y ~ y = x.

(19) Vx Va Vy VXl x -~ Xl /X arc(x, a, y) ~ arc(x1, a, y).

(20) Vx Va Vy Val a = al A arc(x, a, y) ~ arc(x, al, y).

(21) Vx Va Vy V y l y = yl Aarc(x ,a ,y) ~ arc(x,a,yl) .

(22) VCl Vc2 c = Cl A con(c) ~ con(c1).

(23) Vx Vy x = y A 3rd-sg(x) ~ 3rd-sg(y).

Figure 3
The equality axioms for arc, con, and 3rd-sg predicates.

For example , consider the SB formulae in (1-4) and (5-16). These contain the
three-place relation symbol arc and the one-place relation symbols con and 3rd-sg. The
equali ty axioms obtained f rom schemata (El-E4) for any sys tem of constraints that
ment ion just these relations are given in Figure 3.

4. Clausal Form and Disjunctive Datalog

It is technically easier to work with a syntactically restricted class of SB formulae
where the b o d y of each formula has a part icular syntactic fo rm k n o w n as clausal form
or Skolem standard form.

Definition
A clause is a fo rmula of the fo rm ,-~ o~1 V • • • V ~-, c~m V fll V • • • V ft,, where each oq and
fly is an atomic formula (i.e., is of the fo rm p (h , . . . , tn)), and m, n > 0. A formula ~ is
in clausal fo rm iff it is a conjunction of clauses.

The ,-~ ai are called negative literals and the f j are called positive literals. A clause
for which m = 0 (i.e., one that consists solely of posi t ive literals) is called a positive
clause, and one for which n = 0 (i.e., one that consists solely of negat ive literals) is
called a negative clause. A clause for which n = 1 is called a definite clause. A Horn
clause is a clause for which n < 1, i.e., either a negat ive clause or a definite clause.

Abus ing notat ion somewhat , a formula ~ in clausal fo rm will somet imes also be
treated as the set of the clauses that make u p the conjunction ~. Similarly, because
clauses are used as rewri t ing rules below, the clause ~-, o~1 V -. . V ,-~ o~ m V f l V . . . V fin
will somet imes be wri t ten as the equivalent implicat ion oz I A . . - /x o~ m ~ fll V .- . V fin.

A formula ~ in clausal fo rm does not contain any quantifier symbols . As is stan-
dard, all variables in ~ are treated as implicit ly universal ly quantif ied at the clausal
level. Existentially quantif ied variables in SB formulae are inessential, in that they can
a lways be directly replaced by Skolem constants.

Restricting at tention to SB formulae in clausal fo rm imposes no real restriction on
the class of constraints expressible. Standard procedures for t ransforming first-order
formulae into clausal form, such as the ones described in Chang and Lee (1973), Duffy

12

Mark Johnson Computing with Features as Formulae

(1991), or Genesereth and Nilsson (1987), t ransform SB formulae into SB formulae in
clausal form.

Interestingly, clausal form SB formulae correspond one-to-one with an extension
to Datalog (Ullman 1988) that allows disjunctive "heads" or consequences. In notation
borrowed from disjunctive logic programming (Kowalski 1979; Lobo, Minker, and
Rajasekar 1992; Loveland 1987), the clauses above would be writ ten as listed in the
appendix. While the connection between logic p rogramming and feature structures is
well known (Ait-Kaci 1984; Ait-Kaci and Podelski 1993; Carpenter 1991, 1992; H6hfeld
and Smolka 1988; Pereira 1987; Shieber 1992; Smolka 1992), this shows that the theory
of feature structure constraints is also related to database theory as well.

Negative clauses correspond to Datalog integrity constraints, and clauses with a
single positive literal are definite clauses. Simple assertions, e.g., about the existence
of arcs, consisting of exactly one positive literal are Datalog atomic clauses. Clauses
with two or more positive literals cannot be expressed in Datalog itself, but require
the disjunctive extension of Datalog. The appendix displays all of the SB formulae
ment ioned in this paper so far in clausal form in Datalog notation; (6'), (10 ~) and
(7") are expressed in the disjunctive extension to Datalog. In fact, the axioms defining
attribute-value structures (1-4) and syntactic equality (El-E3) are all Horn Datalog
clauses; i.e., the disjunctive extension is not needed for defining attribute-value feature
structures.

5. Determining the Satisfiability of SB Formulae

This section describes a forward-chaining algori thm for determining the satisfiability of
SB formulae in clausal form. This algori thm is a nondeterminist ic variant of the semi-
naive evaluation method for Datalog clauses in which the union-find algori thm is used
to efficiently maintain equivalence classes of equal terms. It is also recognizable as a
generalization of the s tandard unification algori thm for feature structures to arbitrary
Horn SB constraints. 9 The t reatment is informal because the goal of the section is
to point out several impor tant s tandard implementat ion techniques rather than to
advance a totally new algorithm.

The key intuition behind the algori thm is this. To demonstra te the satisfiability of
a set S of clauses, it is sufficient to exhibit a set A of ground atoms drawn from the
Herbrand base of S such that the following conditions hold (the next section proves
this assertion).

(a)

(b)

(c)

' ~ of any negative clause in S are For no ground instance ~ o~ 1 V .-. V ~ o~ m
t in A. (If they were, then that clause would be falsified all of c~1,..., c%

by A.)

For each ground instance fl~ V • .. v fl~ of a positive clause in S, at least
one of the fl[is in A.

' A . A ' ~ f l ~ V . . - V f l ~ o f a n i m p l i c a t i o n i n For each ground instance c h .. o~ m
! S, if all of the o ~ , . . . , o~ m are in A then so is at least one of the f l (, . . . , fl~.

(In fact, the other two conditions are just special cases of this condition.)

9 It is a generalization of the algorithm described in Hegner (1991), which treats Horn combinations of
attribute-value constraints.

13

Computational Linguistics Volume 20, Number 1

5.1 Naive Evaluation
One could attempt to find such a set A in the following manner. First, one nondeter-
ministically selects a fl~ from each of the ground instances of the positive clauses in
S and adds these to A. Then one attempts to close A with respect to condition (c); if

' ' of some (ground instance of an) implication are in A, all of the antecedents oq , . . . , olm
then one of the consequents fl~,.. . , fl~ is nondeterministically selected and added to
A, unless at least one of them is already present. (Of course, all such nondeterministic
paths might have to be investigated.) Periodically, condition (a) is checked; if it fails
to hold, then this nondeterministic path on the search for A must be abandoned. Non-
determinism arises solely from the presence of disjunction in consequents of clauses;
if S is a set of Horn clauses then the fixed-point calculation proceeds deterministically.

Ignoring the checking of condition (a), the method is essentially computing a fixed-
point of the nonnegative clauses in S via a kind of iterative approximation known as
naive evaluation. Naive evaluation is unnecessarily computationally inefficient. Once
the set A is large enough to require an atom o~ to be added to A, naive evaluation
"rediscovers" this requirement on all subsequent passes.

5.2 Semi-Naive Evaluation
Semi-naive evaluation avoids rediscovering the same fact in the same way by insisting
that each time a clause is applied at least one of the antecedents was just discovered
on the previous round (Ullman 1988, 1989). This is done by maintaining two sets
of atoms, A and &A, where A is the set of atoms discovered one or more iterations
ago, and &A is the set of atoms discovered at the last iteration. The nondeterministic
semi-naive algorithm for computing a set A (if it exists) is sketched in Figure 4. In
that algorithm choose is a "function" that nondeterministically picks one member from
its set argument; it can be implemented using, e.g., backtracking. Ullman describes
methods of matching clauses in S against the sets A and &A that avoids calculating
all of the ground instances of the clauses in S.

The semi-naive algorithm can be used directly with the syntactic equality axioms
given in Section 3.4 as a decision procedure for SB formulae, and hence for systems
of feature structure constraints. However, the resulting system is inefficient because
the equality axioms, specifically the instances of schemata (E2) and (E3), cause the
"copying" of any atom containing an argument that appears in an equality atom to
all members of the equivalence class containing that argument.

For example, if p(a), q(b) and a = b are atoms in A, then instances of (E2) and (E3)
ensure that p(b),q(a) and b = a will be added to &A and thence to A. In general, if it
is discovered that n constants a l , . . , an are equal, then A will ultimately contain the n 2
equalities ai = aj, 1 < i < n, 1 < j <_ n, as well as at least n "copies" of any predicate
containing any ai.

5.3 Union-Find and Equality
As noted above, the equality axioms ensure that the relation that the equality symbol
denotes is an equivalence relation and the substitutivity of equals for equals. In general,
the union-find algorithm (Corman, Leiserson, and Rivest 1990; Gallier 1986; Nelson
and Oppen 1980) maintains the equivalence classes of the equality relation far more
efficiently than an approach that uses the syntactic equality axioms.

The equivalence classes are encoded by associating each constant with a pointer
that is either null or points to another constant, where a points to b only if a = b. These
pointer correspond exactly to the "invisible pointers" used in standard implementa-
tions of the attribute-value unification algorithm.

14

Mark Johnson Computing with Features as Formulae

Input: A set of SB clauses S.

Output : A set of g round clauses A iff S is satisfiable.

A : - - 0 ,

&A := {choose({fl~,... ,fl~}) : fl~ V . . . V fl~ is a g round instance of a posit ive clause
in S},

until &A := 0 do

A : = A U & A ,

' V .. • V N ' is a g round instance of a negat ive if {o~ , . . . , oz~} C A, where ~, oL 1 oz m
clause in S and at least one of the o~; is in &A,

then fail,

a A := {choose({fl~,..., fl~}) : o~ A . . . A olin ~ fl~ V . . . V fl~ is a g round instance
, . . . , ~ is in &A of an implicat ion in S such that {oL~ Oq'n} C A, at least one of the o~ i

and no flj~ is in A},

return A.

Figure 4
The semi-naive algorithm for computing A.

The find operat ion dereferences its a rgument , i.e., it follows these pointers until it
reaches a constant with a null pointer, which is the equivalence classes' representat ive.
Just as in the s tandard at t r ibute-value unification algori thm, all a rguments are a lways
dereferenced before they are used.

The union operation, called wheneve r an a tom a = b is added to the set A, merges
their equivalence classes by redirecting the pointer associated with the representat ive
of one of them to point to the representat ive of the other. 1°

In this approach, only a toms that contain the redirected constant need to be added
to &A and thence to A. For example, if p(a) and q(b) are a toms in A and the equal i ty
a = b is discovered, causing a to be redirected to b, then only p(b) is added to &A,
and thence to A. Further, the "original" a tom p(a) is no longer required; indeed, the
new a tom p(b) is exactly an argument-dereferenced var iant of the old atom, so it is
not necessary to copy the a tom at all. In general, equalities be tween n i tems are repre-
sented by n - 1 nonnull pointers, and copying of a toms can be avoided by a rgumen t
dereferencing.

5.4 An Example
This section presents a very s imple example that demons t ra tes the semi-naive algo-
r i thm and the union-find techniques. The clauses used are the at t r ibute-value axiom
schemata (1-4) and the axioms defining the sort 3rd-sg (5), as well as the addi t ional

10 The union-find algorithm achieves quasi-linear running time when it incorporates path compression
and union by rank (Corman, Leiserson, and Rivest 1990).

15

Computational Linguistics Volume 20, Number 1

s I
3rd-sg(u), arc(u, number, v), v # sg,
Vx Va Vy Vz arc(x, a, y) A arc(x, a, z) ~ y = z,
Vx Va Vy ,-~ con(x)V ~ arc(x,a,y),
con(sg), con(pl), con(3rd),
sg # pl, sg # 3rd, pl # 3rd,
Vx 3rd-sg(x) ~ arc(x, person, 3rd),
Vx 3rd-sg(x) ~ arc(x, number, sg)

constraints
AV axioms

sort defn.

Figure 5
Input clauses.

constraints 3rd-sg(u), arc(u, number, v) and v ~ sg. These latter constraints assert the
existence of an entity (denoted by u) with the proper ty 3rd-sg and with a number arc
whose value v is something other than pl. The complete set of clauses is given in
Figure 5. In practice the attr ibute-value axioms would probably not be explicitly enu-
merated but "built in," so that appropria te instances are generated only w h en needed.

N o w we proceed to iteratively calculate the sets &A and A using the algori thm in
Figure 4. We calculate the first initial set of new atoms, &A0. A0 = 0, of course.

&Ao = {3rd-sg(u), arc(u, number, v), con(sg), con(pl), con(3rd)}

On the first i teration we note that the antecedents of both clauses defining the sort
3rd-sg are satisfied (with x bound to u), so &A1 is given as follows.

A1 = {3rd-sg(u),arc(u,number~ v),con(sg),con(pl),con(3rd)}

&A1 = {arc(u,person~3rd),arc(u, number, sg)}

In the second iteration the antecedents of the first attribute-value axiom are satisfied,
so &A2 contains an equality atom.

3rd-sg(u), arc(u, number, v), con(sg), con(pl), con(3rd), I
A2 = arc(u, person,3rd),arc(u, number, sg)

J

&A2 = {v = sg}

The equali ty a tom causes v to be redirected to sg, and at this stage the inconsistency
of the der ived a tom v = sg in &A2 with the input constraint v ~ sg in S is detected. (It
may be helpful to think of the constraint v ~ sg as the equivalent clause v = sg ~ false).
The algori thm therefore returns with failure, indicating that the set S is unsatisfiable.
At the point at which the inconsistency is detected, the set A contains the following
atoms, where v =~ sg indicates that v is redirected to sg.

{ 3rd-sg(u)~ arc(u, number, v), con(sg), con(pl), con(3rd),
A 3 ~- arc(u, person, 3rd), arc(u, number, sg),

v ~ sg

The correspondence of this procedure to the s tandard attr ibute-value unification algo-
r i thm is quite strong. In this procedure, the attr ibute-value axiom (1) detects situations
in which some node has two arcs with the same label pointing to, say, y and z. If such

16

Mark Johnson Computing with Features as Formulae

a situation arises, the equality y = z is inferred, which results in y being redirected
to z and causes all of the arcs leaving y to be added to &A, where they will be com-
pared with the arcs leaving z. The other attribute-value axiom schemata (2--4) detect
constant-constant and constant-complex clashes, causing failure if one is found.

Efficient processing demands that the atoms in A be indexed by their arguments
to speed up the matching atoms with the antecedents of clauses. One way of doing
this is to store on each constant a list of the atoms in which that constant appears. Such
an index has the same structure as the s tandard graph encoding of feature structure
constraints.

6. A Fixed-Point T h e o r e m

We now turn to the theoretical justification of the bot tom-up forward-chaining proce-
dures sketched in the last section, and show that such methods will find a model for
a set of SB formulae in clausal form if one exists. This section demonstrates that an
SB formula in clausal form is satisfiable if and only if a bot tom-up forward-chaining
procedure finds a deduct ively closed set of atoms A. A similar theorem for the case
in which all the clauses are Horn clauses is presented in Lloyd (1984); this section
extends that work to arbitrary clauses.

It presents a characterization of the models of an arbitrary first-order formula 9~
in clausal form in terms of the least-fixed points of a set {T~, X} of partial functions
from Herbrand interpretations to Herbrand interpretations. These functions have the
proper ty that A is a Herbrand interpretation that satisfies ~ if and only if the least-fixed
point of at least one of them is a submodel of A.

For SB formulae this set of functions is finite and the least-fixed points are reached
in a finitely bounded number of iterations. Since the procedures described in the
last section calculate the least-fixed points of these functions, they can be used to
determine the satisfiability of an arbitrary SB formula as well as all of its g round
atomic consequences.

The functions T~, x play a similiar r61e here to one that the t ransformation Tp plays
in the least-fixed-point semantics of Horn clause programs. Informally, each function
in the set {T~,x} corresponds to one whole sequence of nondeterminist ic choices of
disjuncts in non-Horn clauses that could be made dur ing an iterative approximat ion
of the least-fixed point. This section is based on Sections 5 and 6 of Chapter I of Lloyd
(1984), to which the reader should turn for further details.

The fixed-point theorem holds for arbitrary first-order formulae in clausal form,
but the set {T~,x} is finite if and only if ~ does not contain any function symbols, i.e.,

is an SB formula. Equality is not treated specially, so the formula 9~ must contain
appropriate equality axioms, as ment ioned above.

Let U be the Herbrand universe with respect to ~ (i.e., the set of all terms that
can be constructed using the constant and function symbols appear ing in ~),11 and let
B~ be the set of all ground atoms that can be formed using the predicate symbols of
9~ with elements of U as arguments. A Herbrand interpretation A is a subset of B~.

Note that the set of Herbrand interpretations 2 B~ partially ordered by the subset
relation forms a complete lattice. Further, U and hence B~ are finite iff ~ is an SB
formula. (If ~ is in clausal form but is not an SB formula then it must contain a
function symbol, so its Herbrand universe U is infinite.)

11 As is standard, if 9~ has no constant symbols then it is necessary to take U to be a set consisting of a
single constant, say {a}. See, e.g., Chang and Lee (1973) for details.

17

Computational Linguistics Volume 20, Number 1

Definition
A Herb rand interpretat ion A t r iv ia l ly falsifies a set of clauses ~ iff there is a g round

' ' of a negat ive clause ,-~ a l V - . . V ,-~ am in 9~ such that instance , - , o~ 1 v - - . v , ~ a m

c A.

That is, a He rb rand interpretat ion trivially falsifies a set of clauses ~ just in case some
negat ive clause in ~ is false in that interpretation. Clearly, any such interpretat ion
cannot satisfy ~, but the converse does not hold: there are interpretat ions that do not
trivially falsify 9~ but still do not satisfy ~ because they do not satisfy one or more of
the nonnegat ive clauses in ~.

We turn n o w to the nonnegat ive clauses in ~. The idea is that even if A does not
I A - A t / I satisfy a g round instance a 1 "" am ~ f l V . .- V fin of some nonnegat ive clause

in ~, we can extend A so that it does so by add ing one of the f ; . The chief technical
difficulty here is caused by the nonde te rmin i sm involved in deciding which of the f [to
add, and a device called a "choice function" is in t roduced to choose, for each g round
instance of a clause, which of the a toms in its consequent will be added to A if its
antecedent is contained in A. A choice function for a clause a l A . . , A am ~ f l V . . . V fin
is therefore a function f rom all possible ways of g rounding that clause to one of the fli.

Definition
A choice function for a clause c = (al A . . . A am ~ fa V . . . V f t ,) is any function in
(Vc -+ U) ~ [1 , . . . , n], where Vc is the set of variables in the clause c.

That is, a choice function for a clause is a function f rom variable ass ignments to an
integer represent ing one of the clause 's consequents. It is so n a m e d because for each
variable ass ignment (i.e., each w a y of g rounding the variables in ~) it "chooses" an
a tom f rom the consequent of the clause. H o r n clauses have only one choice function,
and negat ive clauses have no choice functions at all. Note that since U is finite for SB
formulae, there are a finite n u m b e r of variable ass ignment functions for any SB clause
and hence only a finite n u m b e r of choice functions for any SB clause.

A choice function X for a set of clauses ~ is a function f rom 9~ to choice functions
such that for each nonnegat ive clause c in ~, X(c) is a choice function for c (the value
that X takes on negat ive clauses is ignored). Clearly, a choice function exists for every
set of clauses.

Given a set of clauses ~ and a choice function X for ~o, we define a function F~, x
f rom Herb rand interpretat ions to He rb rand interpretat ions as follows.

Definition
F~, x is a function in 2 B* ~ 2 B* that is def ined as follows.

= { 0 (f i) : for all nonnegat ive clauses
C = (a l A " ' " A otto ---~ f l l V " ' " V f l n) in
and for all variable ass ignments 0 : Vc ~ U such that
0 (a ,) , . . . , 0 (a ,) E A and i = X(c)(O)}

Intuitively, F~, x cor responds to one nondeterminis t ic step in the ' bo t t om-up ' construc-
tion of a He rb rand mode l for ~ described in the previous section. If A makes the
antecedent of some g round instance of some clause in 9~ true, then we use the choice
function X to pick an a tom in the consequent of that g round clause and add it to the
interpretation. Different choice functions X represent different sequences of nondeter-
ministic choices, and result in the construct ion of possibly different interpretations.

18

Mark Johnson Computing with Features as Formulae

The following lemma, based directly on proposition 6.3 of Lloyd (1984), notes the
continuity (and therefore the monotonicity) of F~, x.

Lemma 1
The function F~, x is continuous. That is, if X is a directed subset of 2 B~ (i.e., every
finite subset of X has an upper bound in X) then F~,x(lub(X)) = lub(F~,x(X)).

Proof
Let X be any directed subset of 2 B~. Then {al,... ,am} G lub(X) if and only if
{ a l , . . . , a m } C A for some A E X. Then

fl E F~,x(lub(X))

iff c = (al A-.- A am ~ fll V . . . V fl,) is a nonnegative clause in ~

{0(a l) , . . . , •(an)} G lub(X), and fl = 0(flx(c)(o))

iff c = (al A . . . A am ~ fll V . . . V fin) is a nonnegative clause in ~,

{0(a l) , . . . ,0(a ,)} C A for some A E X, and fl = 0(flx(c)(O))

iff fl E F~, x(A) for some A E X

iff fl E lub(F~,x(X)). []

The continuity of F~, x immediately implies the convergence of the sequence (F/~,x (O));
the value that it converges to is called the least-fixed point of F~, x, written Ifp(F~,x).
Note that if ~ is in SB then there is an integer k such that lfp(F~,x) = Fk~,x(O); this
follows directly from the monotonicity of F~, x and the finiteness of B~.

The function F~, x and a condition requiring that the interpretation produced does
not trivially falsify the set of clauses ~ together define the partial function T~, x.

Definit ion
T~, x is a partial function in 2 B~ --~ 2 B~ that is defined as follows.

T~,x(A) = F~,x(A) if F~,x(A) does not trivially falsify 9~, and is undefined other-
wise.

Note that if the sequence (T/~,x(A)) is defined for all i then (T/~,x(A)) = i (F~, x (A)). T~, x
enjoys the following kind of monotonicity.

Lemma 2
Suppose A c A'. Then T~, x (A) is defined if T~, x (A') is defined, and T~, x (A) c T~, x (A').

Proof
If A trivially falsifies ~ then A ~ does too, so T~,x(A) is defined if T~,x(A') is defined.
If T~,x(A') is defined then T~,x(A) = F~,x(A) _C F~,x(A') = T~,x(A'). []

The following lemma shows that Herbrand models of 9~ contain fixed points of T~, x
for some choice function X for 9~-

Lemma 3
For all Herbrand interpretations A, A ~ 9~ iff there exists a choice function X for 9~
such that T÷, x (A) _C A.

19

Computational Linguistics Volume 20, Number 1

Proof
We begin first with the left-to-right component of the proof. If A ~ 9~, then A does not
trivially falsify ~, so T~, x (A) is defined. Now we show how to find for each satisfying
interpretation A a choice function X such that T~x(A) = A. Since A satisfies ~, for
every nonnegative clause c = (o~1 A. . -A O~m ~ fll V. . . V fin) in 9~ and for every variable
assignment function 0 for the variables in c, if 0(o~1)~...~ 0(o~n) E A, then by the truth
conditions for implication and disjunction, some O(fli) E A as well. Thus, for all 0 such
that 0(oq)~... ~O(C~n) E A let X(c)(0) be any i such that O(fli) E A, and let X(c)(0) take
any permissible value otherwise. Hence T~, x (A) = F~, x (A) = A.

Now suppose T~,x(A) C A. Since T~,x(A) is defined, A does not trivially falsify
any negative clause in ~. Let c = (o~1 A . . . A O~m ~ fll V ".. V fin) be any nonnegative
clause in ~, and let ~ E V~ ~ U be any variable assignment function for the variables
in c. If 0(o~1)~... ~0(O~n) E A then O(fli) E T~,x(A) C A as well, where i = X(c)(0), so
A ~ c and hence A ~ 9~. []

The following theorem shows that a formula is satisfiable if and only if the least-fixed
point of at least one of the T~, x exists. It justifies the decision procedures presented in
the previous section, which operate by searching for such least-fixed points.

The proof actually establishes something stronger, viz., that every Herbrand model
of ~ is an extension of the least-fixed points of one or more of the T~ x. Thus an
enumerat ion of all of the least-fixed points of the T~, x yields all of the "minimal
models" of ~ (although it is not clear that these are in fact necessary for recognition
or parsing, as discussed above).

Theorem
is satisfiable if and only if there exists a choice function X for ~ such that lfp(T~,x)

exists.

Proof
If Ifp(T~,x) exists then by Lemma 3, lfp(T~,x) = ~. Now suppose A is a Herbrand
interpretation that satisfies 9~- Lemma 3 asserts the existence of a choice function X
such that T~,x(A) exists and T~,x(A) G A. By Lemma 2 and the fixed point property
noted above lfp(T~,x) exists, since lfp(T~,x) = T~x(O) C T~x(A) C A. []

It is important to recognize that these "minimal models" are in general not upward-
closed: an extension A' of a model A can trivially falsify ~ even though A does not. This
is essentially Moshier 's (1988) and Pereira's (1987) observation that in the presence of
negation the set of models is not upward ly closed.

We conclude this section with the observation that the positive consequences of a
formula 9~ can be "read off" its least-fixed points.

Corollary
is satisfiable iff for some choice function X for ~, lfp(T~,x) exists. Moreover, if fl =

fll V . . . V fin is any disjunction of ground atoms, 9~ ~ fl iff for all choice functions X
for ~ such that lfp(T~,x) exists, at least one of the fli is in lfp(T~,x).

7. Conclusion

The main goal of this paper was to demonstrate from a computational perspective
that Sch6nfinkel-Bernays' formulae are a natural generalization of (boolean combina-

20

Mark Johnson Computing with Features as Formulae

tions of) attribute-value feature structure constraints. From a computational complexity
perspective we noted that the satisfiability problem for SB formulae with a bounded
number of quantifiers is NP-complete, so it is no harder than the satisfiability problem
for disjunctive attribute-value constraints.

From a more practical perspective, a semi-naive bottom-up evaluation strategy
using union-find methods to handle equality generalizes the standard attribute-value
"unification" algorithm to arbitrary SB constraints in clausal form. Because it treats
standard attribute-value constraints in approximately the same way as the standard
unification algorithm, and because it can incorporate the same kinds of indexing that
the latter algorithm employs, the generalized algorithm should be able to determine
the satisfiability of attribute-value constraints with approximately the same efficiency
as the standard attribute-value unification algorithm.

In generalizing attribute-value constraints to SB formulae, we noted that in clausal
form the SB formulae constitute a disjunctive extension to Datalog, and that the stan-
dard attribute-value unification algorithm is closely related to a version of semi-naive
evaluation algorithm used to evaluate Datalog clauses. This offers another perspective
on feature structure constraints; they can be seen as kinds of databases containing
information about the linguistic structures they describe.

Perhaps the greatest weakness of this work is the lack of an efficient method
for treating disjunctive constraints. The backtracking strategy suggested in the body
of the paper can be extremely inefficient, even with 'toy' grammars. This problem
is not unique to this approach; rather, it is endemic to most complex feature-based
approaches to natural language processing, as evidenced by the volume of literature
on the subject.

As discussed in Section 3, the satisfiability problem for SB formula with a fixed
number of universal quantifiers is NP-hard, so all known algorithms require exponen-
tial time in the worst case, and unless P=NP no tractable general-purpose algorithm for
determining the satisfiability of SB formulae exists. With present technology, the best
we can hope for is an algorithm that performs adequately on the types of problems
that we actually encounter.

Sometimes disjunctive constraints can be (automatically) transformed into nondis-
junctive ones, thus avoiding the problem entirely. For example, Alshawi (1992) de-
scribes a technique attributed to Colmerauer for transforming disjunctions of finite-
domain feature-value constraints into conjunctions. Kasper (1988) and Hegner (1991)
point out that Horn clauses, although technically disjunctions, can be handled con-
siderably more efficiently than general disjunctive constraints. The forward-chaining
mechanisms that they propose for treating these constraints appear to be special cases
of the semi-naive algorithm sketched in this paper.

Unfortunately, I know of no general adequate method for handling the disjunc-
tive constraints that arise in real grammars with acceptable efficiency. The techniques
discussed by Maxwell and Kaplan (1991, 1992) seem most directly compatible with
the approach described in this paper, and the methods described by Kasper (1987b),
Eisele and D6rre (1988), and Emele (1991) might have important applications as well.

Acknowledgment
I would like to thank Johan van Benthem,
Bob Carpenter, Stephen Hegner, Ronald
M. Kaplan, Edward Stabler and the
participants of the feature structures
seminar at the Institut f/Jr maschinelle
Sprachverarbeitung, Universitat Stuttgart,

for their suggestions and comments. All
responsibility for errors rests with me, of
course.

References
Ait-Kaci, Hassan (1984). A lattice theoretic

approach to computation based on a calculus of

21

Computational Linguistics Volume 20, Number 1

partially ordered type structures. Doctoral
dissertation, University of Pennsylvania.

Ait-Kaci, Hassan, and Podelski, Andreas
(1993). "Towards a meaning of LIFE." The
Journal of Logic Programming 16(3,4),
195-234.

Alshawi, Hiyan (1992). "Categories and
rules." In The Core Language Engine, edited
by Hiyan Alshawi, 41-60. MIT Press.

Barton, G. Edward; Berwick, Robert C.; and
Ristad, Eric S. (1987). Computational
Complexity and Natural Language. MIT
Press.

Blackburn, Patrick (1991). "Modal logic and
attribute-value structures." In Modal Logic
Colloquium '91, edited by Maarten de
Rijke. Dutch Project for Language, Logic
and Information, Amsterdam.

Blackburn, Patrick, and Spaan, Edith (1992).
"A modal perspective on the
computational complexity of attribute
value grammar." Logic Group Preprint
Series No. 77, Department of Philosophy,
University of Utrecht.

Blackburn, Patrick; Gardent, Claire; and
Meyer-viol, Wilfried (1993). "Talking
about trees." In Proceedings, 6th European
Meeting of the Asssociation for Computational
Linguistics. Utrecht, Holland.

Bresnan, Joan (1982). The Mental
Representation of Grammatical Relations. MIT
Press.

Carpenter, Bob (1991). "Typed feature
structures: A generalization of first-order
terms." In Logic Programming, Proceedings
of the 1991 International Symposium, edited
by Vijay Saraswat and Kazunori Ueda,
187-201. MIT Press.

Carpenter, Bob (1992). The Logic of Typed
Feature Structures. Cambridge Tracts in
Theoretical Computer Science 32.
Cambridge University Press, Cambridge,
England.

Carpenter, Bob, and Pollard, Carl (1991).
"Inclusion, disjointness and choice: The
logic of linguistic classification." In
Proceedings, 29th Annual Meeting of the
Association for Computational Linguistics,
9-16. Berkeley, CA.

Carpenter, Bob; Pollard, Carl; and Franz,
Alex (1991). "The specification and
implementation of constraint-based
unification grammars." In Proceedings,
Second International Workshop on Parsing
Technologies. Cancun, Mexico.

Chang, Chin-Liang, and Lee, Richard
Char-Tung (1973). Symbolic Logic and
Mechanical Theorem Proving. Academic
Press.

Chomsky, Noam (1986). Knowledge of
Language, Its Nature, Origins and Use.

Praeger.
Chomsky, Noam (1988). Some Notes on

Economy of Derivation and
Representation. ms. Massachusetts
Institute of Technology.

Corman, Thomas H.; Leiserson, Charles E.;
and Rivest, Ronald L. (1990). Introduction
to Algorithms. MIT Press.

Dawar, Anuj, and Vijay-Shanker, K. (1990).
"An interpretation of negation in feature
structures." Computational Linguistics 16(1),
11-21.

D6rre, Jochen (1991). "The language of
STUF." In Text Understanding in LILOG:
Integrating Computational Linguistics and
Artificial Intelligence, edited by Otthein
Herzog and Claus-Rainer Rollinger,
39-50. Springer-Verlag.

D6rre, Jochen, and Eisele, Andreas (1990).
"Feature logic with disjunctive
unification." In Proceedings, 13th
International Conference on Computational
Linguistics (COLING-90), 100-105.
Helsinki, Finland.

D6rre, Jochen, and Eisele, Andreas (1991).
"A comprehensive unification-based
grammar formalism." DYANA
Deliverable R3.1B, ESPRIT Basic Research
Action BR3175.

D6rre, Jochen, and Rounds, William C.
(1992). "On subsumption and
semiunification in feature algebras."
Journal of Symbolic Computation 13, 441-461.

Duffy, David (1991). Principles of Automated
Theorem Proving. John Wiley and Sons.

Eisele, A., and D6rre, J. (1988). "Unification
of disjunctive feature descriptions." In
Proceedings, 26th Annual Meeting of the
Association for Computational Linguistics,
286-294. Buffalo, New York.

Emele, Martin (1991). "Unification with lazy
non-redundant copying." In Proceedings,
29th Annual Meeting of the Association for
Computational Linguistics, 323-330.
Berkeley, CA.

Gallier, J. H. (1986). Logic for Computer
Science. Harper and Row.

Genesereth, M., and Nilsson, N. (1987).
Logical Foundations of Artificial Intelligence.
Morgan Kaufmann.

Hegner, Stephen J. (1991). "Horn extended
feature structures: Fast unification with
negation and limited disjunction." In
Proceedings, Fifth Conference of the European
Chapter of the Association for Computational
Linguistics, 33-38. Berlin.

H6hfeld, Markus, and Smolka, Gert. (1988).
"Definite relations over constraint
languages." LILOG Report No. 53, IBM
Deutschland.

Johnson, Mark (1988). Attribute-Value Logic

22

Mark Johnson Computing with Features as Formulae

and the Theory of Grammar. CSLI Lecture
Notes Series. University of Chicago Press.

Johnson, Mark (1990a). "Expressing
disjunctive and negative feature
constraints with classical first-order
logic." In Proceedings, 28th Annual Meeting
of the Association for Computational
Linguistics, 173-179. Pittsburgh, PA.

Johnson, Mark (1990b). "Features, frames
and quantifier-free formulae." In Logic and
Logic Grammars for Language Processing,
edited by Patrick Saint-Dizier and Stan
Szpakowicz, 94-107. Ellis Horwood.

Johnson, Mark (1991a). "Features and
formulae." Computational Linguistics 17(2),
131-152.

Johnson, Mark (1991b). "Logic and feature
structures." In Proceedings, International
Joint Conference on Artificial Intelligence.
Sydney.

Johnson, Mark (in press a) "Attribute-value
logic and natural language processing."
In Unification in Grammar, edited by
Jfirgen Wedekind and Christian Rohrer.
MIT Press.

Johnson, Mark (in press b) "Two ways of
formalizing grammars." Linguistics and
Philosophy.

Johnson, Mark, and Kay, Martin (1990).
"Semantic operators and anaphora." In
Proceedings, 13th International Conference on
Computational Linguistics (COLING-90),
17-27. Helsinki.

Johnson, Mark, and Klein, Ewan (1986).
"Discourse, parsing and anaphora." In
Proceedings, I1 th International Conference on
Computational Linguistics. Bonn.

Kamp, Hans (1981). "A theory of truth and
semantic representation." In Formal
Methods in the Study of Language, edited by
J. A. G. Groenendijk, T. M. V. Janssem,
and M. B. J. StokhoL 277-322.
Mathematical Centre Tracts, Amsterdam.

Kaplan, Ronald M., and Bresnan, Joan
(1982). "Lexical-functional grammar, a
formal system for grammatical
representation." In The Mental
Representation of Grammatical Relations,
edited by Joan Bresnan, 173-281. MIT
Press.

Kaplan, Ronald M., and Maxwell John T.
(1988a). "An algorithm for functional
uncertainty." In Proceedings, 12th
International Conference on Computational
Linguistics, 297-302. Budapest, Hungary.

Kaplan, Ronald M., and Maxwell, John T.
(1988b). "Constituent coordination in
lexical-functional grammar." In
Proceedings, 12th International Conference on
Computational Linguistics, 297-302.
Budapest, Hungary.

Kaplan, Ronald M., and Zaenen, Annie.
(1989). "Long-distance dependencies,
constituent structure and functional
uncertainty." In Alternative Conceptions of
Phrase Structure, edited by Mark Baltin
and Anthony Krock, 17-42. Chicago
University Press.

Kapur, D., and Musser, D. R. (1987). "Proof
by consistency." Artificial Intelligence 31,
125-157.

Karttunen, Lauri (1984). "Features and
values." In Proceedings, International
Conference on Computational Linguistics
(COLING-1984), 28-33. Stanford
University.

Kasper, Robert T. (1987a). Feature structures:
A logical theory with application to language
analysis. Doctoral dissertation, University
of Michigan.

Kasper, Robert T. (1987b). "A unification
method for disjunctive feature
structures." In Proceedings, 25th Annual
Meeting of the Association for Computational
Linguistics, 235-242. Stanford University.

Kasper, Robert T. (1988). "Conditional
descriptions in functional unification
grammar." In Proceedings, 26th Annual
Meeting of the Association for Computational
Linguistics, 233-240. Buffalo, N.Y.

Kasper, Robert T., and Rounds, William C.
(1986). "A logical semantics for feature
structures." In Proceedings, 24th Annual
Meeting of the Association for Computational
Linguistics, 257-266. Columbia University,
New York.

Kasper, Robert T., and Rounds, William C.
(1990). "The logic of unification in
grammar." Linguistics and Philosophy 13(1),
35-58.

Kay, Martin (1979). "Functional unification
grammar." In Proceedings, Fifth Annual
Meeting of the Berkeley Linguistics
Association. Berkeley, CA.

Kay, Martin (1985a). "Parsing in functional
unification grammar." In Natural Language
Parsing, edited by D. R. Dowty,
L. Karttunen, and A. M. Zwicky.
Cambridge University Press.

Kay, Martin (1985b). "Unification in
grammar." In Natural Language
Understanding and Logic Programming,
edited by V. Dahl and P. Saint-Dizier,
233-240. North Holland.

Keller, Bill (1991). Feature logics, infinitary
descriptions and the logical treatment of
grammar. Doctoral dissertation, University
of Sussex.

Kowalski, Robert (1979). Logic for Problem
Solving. North Holland.

Langholm, Tore (1989). "How to say no
with feature structures." COSMOS Report

23

Computational Linguistics Volume 20, Number 1

No. 13, Department of Mathematics,
University of Oslo.

Lewis, Harry (1980). "Complexity results for
classes of quantificational formulae." JCSS
21, 317-353.

Lewis, Harry, and Papadimitriou, Christos
(1981). Elements of the Theory of
Computation. Prentice-Hall, NJ.

Lloyd, John W. (1984). Foundations of Logic
Programming. Springer-Verlag.

Lobo, Jorge; Minker, Jack; and Rajasekar,
Arcot (1992). Foundations of Disjunctive
Logic Programming. MIT Press.

Loveland, D. W. (1987). "Near-Horn
Prolog." In Logic Programming: Papers for
the Fourth International Conference on Logic
Programming, edited by Jean-Louis Lassez,
456-469. MIT Press.

Marcus, Mitch; Hindle, Donald; and Fleck,
Margaret M. (1983). "D-theory--talking
about talking about trees." In Proceedings,
21st Annual Meeting of the Association for
Computational Linguistics, 129-136.
Cambridge, MA.

Maxwell, John T., and Kaplan, Ronald M.
(1991). "A method for disjunctive
constraint satisfaction." In Current Issues
in Parsing Technology, edited by Masaru
Tomita, 173-190. Kluwer Academic
Publishers.

Maxwell, John T., and Kaplan, Ronald M.
(1992). "The interface between phrasal
and functional constraints." Computational
Linguistics 19(4), 571-590.

Moshier, M. Drew (1988). Extensions to
unification grammar for the description of
programming languages. Doctoral
dissertation, University of Michigan.

Moshier, M. Drew, and Rounds, William C.
(1987). "A logic for partially specified
data structures." In The ACM Symposium
on the Principles of Programming Languages.
Association for Computing Machinery,
Munich, Germany.

Nelson, G., and Oppen, D. C. (1980). "Fast
decision procedures based on congruence
closure." J. ACM 27(2), 245-257.

Partee, Barbara H.; ter Meulen, Alice; and
Wall, Robert E. (1990). Mathematical
Methods in Linguistics. Kluwer Academic
Publishers.

Pereira, Fernando C. N. (1982). Logic for
natural language analysis. Doctoral
dissertation, University of Edinburgh.

Pereira, Fernando C. N. (1987). "Grammars

and logics of partial information." In
Proceedings, International Conference on Logic
Programming, 989-1013. Melbourne,
Australia.

Pollard, Carl, and Sag, Ivan A. (1987).
Information-Based Syntax and Semantics.
CSLI Lecture Notes Series. Chicago
University Press.

Pollard, Carl, and Sag, Ivan A. (1992).
Head-Driven Phrase Structure Grammar.
CSLI Lecture Notes Series. Chicago
University Press.

Rounds, William C. (1988). "LFP: A logic for
linguistic descriptions and an analysis of
its complexity." Computational Linguistics
14(4), 1-9.

Rounds, William C., and Manaster-Ramer,
Alexis (1987). "A logical version of
functional grammar." In Proceedings, 25th
Annual Meeting of the Association for
Computational Linguistics, 89-96. Stanford,
CA.

Shieber, Stuart M. (1986). An Introduction to
Unification-Based Approaches to Grammar.
CSLI Lecture Notes Series. University of
Chicago Press.

Shieber, Stuart M. (1992). Constraint-Based
Grammar Formalisms: Parsing~ and Type
Inference for Natural and Computer
Languages. MIT Press.

Smolka, Gert. (1988). "A feature logic with
subsorts." LILOG Report No. 33, IBM
Deutschland GmbH.

Smolka, Gert. (1992). "Feature constraint
logics for unification grammars." The
Journal of Logic Programming 12(1,2), 51-87.

Ullman, Jeffrey D. (1988). Principles of
Database and Knowledge-Base Systems, Vol. I.
Computer Science Press.

Ullman, Jeffrey D. (1989). Principles of
Database and Knowledge-Base Systems,
Vol. II: The New Technologies. Computer
Science Press.

Uszkoreit, Hans (1986). "Categorial
unification grammar." In Proceedings, 11th
International Conference on Computational
Linguistics, 187-194. Bonn.

Vijay-Shanker, K. (1992). "Using descriptions
of trees in a tree adjoining grammar."
Computational Linguistics 18(4), 481-517.

Wall, Robert (1972). Introduction to
Mathematical Linguistics. Prentice-Hall.

Zajac, R6mi (1992). "Inheritance and
constraint-based grammar formalisms."
Computational Linguistics 18(2), 159-182.

24

Mark Johnson Computing with Features as Formulae

Appendix A: SB Formulae in Disjunctive Datalog Format

(1')
(2')
(3')
(4')
(5')
(5")

(5'")
(6')

(7a')
(Tb')
(7c')
(Sa')

Y = Z :-arc(X, A, Y), arc(X, A, Z).

:- con(X), arc(X, A, Y).

con (c) . (for each c in N)
: - cl = c2. (for each distinct pair ci, c2 in N)
arc(X, pe r son , 3rd) : - 3 r d sg(X).
arc(X, number, singular) :-3rd_sg(X).

3rd sg(X) :-arc(X, person, 3rd), arc(X, number, singular).

Y = singular; Y = plural :- arc(X, number, Y).

: - X < X .
:- X < Y, Y < X.

X < Z :- X < Y, Y < Z.

d(X, X) :- n(X).

(Sa") n(X) :- d(X, X).
(Sb')
(8c')

(9')
(9")

(10')
(10")

(10"')
(12a')
(12a")
(12b')
(12b")

(7')
(7")
(7")

(14')
(14")
(17')
(18')
(19')
(2o')
(21')
(22')
(23')

X = Y :-d(X, Y), d(Y, X).

d(X, Z) :-d(X, Y), d(Y, Z).

n (root) .

d(root, Y) :- n(Y).

X < Y; Y < X; d(X, Y); d(Y, X) :-n(X), n(Y).

:-n(X), n(Y), X < Y, d(X, Y).

:-n(X), n(Y), X < Y, d(Y, X).

n(X) :- X < Y.

n(Y) :- X < Y.

n(X) :- d(X, Y).

n(Y) :- d(X, Y).

d(X, Y) :-p(X, Y).

:- p(X, Y), X = Y.

p(X, Y); X = Y :-d(X, Y).

:- c(X, Y), d(X, Y).

p(Z, Y) :- c(X, Y), p(Z, X).

X=X.

Y=X :-X=Y.

arc(Xl, A, Y) :-X = Xl, arc(X, A, Y).

arc(X, At, Y) :-A = Ai, arc(X, A, Y).

arc(X, A, Yi) :-Y = Yi, arc(X, A, Y).

con(C1) :- C = Ci, con(C).

3rd sg(Y) :- X = Y, 3rd_sg(X).

25

