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This paper extends the approach to feature structures developed in Johnson (1991a), which uses 
SchO'nfinkel-Bernays' formulae to express feature structure constraints. These are shown to be a 
disjunctive generalization of Datalog clauses, as used in database theory. This paper provides a 
fixed-point characterization of the minimal models of these formulae that serves as the theoretical 
foundation of a forward-chaining algorithm for determining their satisfiability. This algorithm, 
which generalizes the standard attribute-value unification algorithm, is also recognizable as a 
nondeterministic variant of the semi-naive bottom-up algorithm for evaluating Datalog programs, 
further strengthening the connection between the theory of feature structures and databases. 

1. Introduction 

Despite their simplicity, a surprisingly wide range of linguistic phenomena can be de- 
scribed in terms of simple equality constraints on values in attribute-value structures, 
which are a particularly simple kind of feature structure (see Shieber 1986; Johnson 
1988; Uszkoreit 1986; and Bresnan 1982 for examples of some of these analyses). But 
some phenomena do not seem to be able to be described in such a pure 'unification' 
framework. For example, the analysis of conjunctions in LFG (Kaplan and Maxwell 
1988b) and the formalizations of Discourse Representation Theory (Kamp 1981) pre- 
sented in Johnson and Klein (1986) and Johnson and Kay (1990) require additional 
mechanisms for representing and manipulating aggregates or sets of values in ways 
that are beyond the capability of such "pure" attribute-value systems. Further, sortal 
constraints (which also cannot be expressed as simple equality constraints) can be used 
to formulate simpler and more comprehensible grammars (Carpenter 1992; Carpenter 
and Pollard 1991; Pollard and Sag 1987, 1992). 

Versions of both of these kinds of constraint, as well as the familiar attribute-value 
constraints, can be expressed as Scho'nfinkel-Bernays'formulae (as demonstrated in John- 
son 1991a, 1991b), so that the problem of determining the satisfiability of a system of 
such constraints is reduced to the satisfiability problem for the corresponding formula. 
This class of formulae (defined in Section 3.1) seems to be expressive enough for most 
linguistic purposes when used with an external phrase-structure backbone. That is, 
these formulae are used as annotations on phrase structure rules in the manner de- 
scribed in, e.g., Kaplan and Bresnan (1982), Shieber (1986), and Johnson (1988). This 
paper extends the author's previous paper on the topic (Johnson 1991a) by sketch- 
ing several other linguistic applications of Sch6nfinkel-Bernays' formulae (including a 
version of D-theory [Marcus, Hindle, and Fleck 1983; Vijay-Shanker 1992]), and pre- 
senting a least-fixed-point theorem that serves as the theoretical basis for a "forward- 
chaining" algorithm for determining satisfiability of Sch6nfinkel-Bernays' formulae. 
Interestingly, this algorithm can be viewed both as a straightforward generalization 
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of the standard attribute-value unification algorithm and also as a nondeterministic 
variant of the semi-naive evaluation method for Datalog clauses. 

Several extended "unification-based" constraint formalisms have been developed. 
In this paper, the term "feature structure" denotes any kind of structured entity used as 
a component of a category label. An attribute-value structure is a particularly simple 
kind of feature structure of the kind used in "pure" unification-based frameworks 
(Shieber 1986). Some extensions to the basic attribute-value framework are rather weak, 
e.g., allowing disjunctive and negative constraints and preserving decidability. 1 Such 
systems require an "off-line" phrase structure backbone to which these constraints are 
attached. It seems that most of the constraints that can be expressed in these formalisms 
can be expressed as Sch6nfinkel-Bernays' formulae, the constraint formalism described 
below. 

A second class of extended constraint formalisms has been devised to be capable 
of expressing the entire grammar as systems of constraints and as far as I know, for all 
of these systems the problem of determining the satisfiabihty of an arbitrary system 
of constraints that they can express is undecidable. 2 This is because the recognition 
problem for an arbitrary "unification-based" grammar is undecidable unless the size 
of the phrase structure tree is constrained somehow, e.g., by the offiine parsability 
constraint (Johnson 1988; Kaplan and Bresnan 1982; Pereira 1982; Shieber 1992), but 
there seems to be no natural way to impose such constraints in these systems because 
the encoding of the phrase structure tree in the feature structure is not distinguished 
from other features. 3 Thus in order to maintain decidability the system described 
here is not designed to be capable of expressing phrase structure constraints directly, 
and must be used with an external phrase-structure component, as in LFG (Bresnan 
1982). (However, Bob Carpenter [p.c.] points out that one can impose a bound on the 
size of the feature structure that can serve as an analysis [say, some polynomial of 
the length of the input], and so ensure decidability.) Interestingly, a first-order logic- 
based approach similar to the one presented in this paper can also be developed for 
extended constraint formalisms capable of expressing the entire grammar, but this is 
not discussed further here; see Johnson (in press b) for details. 

In the approach developed here Sch6nfinkel-Bernays' formulae are used to express 
a variety of feature structure constraints. Previous work has shown that these formulae 
are expressive enough to define arbitrary disjunctions and negations of constraints 
(Johnson 1990a, 1990b), a kind of 'set-valued' entity (Johnson 1991a), and they can be 
used to impose useful sort constraints (Johnson 1991b). The expression of D-theory 
constraints on nodes in trees is discussed in this paper. 

This paper extends the ideas in these earlier papers with theoretical results that 
suggest a forward-chaining algorithm for determining the satisfiability of an arbi- 
trary Sch6nfinkel-Bernays' formula. This generalizes the standard feature-graph uni- 
fication algorithm and is closely related to the semi-naive bottom-up algorithm used 
in database theory. 

1 For examples of this approach see Dawar and Vijay-Shanker (1990), D6rre and Eisele (1990), Johnson 
(1988, 1990a, 1990b, 1991a, 1991b, in press a), Karttunen (1984), Kasper (1987a, 1987b, 1988), Kasper and 
Rounds (1986, 1990), Langholm (1989), Pereira (1987), and Smolka (1992). 

2 Examples of this approach are Carpenter, Pollard, and Franz (1991), D6rre (1991), D6rre and Eisele 
(1991), Johnson (in press b), Kay (1979, 1985a, 1985b), Pollard and Sag (1987), Rounds and 
Manaster-Ramer (1987), Smolka (1988), and Zajac (1992). 

3 While it may well be that the universal recognition and parsing problems for natural language are 
undecidable (Chomsky [1986, 1988] points out that there is no contrary evidence), I know of no 
evidence that this is actually the case. It seems reasonable then to also investigate formalisms that can 
only express decidable systems of constraints (and for which there exist satisfiability-testing algorithms) 
if linguistically adequate systems can be found. 

2 
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Specifically, it is shown that the satisfying Herbrand models  of an arbitrary Sch6n- 
finkel-Bernays' formula are the fix points of certain functions, and that the least fixed 
points of these functions are all of the models  of the formula that are "minimal"  in 
a certain sense. This leads to a forward-chaining algori thm for comput ing  all of the 
atomic consequences of a Sch6nfinkel-Bernays' formula; the fixed-point theorem shows 
that this suffices to determine the satisfiability of an arbitrary Sch6nfinkel-Bernays' 
formula.  

2. Constraints, Partial Information, and Feature Structures 

This approach exploits the fact that constraints on well-formed linguistic structures 
(e.g., well-formedness constraints imposed by the grammar)  do not need to be isomor- 
phic to the structures that satisfy them. Although the distinction between constraints 
and structures that satisfy them might  seem too obvious to warrant  comment ,  it is not 
made  in most  work  on feature structures. 

A common  view holds that feature structures are inherently "partially specified" 
entities, which "unify" or merge with other feature structures to yield more  instan- 
tiated feature structures in an "information-preserving" way  (Shieber 1986). If two 
feature structures contain "contradictory information," then it is impossible to merge 
them to produce  a consistent object; unification is then said to fail. The feature struc- 
ture for an utterance is the result (if one exists) of unifying all of the feature structures 
for the lexical entries and syntactic rules in appropriate  ways. Thus in this view fea- 
ture structures play two roles; not only do they serve as linguistic structures, but  they 
are also used to encode constraints that the linguistic structures must  satisfy (see Sec- 
tion 2.10 of Johnson (1988) for an extended discussion). 

That is, under  this view feature structures serve not only as linguistic structures 
that may  or may  not  satisfy a constraint, but  are also interpreted as ' representing'  or 
'describing' all of the feature structures that they subsume. Given this dual  role for 
feature structures, it is impor tant  in this approach that if a feature structure S satis- 
fies a constraint o~, then every feature structure subsumed by  S should also satisfy o~ 
(Pereira 1987). If this "upward  closure" proper ty  holds, then the set of feature struc- 
tures satisfying any constraint can be represented by the set of its "minimal  models." 
Unfortunately,  ma ny  useful constraints do not have this property. For example,  un- 
der a classical interpretation, the set of feature structures satisfying negated feature 
structure constraints are not upward-closed (Moshier and Rounds 1987). 

The work  described in this paper  pursues a different approach. Following Kaplan 
and Bresnan (1982), feature structures are only (components  of) linguistic structures, 
and not partial descriptions of (other) linguistic structures. As such, a feature struc- 
ture either does or does not satisfy any particular set of constraints. An utterance is 
well-formed just in case there is some linguistic structure that satisfies all of the con- 
straints imposed by  the grammar  and has the phonological  form of that ut terance as 
its phonological  form (which itself is just another  constraint that the structure must  
satisfy). Since the relationship between a feature structure and a constraint that it satis- 
fies is essentially the same as the relationship between an interpretation and a formula 
that is true under  that interpretation, it seems natural  to conceive of a constraint as 
a kind of formula (in a format  that allows efficient computat ional  manipulat ion) that 
has feature structures as its intended interpretations. 

This approach is more general  in that it does not rely on the upward-closure  
property,  and it allows constraints on feature structures to have a structure quite 
different f rom the feature structures that they constrain. The subsumpt ion relation on 
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feature structures plays no special role in this approach; specifically, it is not required 
that the set of structures that satisfy a constraint be upward-closed.  

In general, a linguistic structure S must  satisfy several constraints, say oaT...  ~ o~,~, 
in order  to be well formed,  so in order  to solve the recognition and parsing problems, 
all we need do is determine if there are any S that satisfy oq~... ~ O~n, and if so, describe 
them somehow. 

It is convenient  to devise a language for expressing constraints, so that the o~i 
are well-formed formulae of this language, and its satisfaction relation is exactly the 
satisfaction relation ment ioned above. Viewed from this perspective,  the problem of 
determining if there is a structure S that satisfies the constraints o~1~ . . . ~  O~n is the same 
as the problem of determining if the formula c~ is satisfiable, where  o~ is Oq A " ' "  /X O~ n 

and conjunction is given the s tandard interpretation. Algori thms for deciding the sat- 
isfiability of arbitrary formulae in this language (if they exist) can therefore be used to 
determine the satisfiability of the linguistic constraints. Moreover,  if o~ ~ c~ ~ then o / i s  
a true description of every  model  of c~, i.e., the logical consequences of o~ are descrip- 
tions of every  well-formed linguistic structure that satisfies the constraints. Thus the 
logic of the constraint language provides  in principle all the necessary tools for deter- 
mining if a set of constraints are satisfiable, and if they are, providing descriptions of 
the satisfying structures. 

From this perspective, an "information state" is a kind of formula,  and "unify- 
ing" two such information states is accomplished by conjoining them and simplifying 
the resulting formula,  not by some manipulat ion of their models.  Partial information 
states are those that are satisfied by  more than one interpretation. The consequence 
relation corresponds to the subsumpt ion relation of traditional unification g rammar  (a 
formula o~ "contains more  information" than formula o / i f f  o~ ~ a') ,  and unsatisfiability 
corresponds to unification failure. 

3. Languages for Expressing Feature Structure Constraints 

There are ma ny  different possible constraint languages. Specialized languages can be 
constructed specifically for the task of expressing feature structure constraints (such 
as Kasper and Rounds 's  FDL [Kasper and Rounds 1990] and Johnson's  attr ibute-value 
languages [Johnson 1988]). Alternatively, the constraints may  be able to be expressed 
in some standard language, so that the satisfiability problem for linguistic constraints 
is reduced to the satisfiability problem for that language, as is done  here. 4 

Johnson (1990a), following a suggestion first made  in Kaplan and Bresnan (1982), 
showed how attribute-value constraints could be formalized in the quantifier-free sub- 
set of first-order logic, while later work  (Johnson 1991a, 1991b) proposed  a different 
formalization in the Sch6nfinkel-Bernays'  subset of first-order formulae.  5 

Roughly speaking, there is a trade-off be tween the expressive power  of a language 
and its computat ional  tractability. For example,  the satisfiability problem for the lan- 
guage consisting of conjunctions of equalities and inequalities of first-order terms can 

4 A third approach, developed by Smolka (1992), is to define a specialized language tailored for 
expressing attribute-value constraints and note its translation into some standard language, in this case, 
also the Sch6nfinkel-Bernays' class. 

5 Of course, there is no a priori reason for these subsets of first-order logic to be optimally suited for 
expressing feature structure constraints. Kasper and Rounds (1990) and more recently Blackburn (1991) 
and Blackburn and Spaan (1992) have suggested that it may be useful to express feature structure 
constraints in a special kind of modal logic. Johnson (1991b) also discusses the application of general 
first-order logic and nonmonotic logics to the specification of more complex constraints on feature 
structures. 

4 
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be decided in quasi-linear time using the congruence-closure algorithm, but this lan- 
guage can only express conjunctions of feature-value equalities and inequalities. If 
this language is extended to allow disjunctions (so that disjunctive feature-value con- 
straints can be expressed), the satisfiability problem becomes NP-complete (Gallier 
1986; Kasper and Rounds 1990; Nelson and Oppen 1980). 

Since disjunctive constraints seem to be a practical necessity for describing natural 
languages (Barton, Berwick, and Ristad 1987; Karttunen 1984), most practical feature 
structure systems will probably have NP-hard satisfiability problems. Given that we 
have to solve an NP-hard problem anyway, it seems reasonable to investigate the most 
expressive feature structure constraint language that has an NP-complete satisfiability 
problem. The Sch6nfinkel-Bernays' class, used in the manner described here, appears 
to be the most expressive language for feature structure constraints proposed in the 
literature so far whose satisfiability problem is no harder than NP. 

3.1 The SchSnfinkel-Bernays' Class 
The Sch6nfinkel-Bernays' class (hereafter SB) is the class of first-order closed prenex 
formulae without function symbols in which no existential quantifier occurs in the 
scope of any universal quantifier. That is, a formula is in SB iff it has no free variables 
and is of the form 

3 V l  . . . 3 V m  V X 1  . . .  VXnOL,  

where a contains no quantifier symbols or function symbols. SB formulae are a proper 
subset of first-order formulae, and they are interpreted in exactly the same way as first- 
order formulae. The body a may contain boolean connectives (including negation), 
which can be used to express arbitrary boolean combinations of constraints. 

Unlike the satisfiability problem for full first-order logic, which is undecidable 
(co-recursively enumerable), the satisfiability problem for SB is decidable; in fact it is 
PSPACE-complete (Lewis and Papadimitriou 1981). Further, if SBn is the class of SB 
formulae with n or fewer universal quantifiers, then for any fixed n the satisfiability 
problem for SBn is NP-complete (Lewis 1980). In the applications described here, the 
number of universal quantifiers is fixed (i.e., it does not vary with the utterance or even 
with the grammar), so the corresponding satisfiability problems are all NP-complete. 

The class of SB formulae is interesting for other reasons besides its ability to express 
a wide range of linguistic constraints. As shown below, the class of SB formulae in 
clausal form constitute an extension of Datalog that allows disjunctive consequents. 

3.2 Formalizing Attribute-Value Structures Using SB 
SB is both simple and expressive enough that grammar designers might choose to 
state linguistic constraints directly in SB, rather than in terms of attributes and val- 
ues. Nevertheless, it is important to understand how the properties of attribute-value 
structures can be stated in SB, since many of the techniques used to formalize them 
can be applied to other linguistically interesting structures as well. 

In fact there are several ways of formalizing attribute-value structures in SB, all of 
which seem to be linguistically equivalent. What follows is a formalization in SB that 
allows values to be used as attributes and allows attributes to be quantified over (this 
is handy for stating "sort constraints"), but no special claims are made for it over and 
above any other SB formalization. 

Following Johnson (1991b), attribute-value feature structures can be specified in 
SB in the following way. We can conceptualize of attribute-value arcs as instances of 
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a t h r e e - p l a c e  r e l a t ion  arc, w h e r e  arc(x,  a~ y)  m e a n s  tha t  the re  is an  arc  l e a v i n g  n o d e  x 
l a b e l e d  a p o i n t i n g  to n o d e  y.6 

Of  course ,  no t  al l  i n t e r p r e t a t i o n s  qua l i fy  as  a t t r i b u t e - v a l u e  s t ruc tu res ;  e.g.,  t hose  
w h i c h  sa t i s fy  b o t h  arc(x~ a~ y)  a n d  arc(x~ a~ z)  for  s o m e  y ~ z v io l a t e  the  r e q u i r e m e n t  
tha t  t he re  is a t  m o s t  one  arc w i t h  a n y  g i v e n  labe l  l e a v i n g  a n y  node .  We can  e x p r e s s  
th is  r e q u i r e m e n t  as  an  SB f o r m u l a  tha t  is t rue  in  the  i n t e n d e d  i n t e r p r e t a t i o n s  ( n a m e l y  
a t t r i b u t e - v a l u e  f ea tu re  s t ruc tures ) .  

Vx Va Vy Vz arc(x~a~y) A a r c ( x , a , z )  ~ y = z. (1) 

Simi lar ly ,  w e  can  exp re s s  the  p r o p e r t i e s  of  the  " a t t r i b u t e - v a l u e  c ons t a n t s "  w i t h  SB 
f o r m u l a e .  Let  con be  a p r o p e r t y  (i.e., a o n e - p l a c e  re la t ion)  t rue  of  the  " a t t r i b u t e - v a l u e  
c o n s t a n t "  e l emen t s .  These  e l e m e n t s  a re  r e q u i r e d  to h a v e  no  arcs  l e a v i n g  them.  The  
f o l l o w i n g  f o r m u l a  e x p r e s s e s  th is  r e q u i r e m e n t .  

V x V a  Vy  ~,, ( c o n ( x ) A a r c ( x ~ a ~ y ) ) .  (2) 

N o t e  tha t  the  w o r d  " cons t an t "  in the  n a m e  " a t t r i b u t e - v a l u e  c o n s t a n t "  is m i s l e a d i n g  
here ,  s ince  in  th is  f r a m e w o r k  no t  al l  SB c o n s t a n t  s y m b o l s  wi l l  d e n o t e  a t t r i b u t e - v a l u e  
"cons t an t s . "  M o r e  prec ise ly ,  b e i n g  an  ' a t t r i b u t e - v a l u e  c o n s t a n t '  is a p r o p e r t y  of  a n  
i n d i v i d u a l  in an  i n t e r p r e t a t i o n  (i.e., an  e l e m e n t  of  a f ea tu re  s t ruc tu re ) ,  w h e r e a s  b e i n g  
a c o n s t a n t  is a p r o p e r t y  of  a s y m b o l  in  a fo rmu la .  C o n s t a n t s  can  be  u s e d  to d e n o t e  
c o m p l e x  a t t r i b u t e - v a l u e  en t i t i e s  as  w e l l  as  a t t r i b u t e - v a l u e  cons tan t s .  

Final ly ,  w e  r equ i r e  tha t  the  n a m e s  of  a t t r i b u t e - v a l u e  c o n s t a n t s  d e n o t e  d i s t i nc t  
a t t r i b u t e - v a l u e  cons tan t s .  We  r e se rve  a f ini te  s u b s e t  N of  the  c o n s t a n t s  of  o u r  l a n g u a g e  
for  u se  as  the  n a m e s  of  a t t r i b u t e - v a l u e  cons tan t s ,  a n d  r e qu i r e  tha t  t h e y  sa t i s fy  t he  
f o l l o w i n g  s c h e m a t a .  7 

Fo r  each  c in  N,  con(c).  (3) 

Fo r  each  d i s t i nc t  p a i r  Cl, c2 in N,  cl ~ C2. (4) 

S c h e m a  (3) r equ i r e s  each  s y m b o l  in N to d e n o t e  a n  a t t r i b u t e - v a l u e  cons tan t ,  a n d  
s c h e m a  (4) enforces  d i s t i nc tne s s  in e s sen t i a l l y  the  s a m e  m a n n e r  as  tha t  u s e d  in  the  
spec i f i ca t ion  s y s t e m s  of  a l g e b r a i c  d a t a - t y p e  t h e o r y  ( K a p u r  a n d  M u s s e r  1987). 

F o r m u l a s  (1) a n d  (2) a n d  the  i n s t ances  of  s c h e m a t a  (3) a n d  (4) can  be  r e g a r d e d  
as  defining a t t r i b u t e - v a l u e  f ea tu re  s t ruc tu res .  These  a x i o m s  are  qu i t e  p e r m i s s i v e :  in  

6 Johnson (1991a) and Smolka (1992) propose that an attribute-value arc labeled a from x to y be 
conceptualized as an instance of a two-place relation a(x, y). For most applications there is little 
substantive difference between these two approaches; the approach taken here allows attributes to be 
quantified over, e.g., to state sortal constraints, and permits values to be used as attributes, as in e.g., 
LFG (Kaplan and Bresnan 1982); for discussion and linguistic applications see also Johnson (1988). 

7 As Patrick Blackburn (p.c.) points out, one consequence of this is that every model of these constraints 
will contain individuals corresponding to each attribute-value constant (since each constant symbol 
will be assigned a denotation). Whether this is desirable or problematic is debatable, but as he pointed 
out, it is easy to devise a conceptualization in which each attribute-value constant ci is conceptualized 
as a one-place predicate ci(.) that is true of at most one element. Under such a conceptualization 
(which can be formalized in SB as shown below) attribute-value constants would be the unique 
members of one-element sorts. 

(i) For each c in N, Vx Vy c(x) A c(y) ~ x = y. (Uniqueness) 
(ii) For each c in N, Vx c(x) ~ con(x). (Constant property) 
(iii) For each distinct pair cl, c2 in N, Vx ~ (cl (x) A c2 (x)). (Disjointness) 
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arc(n,al,bl) arc(n,al,n') ^ arc(n,a2,n') 
n n 

all a x ~  a2 

b! n' 

arc(n,a2,b2) 
n 

b2 

Figure 1 
Three constraints expressed as formulae and also depicted graphically. 

addit ion to the usual finite acyclic feature structures, they allow infinite structures, 
cyclic structures, structures in which complex values serve as attributes, etc. While 
ruled out by fiat in s tandard treatments, admitt ing these additional structures causes 
no linguistic difficulties that I am aware of (in fact, some analyses crucially depend  
on their existence, as described in section 2.1.3 of Johnson [1988]), so in the interests 
of pars imony additional constraints that forbid them are not stipulated. 

In fact, because SB formulae possess the finite model  proper ty  (i.e., if an SB formula 
has a model,  then it has a finite model),  restricting attention to finite models  does not 
change the set of satisfiable SB formulae. Therefore it could have no effect on the set of 
well-formed utterances. Cyclic feature structures can be prohibited with a constraint 
formalizable in SB, as described in Johnson (1991b), and one can express a constraint 
in SB that requires that all attributes are "attribute-value constants" (even though there 
appears  to be no linguistic motivat ion for such a constraint, and indeed, some analyses 
crucially depend  on this not being the case, as pointed out in Johnson [1988]). 

To summarize,  the simplest SB axioms defining attribute-value structures are quite 
permissive, allowing a wider  range of structures to count  as attribute-value structures 
than many  other formalizations. However ,  all of the major restrictions on attribute- 
value structures discussed in the literature either have no effect whatsoever  in this 
framework,  or else can be directly stated as additional SB constraints. 

3.3 Expressing Feature Structure Constraints with SB 
In this approach,  simple attribute-value constraints are represented by quantifier-free 
atomic formulae. For example, a constraint that the value of n's al arc is bl would  be 
represented by  the atom arc(n,al,bl), a constraint that the value of n's a2 arc is b2 is 
represented by arc(n, a2, b2), and a constraint that the value of n's al arc is the same 
as the value of its a2 arc is represented by the conjunction arc(n, all n') A arc(n, a2~ n') 
(n ~ is the single value of both arcs). These three constraints are depicted graphically in 
Figure 1. Note that the graphs in this figure are (depictions of) formulae,  not attribute- 
value feature structures. 

Attribute-value "unification" is the conjunction and simplification of the formu- 
lae expressing the constraints to be unified. If all three constraints in the example of 
Figure 1 are conjoined together with axioms (1-3) above, then by (1) it follows that 
bl = n ~ = b2. Further, if bl and b2 are distinct constant symbols in N (thus they name 
attribute-value constants), then bl ~ b2 is an instance of (4), and the conjunction is 
therefore unsatisfiable. For further  examples and a discussion of how the disjunc- 
tion and negat ion of attr ibute-value constraints are t ransparently representable as SB 
formulae,  see Johnson (1991a, 1991b). 
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A major motivation for using SB is that a wide variety of constraints, in addi- 
tion to standard attribute-value constraints, can be expressed using it. This allows a 
grammar developer to introduce a wide variety of "designer features" with possibly 
idiosyncratic, customized properties, while guaranteeing that the composite system is 
decidable (usually in NP-time, as noted above). 

For example, suppose we want to impose sort restrictions of the following kind. 
To abbreviate the lexical entries of verbs we might introduce the one-place predicate 
3rd-sg, where 3rd-sg(x) indicates that the value of x's person attribute is 3rd and x's 
number attribute is singular. This constraint can be expressed using the following SB 
formula. 

Vx 3rd-sg(x) ~ arc(x, person, 3rd) A arc(x, number, singular). (5) 

Similarly, constraints that restrict the possible values of certain attributes can be im- 
posed. For example, one might want to require that the value of every arc labeled 
number is either singular or plural. This constraint can be expressed as the following 
SB formula. 

Vx Vy arc(x, number, y) ~ y = singular V y = plural. (6) 

These examples demonstrate only a small fraction of the variety of the feature structure 
constraints that can be expressed in SB. Even though all of these examples are based 
on attribute-value features, other sorts of features can be described in SB as well. For 
example, Johnson (1991a) shows how to formulate a variety of constraints on 'set- 
valued' features in SB. 

3.4 Expressing Tree Structure Constraints with SB Formulae 
Inspired by the work on description theory or 'D-theory' (Marcus, Hindle, and Fleck 
1983; Vijay-Shanker 1992), this section shows how some elementary constraints on 
precedence and dominance in a tree can be expressed as SB formulae. It differs from 
that work in that different kinds of constraints are expressible (Vijay-Shanker was 
concerned with the formalization of a different kind of grammar), and that all of the 
constraints expressible in the system described below are decidable (this follows from 
the fact that they are defined and expressed using Sch6nfinkel-Bernays' formulae). 
These constraints are intended to appear as annotations on phrase structure rules (in 
the same way that attribute-value constraints do) and could be used to enforce a va- 
riety of "long-distance" relationships, such as the co- and contra-indexing constraints 
of binding theory (i.e., equality and inequality constraints on the values of index at- 
tributes). 

The axiomatization begins by defining the primitive tree structure relations precedes 
and dominates. Once these primitive tree structure relations are defined, they can be 
used to approximate more complex relationships such as c-commands, as described 
below. All of these axioms are in the Sch6nfinkel-Bernays' class, so the satisfiability of 
arbitrary boolean combinations of such constraints is decidable. 

First, note that the standard definition of trees in terms of the binary relations 
< (linear precedence) and D (domination) can be expressed directly as Sch6nfinkel- 
Bernays' formulae. The axioms presented below are just the definitions of trees given 
in Partee, ter Meulen, and Wall (1990) and Wall (1972) using the syntax of first-order 
logic. Axioms (7a-c) require that < is a strict partial order, and axioms (8a-c) require 
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that D is a weak partial order over the nodes in a tree. In what follows, N(x)  is 
interpreted as meaning that x is a tree node. 

VX "~X K X 

Vx Vy x < y ~ ~y < x 
V x V y V z x  < y A y  < z - + x  < z  
Vx D(x, x) +-+ N(x)  
Vx Vy D(x,y)  A D(y,x)  ~ x = y 
Vx Vy Vz D(x, y) A D(y,z)  ~ D(x,z) 

(irreflexivity) (7a) 
(asymmetry) (7b) 
(transitive closure) (7c) 
(reflexivity) (8a) 
(antisymmetry) (8b) 
(transitive closure) (8c) 

Axiom (9) requires that there is a node that dominates all other nodes, and axiom 
(10) requires that for each pair of nodes either one precedes the other or one dominates 
the other. Axiom (11) enforces the "no tangling" constraint. 

3 x X(x) A Vy X(y) + D(x, y) 
Vx Vy X(x) A X(y) + ((x < y v y < x) 

-~(D(x, y) v D(y, x))) 
Vw Vx Vy Vz w < x A  D(w,y)  A D ( x , z )  ~ y < z 

(single root condition) (9) 

(exclusivity) (10) 
(nontangling condition) (11) 

Finally, the following axioms (implicit in the standard treatments cited above) 
require the precedence and dominance relations to range over tree nodes. 

vx Vy x < y + X(x) A X(y) (12a) 

Vx Vy D(x, y) -~ N(x)  A N(y)  (12b) 

This concludes the specification of linear precedence and dominance relations over 
nodes. We now turn to the specification of other relations in terms of these. The proper 
dominance relation P can be defined in terms of dominance as follows. 

Vx Vy p(x, y) ~ x # y A D(x, y). (13) 

However, many interesting linguistic relations cannot be defined by Sch6nfinkel-Ber- 
nays' axioms. For example, the c-commands relation C is defined by the following 
formula (which says that x c-commands y iff x does not dominate y, and every node 
z that properly dominates x also properly dominates y). 

Vx vy C(x, y) ~ ~D(x, y) A Vz e(z, x) ~ P(z, y). (14) 

It is easy to see that this definition is not equivalent to a Sch6nfinkel-Bernays' for- 
mula by expanding the equivalence into two implications and moving the embedded 
quantifier out. 

Vx Vy Vz C(x,y) + (-~D(x,y) A (P(z,x) ~ P(z,y))). (14a) 

Vx Vy 3z (~D(x, y) A P(z, x) ~ P(z, y) ) ~ C(x, y). (14b) 

Formula (14b) is not in SB because it contains an existential quantifier inside the scope 
of a universal quantifier. There are a number of ways to respond to this problem. 

First, we can abandon the attempt to work within the Sch6nfinkel-Bernays' class, 
and work with some other language. Rounds (1988) describes such a language called 
LFP, whose decidability follows from the fact that the domain of quantification is 
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restricted (just as in SB). However, it seems to be difficult to devise a decidable system 
capable of simultaneously expressing both tree structure and the variety of feature 
structure constraints that the SB approach described here can. Blackburn, Gardent, 
and Meyer-viol (1993) introduce a modal language L T for describing trees decorated 
with feature structures, whose satisfiability problem is undecidable. In the long run, 
such specialized "designer logics" may provide the most satisfying integration of tree 
structure and feature structure constraints. 

Second, the 'one-sided' approximation (14a) can be used in place of the correct 
axiom (14). The effect of using such one-sided approximations was investigated in 
Johnson (1991a). It was shown there that if ~ is a formula such as the one in (14) and 
~/is the one-sided approximation (14a), then for any formula ~+(C) in which C only 
appears positively, ~ A ~+ (C) is satisfiable iff ~' A ~+ (C) is satisfiable. That is, if we are 
concerned only with positively occurring constraints, we can simplify (14) to (14a), 
i.e., ignore (14b), without affecting constraint satisfiability. 

Third, we can regard formulae such as (14) as the "macro" (15), used to expand 
constraints at the interface between the syntactic rules and the constraint solver. This 
"macro expansion" rewrites c-commands constraints into boolean combinations of con- 
straints that the constraint solver can handle. 

C(x,y) ~ -@(x~y) A vz p(z~x) ~ P(z~y). (15a) 

-~C(x~y) ~ D(x~y) v 3z (P(z~x) A -~P(z~y)). (15b) 

The second and the third approaches differ in important ways. In the second ap- 
proach, c-commands is a relation that is "understood" by the constraint solver (albeit 
only in its one-sided form), so it can be used to define other relations. In the third 
approach, c-commands constraints are not primitive constraints, so relations defined in 
terms of c-commands must also be expressible in terms of "macro expansion." In the 
second approach, constraints are quantifier-free formulae (quantifiers appear only in 
the axioms), so the satisfiability problem is in NP. But in the third approach, macro 
expansion produces formulae that contain additional quantifiers, so the satisfiability 
problem may be PSPACE-complete. 

3.5 Limitat ions  o n  Constraints  Express ible  w i t h  SB Formulae  
Of course, SB is not as expressive as full first-order logic. It is incapable of expressing 
functional relationships, since these require an existential quantifier inside the scope of 
a universal quantifier. This means, among other things, that it is impossible to state a 
constraint in SB requiring that a certain node must exist (as was noted in the discussion 
of c-command in the previous section) or that all nodes possess certain attributes. Thus 
for example, the following constraint, which requires that every tensed entity possess  
number and person attributes, is a first-order formula that is not in SB, since it requires 
a functional relationship between entities with tense attributes and the values of their 
number and person attributes. 

Vx Vy arc(x~ tensG y) ~ (3z arc(x~ number~ z)) A (3z arc(x~ person~ z)) (16) 

Similarly, a number of other extensions to the basic attribute-value framework dis- 
cussed in the literature cannot be formalized in SB. Subsumption constraints, used in 
the treatment of (natural language) conjunction, are not expressible as SB formulae 
because the satisfiability problem for conjunctions of subsumption and attribute-value 
constraints is undecidable (D6rre and Rounds 1992). Positively occurring functional 
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(El) V x x = x .  

(E2) V x V y x = y ~ y = x .  

(E3) V x 0 . . .  VXn xj = x 0 A P ( X l ~ . . .  ~ xj~...~ xn) ~ P(Xl~...~ Xo~...~ Xn) 
for j = 1~...~ n, for every predicate symbol P appearing in ~. 

(E4)  VXo...VXn xj = x 0  --~ f(xl~...~Xj~...~Xn) =f(Xl~...~Xo~...~Xn) 
for j = 1~...~ n, for every function symbol f appearing in ~. 

Figure 2 
Equality axiom schemata for a first-order formula ~. 

uncertainty constraints, used in the LFG treatment of long-distance dependencies (Kap- 
lan and Zaenen 1989) appear to have a decidable satisfiability problem (Kaplan and 
Maxwell 1988a), but the satisfiability problem for arbitrary boolean combinations of 
functional uncertainty constraints is undecidable (Keller 1991), so these cannot be ex- 
pressed using SB formulae either (since the quantifier-free subclass of SB is closed 
under boolean operations). 

3.6 The Equality Relation 
In this paper the intended interpretation of the equality relation is identity; i.e., a = b 
if and only if a and b denote the same individual. However, for some purposes (e.g., 
in the least-fixed-point characterization of minimal models given below) this "special" 
interpretation of the equality complicates matters, and it is more convenient to treat 
the equality relation as a "normal" relation that is defined by a set of axioms E. 

The idea is that E has the property that a formula ~ is satisfiable under the identity 
interpretation of equality if and only if {9~} U E is satisfiable in an interpretation in 
which equality is not given any special treatment. In effect, the axioms E require 
that the equality relation denotes an equivalence relation, and permit the substitution 
of equals for equals. Together these imply that no predicate can distinguish equal 
individuals. This means that in terms of satisfiability and the consequence relation, 
exactly the same results are obtained irrespective of whether equality is treated as 
identity or defined by the axioms E. 

Such treatments of equality in first-order logic are well known and described in 
standard texts. For example, Chang and Lee (1973) give the axiom schemata in Figure 2, 
which generates syntactic equality axioms E for a first-order formula 9~, and prove that 
E has the properties just described, s 

What is important here is that for an SB formula ~ the instances of the axiom 
schemata are all SB formulae, and there are only finitely many instances of these 
schemata. 

This means that for an arbitrary SB formula ~ there is another SB formula ~ such 
that ~ is satisfiable with respect to an identity interpretation of equality if and only if 

A ~ is satisfiable with respect to an interpretation in which equality is treated like any 
other relation. Thus a method for determining the satisfiability of SB formulae without 
equality can be used to determine satisfiability of SB formulae in which equality is 
interpreted as identity. 

8 Of  course,  (E4) has  no ins tances  if ~ is an  SB formula,  since SB formulae  do not  contain funct ion  
symbols .  

11 
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(17) Vx x = x. 

(18) Vx Vy x = y ~ y = x. 

(19) Vx Va Vy VXl x -~ Xl /X arc(x, a, y) ~ arc(x1, a, y). 

(20) Vx Va Vy Val a = al A arc(x, a, y) ~ arc(x, al, y). 

(21) Vx Va Vy V y l  y = yl Aarc(x ,a ,y)  ~ arc(x,a,yl) .  

(22) VCl Vc2 c = Cl A con(c) ~ con(c1). 

(23) Vx Vy x = y A 3rd-sg(x) ~ 3rd-sg(y). 

Figure 3 
The equality axioms for arc, con, and 3rd-sg predicates. 

For example ,  consider the SB formulae  in (1-4) and  (5-16). These contain the 
three-place relation symbol  arc and the one-place relation symbols  con and 3rd-sg. The 
equali ty axioms obtained f rom schemata  (El-E4) for any  sys tem of constraints that  
ment ion  just these relations are given in Figure 3. 

4. Clausal Form and Disjunctive Datalog 

It is technically easier to work  with  a syntactically restricted class of SB formulae  
where  the b o d y  of each formula  has a part icular  syntactic fo rm k n o w n  as clausal form 
or Skolem standard form. 

Definition 
A clause is a fo rmula  of the fo rm ,-~ o~1 V • • • V ~-, c~m V fll V • • • V ft,, where  each oq and  
fly is an atomic formula  (i.e., is of the fo rm p ( h , . . . ,  tn)), and m, n > 0. A formula  ~ is 
in clausal fo rm iff it is a conjunction of clauses. 

The ,-~ ai are called negative literals and the f j  are called positive literals. A clause 
for which m = 0 (i.e., one that  consists solely of posi t ive literals) is called a positive 
clause, and one for which n = 0 (i.e., one that consists solely of negat ive literals) is 
called a negative clause. A clause for which  n = 1 is called a definite clause. A Horn 
clause is a clause for which n < 1, i.e., either a negat ive clause or a definite clause. 

Abus ing  notat ion somewhat ,  a formula  ~ in clausal fo rm will somet imes  also be 
treated as the set of the clauses that  make  u p  the conjunction ~. Similarly, because  
clauses are used  as rewri t ing rules below, the clause ~-, o~1 V -. .  V ,-~ o~ m V f l  V . . .  V fin 
will somet imes  be wri t ten as the equivalent  implicat ion oz I A . . - /x  o~ m ~ fll V .- .  V fin. 

A formula  ~ in clausal fo rm does not  contain any  quantifier  symbols .  As is stan- 
dard,  all variables in ~ are treated as implicit ly universal ly  quantif ied at the clausal 
level. Existentially quantif ied variables in SB formulae  are inessential, in that  they can 
a lways  be directly replaced by  Skolem constants.  

Restricting at tention to SB formulae  in clausal fo rm imposes  no real restriction on 
the class of constraints expressible. Standard procedures  for t ransforming  first-order 
formulae  into clausal form, such as the ones described in Chang  and Lee (1973), Duffy 
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(1991), or Genesereth and Nilsson (1987), t ransform SB formulae into SB formulae in 
clausal form. 

Interestingly, clausal form SB formulae correspond one-to-one with an extension 
to Datalog (Ullman 1988) that allows disjunctive "heads" or consequences. In notation 
borrowed from disjunctive logic programming (Kowalski 1979; Lobo, Minker, and 
Rajasekar 1992; Loveland 1987), the clauses above would  be writ ten as listed in the 
appendix.  While the connection between logic p rogramming  and feature structures is 
well known (Ait-Kaci 1984; Ait-Kaci and Podelski 1993; Carpenter  1991, 1992; H6hfeld 
and Smolka 1988; Pereira 1987; Shieber 1992; Smolka 1992), this shows that the theory 
of feature structure constraints is also related to database theory as well. 

Negative clauses correspond to Datalog integrity constraints, and clauses with a 
single positive literal are definite clauses. Simple assertions, e.g., about  the existence 
of arcs, consisting of exactly one positive literal are Datalog atomic clauses. Clauses 
with two or more positive literals cannot be expressed in Datalog itself, but  require 
the disjunctive extension of Datalog. The appendix displays all of the SB formulae 
ment ioned in this paper  so far in clausal form in Datalog notation; (6'), (10 ~) and 
(7") are expressed in the disjunctive extension to Datalog. In fact, the axioms defining 
attribute-value structures (1-4) and syntactic equality (El-E3) are all Horn  Datalog 
clauses; i.e., the disjunctive extension is not needed for defining attribute-value feature 
structures. 

5. Determining the Satisfiability of SB Formulae 

This section describes a forward-chaining algori thm for determining the satisfiability of 
SB formulae in clausal form. This algori thm is a nondeterminist ic  variant of the semi- 
naive evaluation method  for Datalog clauses in which the union-find algori thm is used 
to efficiently maintain equivalence classes of equal terms. It is also recognizable as a 
generalization of the s tandard unification algori thm for feature structures to arbitrary 
Horn  SB constraints. 9 The t reatment  is informal because the goal of the section is 
to point  out several impor tant  s tandard implementat ion techniques rather than to 
advance a totally new algorithm. 

The key intuition behind the algori thm is this. To demonstra te  the satisfiability of 
a set S of clauses, it is sufficient to exhibit a set A of ground atoms drawn from the 
Herbrand  base of S such that the following conditions hold (the next section proves 
this assertion). 

(a) 

(b) 

(c) 

' ~ of any negative clause in S are For no ground instance ~ o~ 1 V .-. V ~ o~ m 
t in A. (If they were, then that clause would  be falsified all of c~1,..., c% 

by A.) 

For each ground instance fl~ V • .. v fl~ of a positive clause in S, at least 
one of the fl[ is in A. 

' A .  A ' ~ f l ~ V . . - V f l ~ o f a n i m p l i c a t i o n i n  For each ground instance c h .. o~ m 
! S, if all of the o ~ , . . . ,  o~ m are in A then so is at least one of the f l ( , . . . ,  fl~. 

(In fact, the other two conditions are just special cases of this condition.) 

9 It is a generalization of the algorithm described in Hegner (1991), which treats Horn combinations of 
attribute-value constraints. 

13 
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5.1 Naive Evaluation 
One could attempt to find such a set A in the following manner. First, one nondeter- 
ministically selects a fl~ from each of the ground instances of the positive clauses in 
S and adds these to A. Then one attempts to close A with respect to condition (c); if 

' ' of some (ground instance of an) implication are in A, all of the antecedents oq , . . . ,  olm 
then one of the consequents fl~,.. . ,  fl~ is nondeterministically selected and added to 
A, unless at least one of them is already present. (Of course, all such nondeterministic 
paths might have to be investigated.) Periodically, condition (a) is checked; if it fails 
to hold, then this nondeterministic path on the search for A must be abandoned. Non- 
determinism arises solely from the presence of disjunction in consequents of clauses; 
if S is a set of Horn clauses then the fixed-point calculation proceeds deterministically. 

Ignoring the checking of condition (a), the method is essentially computing a fixed- 
point of the nonnegative clauses in S via a kind of iterative approximation known as 
naive evaluation. Naive evaluation is unnecessarily computationally inefficient. Once 
the set A is large enough to require an atom o~ to be added to A, naive evaluation 
"rediscovers" this requirement on all subsequent passes. 

5.2 Semi-Naive Evaluation 
Semi-naive evaluation avoids rediscovering the same fact in the same way by insisting 
that each time a clause is applied at least one of the antecedents was just discovered 
on the previous round (Ullman 1988, 1989). This is done by maintaining two sets 
of atoms, A and &A, where A is the set of atoms discovered one or more iterations 
ago, and &A is the set of atoms discovered at the last iteration. The nondeterministic 
semi-naive algorithm for computing a set A (if it exists) is sketched in Figure 4. In 
that algorithm choose is a "function" that nondeterministically picks one member from 
its set argument; it can be implemented using, e.g., backtracking. Ullman describes 
methods of matching clauses in S against the sets A and &A that avoids calculating 
all of the ground instances of the clauses in S. 

The semi-naive algorithm can be used directly with the syntactic equality axioms 
given in Section 3.4 as a decision procedure for SB formulae, and hence for systems 
of feature structure constraints. However, the resulting system is inefficient because 
the equality axioms, specifically the instances of schemata (E2) and (E3), cause the 
"copying" of any atom containing an argument that appears in an equality atom to 
all members of the equivalence class containing that argument. 

For example, if p(a), q(b) and a = b are atoms in A, then instances of (E2) and (E3) 
ensure that p(b),q(a) and b = a will be added to &A and thence to A. In general, if it 
is discovered that n constants a l , . . ,  an are equal, then A will ultimately contain the n 2 
equalities ai = aj, 1 < i < n, 1 < j <_ n, as well as at least n "copies" of any predicate 
containing any ai. 

5.3 Union-Find and Equality 
As noted above, the equality axioms ensure that the relation that the equality symbol 
denotes is an equivalence relation and the substitutivity of equals for equals. In general, 
the union-find algorithm (Corman, Leiserson, and Rivest 1990; Gallier 1986; Nelson 
and Oppen 1980) maintains the equivalence classes of the equality relation far more 
efficiently than an approach that uses the syntactic equality axioms. 

The equivalence classes are encoded by associating each constant with a pointer 
that is either null or points to another constant, where a points to b only if a = b. These 
pointer correspond exactly to the "invisible pointers" used in standard implementa- 
tions of the attribute-value unification algorithm. 

14 
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Input:  A set of SB clauses S. 

Output :  A set of g round  clauses A iff S is satisfiable. 

A : - - 0 ,  

&A := {choose({fl~,... ,fl~}) : fl~ V . . .  V fl~ is a g round  instance of a posit ive clause 
in S}, 

until &A := 0 do 

A : = A U & A ,  

' V .. • V N ' is a g round  instance of a negat ive if {o~ , . . . ,  oz~} C A, where  ~, oL 1 oz m 
clause in S and  at least one of the o~; is in &A, 

then fail, 

a A  := {choose({fl~,..., fl~}) : o~ A . . .  A olin ~ fl~ V . . .  V fl~ is a g round  instance 
, . . . ,  ~ is in &A of an implicat ion in S such that {oL~ Oq'n} C A, at least one of the o~ i 

and  no flj~ is in A}, 

return A. 

Figure 4 
The semi-naive algorithm for computing A. 

The find operat ion dereferences its a rgument ,  i.e., it follows these pointers  until it 
reaches a constant  with a null pointer, which is the equivalence classes'  representat ive.  
Just as in the s tandard  at t r ibute-value unification algori thm, all a rguments  are a lways  
dereferenced before they are used. 

The union operation,  called wheneve r  an a tom a = b is added  to the set A, merges  
their equivalence classes by  redirecting the pointer  associated with the representat ive 
of one of them to point  to the representat ive of the other. 1° 

In this approach,  only a toms that  contain the redirected constant  need to be added  
to &A and thence to A. For example,  if p(a) and q(b) are a toms in A and the equal i ty 
a = b is discovered,  causing a to be redirected to b, then only p(b) is added  to &A, 
and  thence to A. Further, the "original" a tom p(a) is no longer required; indeed,  the 
new a tom p(b) is exactly an argument-dereferenced var iant  of the old atom, so it is 
not necessary to copy  the a tom at all. In general,  equalities be tween  n i tems are repre- 
sented by  n - 1 nonnull  pointers,  and  copying  of a toms can be avoided  by  a rgumen t  
dereferencing. 

5.4 An Example 
This section presents  a very  s imple  example  that demons t ra tes  the semi-naive algo- 
r i thm and the union-find techniques. The clauses used are the at t r ibute-value axiom 
schemata  (1-4) and the axioms defining the sort  3rd-sg (5), as well  as the addi t ional  

10 The union-find algorithm achieves quasi-linear running time when it incorporates path compression 
and union by rank (Corman, Leiserson, and Rivest 1990). 
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s I 
3rd-sg(u), arc(u, number, v), v # sg, 
Vx Va Vy Vz arc(x, a, y) A arc(x, a, z) ~ y = z, 
Vx Va Vy ,-~ con(x)V ~ arc(x,a,y), 
con(sg), con(pl), con(3rd), 
sg # pl, sg # 3rd, pl # 3rd, 
Vx 3rd-sg(x) ~ arc(x, person, 3rd), 
Vx 3rd-sg(x) ~ arc(x, number, sg) 

constraints 
AV axioms 

sort defn. 

Figure 5 
Input clauses. 

constraints 3rd-sg(u), arc(u, number, v) and v ~ sg. These latter constraints assert the 
existence of an entity (denoted by  u) with the proper ty  3rd-sg and with a number arc 
whose  value v is something other  than pl. The complete set of clauses is given in 
Figure 5. In practice the attr ibute-value axioms would  probably not be explicitly enu- 
merated but  "built in," so that appropria te  instances are generated only w h en  needed.  

N o w  we proceed to iteratively calculate the sets &A and A using the algori thm in 
Figure 4. We calculate the first initial set of new atoms, &A0. A0 = 0, of course. 

&Ao = {3rd-sg(u), arc(u, number, v), con(sg), con(pl), con(3rd)} 

On the first i teration we note that the antecedents  of both  clauses defining the sort 
3rd-sg are satisfied (with x bound  to u), so &A1 is given as follows. 

A1 = {3rd-sg(u),arc(u,number~ v),con(sg),con(pl),con(3rd)} 

&A1 = {arc(u,person~3rd),arc(u, number, sg)} 

In the second iteration the antecedents  of the first attribute-value axiom are satisfied, 
so &A2 contains an equality atom. 

3rd-sg(u), arc(u, number, v), con(sg), con(pl), con(3rd), I 
A2 = arc(u, person,3rd),arc(u, number, sg) 

J 

&A2 = {v = sg} 

The equali ty a tom causes v to be redirected to sg, and at this stage the inconsistency 
of the der ived a tom v = sg in &A2 with the input  constraint v ~ sg in S is detected. (It 
may  be helpful to think of the constraint v ~ sg as the equivalent  clause v = sg ~ false). 
The algori thm therefore returns with failure, indicating that the set S is unsatisfiable. 
At the point  at which the inconsistency is detected, the set A contains the following 
atoms, where  v =~ sg indicates that v is redirected to sg. 

{ 3rd-sg(u)~ arc(u, number, v), con(sg), con(pl), con( 3rd), 
A 3 ~- arc(u, person, 3rd), arc(u, number, sg), 

v ~ sg 

The correspondence of this procedure  to the s tandard attr ibute-value unification algo- 
r i thm is quite strong. In this procedure,  the attr ibute-value axiom (1) detects situations 
in which some node has two arcs with the same label pointing to, say, y and z. If such 
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a situation arises, the equality y = z is inferred, which results in y being redirected 
to z and causes all of the arcs leaving y to be added  to &A, where  they will be com- 
pared with the arcs leaving z. The other attribute-value axiom schemata (2--4) detect 
constant-constant  and constant-complex clashes, causing failure if one is found.  

Efficient processing demands  that the atoms in A be indexed by their arguments  
to speed up  the matching atoms with the antecedents of clauses. One way  of doing 
this is to store on each constant a list of the atoms in which that constant appears. Such 
an index has the same structure as the s tandard graph encoding of feature structure 
constraints. 

6. A Fixed-Point  T h e o r e m  

We now turn to the theoretical justification of the bot tom-up forward-chaining proce- 
dures sketched in the last section, and show that such methods  will find a model  for 
a set of SB formulae in clausal form if one exists. This section demonstrates  that an 
SB formula in clausal form is satisfiable if and only if a bot tom-up forward-chaining 
procedure  finds a deduct ively closed set of atoms A. A similar theorem for the case 
in which all the clauses are Horn  clauses is presented in Lloyd (1984); this section 
extends that work  to arbitrary clauses. 

It presents a characterization of the models  of an arbitrary first-order formula 9~ 
in clausal form in terms of the least-fixed points of a set {T~, X} of partial functions 
from Herbrand  interpretations to Herbrand  interpretations. These functions have the 
proper ty  that A is a Herbrand  interpretation that satisfies ~ if and only if the least-fixed 
point  of at least one of them is a submodel  of A. 

For SB formulae this set of functions is finite and the least-fixed points are reached 
in a finitely bounded  number  of iterations. Since the procedures  described in the 
last section calculate the least-fixed points of these functions, they can be used to 
determine the satisfiability of an arbitrary SB formula as well as all of its g round 
atomic consequences. 

The functions T~, x play a similiar r61e here to one that the t ransformation Tp plays 
in the least-fixed-point semantics of Horn  clause programs. Informally, each function 
in the set {T~,x} corresponds to one whole sequence of nondeterminist ic  choices of 
disjuncts in non-Horn  clauses that could be made  dur ing  an iterative approximat ion 
of the least-fixed point. This section is based on Sections 5 and 6 of Chapter  I of Lloyd 
(1984), to which the reader  should turn for further  details. 

The fixed-point theorem holds for arbitrary first-order formulae in clausal form, 
but  the set {T~,x} is finite if and only if ~ does not  contain any function symbols,  i.e., 

is an SB formula. Equality is not treated specially, so the formula 9~ must  contain 
appropriate  equality axioms, as ment ioned above. 

Let U be the Herbrand  universe with respect to ~ (i.e., the set of all terms that 
can be constructed using the constant and function symbols appear ing in ~),11 and let 
B~ be the set of all ground atoms that can be formed using the predicate symbols of 
9~ with elements of U as arguments.  A Herbrand  interpretation A is a subset of B~. 

Note that the set of Herbrand  interpretations 2 B~ partially ordered  by the subset 
relation forms a complete lattice. Further, U and hence B~ are finite iff ~ is an SB 
formula. (If ~ is in clausal form but is not an SB formula then it must  contain a 
function symbol, so its Herbrand  universe U is infinite.) 

11 As is standard, if 9~ has no constant symbols then it is necessary to take U to be a set consisting of a 
single constant, say {a}. See, e.g., Chang and Lee (1973) for details. 
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Definition 
A Herb rand  interpretat ion A t r iv ia l ly  falsifies a set of clauses ~ iff there is a g round  

' ' of a negat ive clause ,-~ a l  V - . . V  ,-~ am in 9~ such that  instance , - ,  o~ 1 v - - .  v , ~  a m 

c A. 

That is, a He rb rand  interpretat ion trivially falsifies a set of clauses ~ just in case some 
negat ive clause in ~ is false in that interpretation.  Clearly, any  such interpretat ion 
cannot  satisfy ~, but  the converse  does  not hold: there are interpretat ions that  do not 
trivially falsify 9~ but  still do not satisfy ~ because they do not  satisfy one or more  of 
the nonnegat ive  clauses in ~. 

We turn n o w  to the nonnegat ive  clauses in ~. The idea is that  even if A does  not 
I A -  A t / I satisfy a g round  instance a 1 "" am ~ f l  V . .-  V fin of some nonnegat ive  clause 

in ~, we  can extend A so that  it does  so by  add ing  one of the f ; .  The chief technical 
difficulty here is caused by  the nonde te rmin i sm involved in deciding which of the f [  to 
add,  and  a device called a "choice function" is in t roduced to choose, for each g round  
instance of a clause, which  of the a toms in its consequent  will be added  to A if its 
antecedent  is contained in A. A choice function for a clause a l  A . . ,  A am ~ f l  V . . .  V fin 
is therefore a function f rom all possible ways  of g rounding  that  clause to one of the fli. 

Definition 
A choice function for a clause c = (al  A . . .  A am ~ fa V . . .  V f t , )  is any  function in 
(Vc -+ U) ~ [1 , . . . ,  n], where  Vc is the set of variables  in the clause c. 

That  is, a choice function for a clause is a function f rom variable  ass ignments  to an 
integer represent ing one of the clause 's  consequents.  It is so n a m e d  because  for each 
variable ass ignment  (i.e., each w a y  of g rounding  the variables  in ~) it "chooses"  an 
a tom f rom the consequent  of the clause. H o r n  clauses have  only one choice function, 
and  negat ive  clauses have  no choice functions at all. Note  that  since U is finite for SB 
formulae,  there are a finite n u m b e r  of variable ass ignment  functions for any  SB clause 
and  hence only a finite n u m b e r  of choice functions for any  SB clause. 

A choice function X for a set of clauses ~ is a function f rom 9~ to choice functions 
such that for each nonnegat ive  clause c in ~, X(c) is a choice function for c (the value 
that X takes on negat ive  clauses is ignored). Clearly, a choice function exists for every  
set of clauses. 

Given  a set of clauses ~ and  a choice function X for ~o, we  define a function F~, x 
f rom Herb rand  interpretat ions to He rb rand  interpretat ions as follows. 

Definition 
F~, x is a function in 2 B* ~ 2 B* that is def ined as follows. 

= { 0 ( f i )  : for all nonnegat ive  clauses 
C =  ( a l  A " ' "  A otto ---~ f l l  V " ' "  V f l n )  in 
and  for all variable ass ignments  0 : Vc ~ U such that  
0 ( a , ) , . . . , 0 ( a , )  E A and i =  X(c)(O)}  

Intuitively, F~, x cor responds  to one nondeterminis t ic  step in the ' bo t t om-up '  construc- 
tion of a He rb rand  mode l  for ~ described in the previous  section. If A makes  the 
antecedent  of some g round  instance of some clause in 9~ true, then we use the choice 
function X to pick an a tom in the consequent  of that g round  clause and  add  it to the 
interpretation. Different choice functions X represent  different sequences of nondeter-  
ministic choices, and  result  in the construct ion of possibly different interpretations.  
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The following lemma, based directly on proposition 6.3 of Lloyd (1984), notes the 
continuity (and therefore the monotonicity) of F~, x. 

Lemma 1 
The function F~, x is continuous. That is, if X is a directed subset of 2 B~ (i.e., every 
finite subset of X has an upper  bound in X) then F~,x(lub(X)) = lub(F~,x(X)). 

Proof 
Let X be any directed subset of 2 B~. Then {al,... ,am} G lub(X) if and only if 
{ a l , . . . , a m }  C A for some A E X. Then 

fl E F~,x(lub(X)) 

iff c = (al A-.-  A am ~ fll V . . .  V fl,) is a nonnegative clause in ~ 

{0(a l ) , . . . ,  •(an)} G lub(X), and fl = 0(flx(c)(o)) 

iff c = (al A . . .  A am ~ fll V . . .  V fin) is a nonnegative clause in ~, 

{0(a l ) , . . .  ,0(a , )}  C A for some A E X, and fl = 0(flx(c)(O)) 

iff fl E F~, x(A)  for some A E X 

iff fl E lub(F~,x(X)). [] 

The continuity of F~, x immediately implies the convergence of the sequence (F/~,x (O)); 
the value that it converges to is called the least-fixed point of F~, x, written Ifp(F~,x). 
Note that if ~ is in SB then there is an integer k such that lfp(F~,x) = Fk~,x(O); this 
follows directly from the monotonicity of F~, x and the finiteness of B~. 

The function F~, x and a condition requiring that the interpretation produced does 
not trivially falsify the set of clauses ~ together define the partial function T~, x. 

Definit ion 
T~, x is a partial function in 2 B~ --~ 2 B~ that is defined as follows. 

T~,x(A ) = F~,x(A ) if F~,x(A ) does not trivially falsify 9~, and is undefined other- 
wise. 

Note that if the sequence (T/~,x(A)) is defined for all i then (T/~,x(A)) = i (F~, x (A)). T~, x 
enjoys the following kind of monotonicity. 

Lemma 2 
Suppose A c A'. Then T~, x (A) is defined if T~, x (A') is defined, and T~, x (A) c T~, x (A'). 

Proof 
If A trivially falsifies ~ then A ~ does too, so T~,x(A ) is defined if T~,x(A' ) is defined. 
If T~,x(A' ) is defined then T~,x(A ) = F~,x(A ) _C F~,x(A' ) = T~,x(A' ). [] 

The following lemma shows that Herbrand models of 9~ contain fixed points of T~, x 
for some choice function X for 9~- 

Lemma 3 
For all Herbrand interpretations A, A ~ 9~ iff there exists a choice function X for 9~ 
such that T÷, x (A) _C A. 
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Proof 
We begin first with the left-to-right component  of the proof. If A ~ 9~, then A does not 
trivially falsify ~, so T~, x (A) is defined. Now we show how to find for each satisfying 
interpretation A a choice function X such that T~x(A ) = A. Since A satisfies ~, for 
every nonnegative clause c = (o~1 A. . -A O~m ~ fll V. . .  V fin) in 9~ and for every variable 
assignment function 0 for the variables in c, if 0(o~1)~...~ 0(o~n) E A, then by the truth 
conditions for implication and disjunction, some O(fli) E A as well. Thus, for all 0 such 
that 0(oq)~... ~O(C~n) E A let X(c)(0) be any i such that O(fli) E A, and let X(c)(0) take 
any permissible value otherwise. Hence T~, x (A) = F~, x (A) = A. 

Now suppose T~,x(A ) C A. Since T~,x(A ) is defined, A does not trivially falsify 
any negative clause in ~. Let c = (o~1 A . . .  A O~m ~ fll V ".. V fin) be any nonnegative 
clause in ~, and let ~ E V~ ~ U be any variable assignment function for the variables 
in c. If 0(o~1)~... ~0(O~n) E A then O(fli) E T~,x(A ) C A as well, where i = X(c)(0), so 
A ~ c and hence A ~ 9~. [] 

The following theorem shows that a formula is satisfiable if and only if the least-fixed 
point of at least one of the T~, x exists. It justifies the decision procedures presented in 
the previous section, which operate by searching for such least-fixed points. 

The proof actually establishes something stronger, viz., that every Herbrand model  
of ~ is an extension of the least-fixed points of one or more of the T~ x. Thus an 
enumerat ion of all of the least-fixed points of the T~, x yields all of the "minimal 
models" of ~ (although it is not clear that these are in fact necessary for recognition 
or parsing, as discussed above). 

Theorem 
is satisfiable if and only if there exists a choice function X for ~ such that lfp(T~,x) 

exists. 

Proof 
If Ifp(T~,x) exists then by Lemma 3, lfp(T~,x) = ~. Now suppose A is a Herbrand 
interpretation that satisfies 9~- Lemma 3 asserts the existence of a choice function X 
such that T~,x(A ) exists and T~,x(A ) G A. By Lemma 2 and the fixed point property 
noted above lfp(T~,x) exists, since lfp(T~,x) = T~x(O ) C T~x(A ) C A. [] 

It is important  to recognize that these "minimal models" are in general not upward-  
closed: an extension A' of a model  A can trivially falsify ~ even though A does not. This 
is essentially Moshier 's  (1988) and Pereira's (1987) observation that in the presence of 
negation the set of models is not upward ly  closed. 

We conclude this section with the observation that the positive consequences of a 
formula 9~ can be "read off" its least-fixed points. 

Corollary 
is satisfiable iff for some choice function X for ~, lfp(T~,x) exists. Moreover, if fl = 

fll V . . .  V fin is any disjunction of ground atoms, 9~ ~ fl iff for all choice functions X 
for ~ such that lfp(T~,x) exists, at least one of the fli is in lfp(T~,x). 

7. Conclusion 

The main goal of this paper was to demonstrate from a computational  perspective 
that Sch6nfinkel-Bernays' formulae are a natural generalization of (boolean combina- 
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tions of) attribute-value feature structure constraints. From a computational complexity 
perspective we noted that the satisfiability problem for SB formulae with a bounded 
number of quantifiers is NP-complete, so it is no harder than the satisfiability problem 
for disjunctive attribute-value constraints. 

From a more practical perspective, a semi-naive bottom-up evaluation strategy 
using union-find methods to handle equality generalizes the standard attribute-value 
"unification" algorithm to arbitrary SB constraints in clausal form. Because it treats 
standard attribute-value constraints in approximately the same way as the standard 
unification algorithm, and because it can incorporate the same kinds of indexing that 
the latter algorithm employs, the generalized algorithm should be able to determine 
the satisfiability of attribute-value constraints with approximately the same efficiency 
as the standard attribute-value unification algorithm. 

In generalizing attribute-value constraints to SB formulae, we noted that in clausal 
form the SB formulae constitute a disjunctive extension to Datalog, and that the stan- 
dard attribute-value unification algorithm is closely related to a version of semi-naive 
evaluation algorithm used to evaluate Datalog clauses. This offers another perspective 
on feature structure constraints; they can be seen as kinds of databases containing 
information about the linguistic structures they describe. 

Perhaps the greatest weakness of this work is the lack of an efficient method 
for treating disjunctive constraints. The backtracking strategy suggested in the body 
of the paper can be extremely inefficient, even with 'toy' grammars. This problem 
is not unique to this approach; rather, it is endemic to most complex feature-based 
approaches to natural language processing, as evidenced by the volume of literature 
on the subject. 

As discussed in Section 3, the satisfiability problem for SB formula with a fixed 
number of universal quantifiers is NP-hard, so all known algorithms require exponen- 
tial time in the worst case, and unless P=NP no tractable general-purpose algorithm for 
determining the satisfiability of SB formulae exists. With present technology, the best 
we can hope for is an algorithm that performs adequately on the types of problems 
that we actually encounter. 

Sometimes disjunctive constraints can be (automatically) transformed into nondis- 
junctive ones, thus avoiding the problem entirely. For example, Alshawi (1992) de- 
scribes a technique attributed to Colmerauer for transforming disjunctions of finite- 
domain feature-value constraints into conjunctions. Kasper (1988) and Hegner (1991) 
point out that Horn clauses, although technically disjunctions, can be handled con- 
siderably more efficiently than general disjunctive constraints. The forward-chaining 
mechanisms that they propose for treating these constraints appear to be special cases 
of the semi-naive algorithm sketched in this paper. 

Unfortunately, I know of no general adequate method for handling the disjunc- 
tive constraints that arise in real grammars with acceptable efficiency. The techniques 
discussed by Maxwell and Kaplan (1991, 1992) seem most directly compatible with 
the approach described in this paper, and the methods described by Kasper (1987b), 
Eisele and D6rre (1988), and Emele (1991) might have important applications as well. 
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Appendix A: SB Formulae in Disjunctive Datalog Format 

(1') 
(2') 
(3') 
(4') 
(5') 
(5") 

(5'") 
(6') 

(7a') 
(Tb') 
(7c') 
(Sa') 

Y = Z :-arc(X, A, Y), arc(X, A, Z). 

:- con(X), arc(X, A, Y). 

con (c ) .  (for each c in N) 
: -  cl = c2. (for each distinct pair ci, c2 in N) 
arc(X,  pe r son ,  3rd) : - 3 r d  sg(X).  
arc(X, number, singular) :-3rd_sg(X). 

3rd sg(X) :-arc(X, person, 3rd), arc(X, number, singular). 

Y = singular; Y = plural :- arc(X, number, Y). 

: - X < X .  
:- X < Y, Y < X. 

X < Z :- X < Y, Y < Z. 

d(X, X) :- n(X). 

(Sa") n(X) :- d(X, X). 
(Sb') 
(8c') 

(9') 
(9") 

(10') 
(10") 

(10"') 
(12a') 
(12a") 
(12b') 
(12b") 

(7') 
(7") 
(7") 

(14') 
(14") 
(17') 
(18') 
(19') 
(2o') 
(21') 
(22') 
(23') 

X = Y :-d(X, Y), d(Y, X). 

d(X, Z) :-d(X, Y), d(Y, Z). 

n (root) . 

d(root, Y) :- n(Y). 

X < Y; Y < X; d(X, Y); d(Y, X) :-n(X), n(Y). 

:-n(X), n(Y), X < Y, d(X, Y). 

:-n(X), n(Y), X < Y, d(Y, X). 

n(X) :- X < Y. 

n(Y) :- X < Y. 

n(X) :- d(X, Y). 

n(Y) :- d(X, Y). 

d(X, Y) :-p(X, Y). 

:- p(X, Y), X = Y. 

p(X, Y); X = Y :-d(X, Y). 

:- c(X, Y), d(X, Y). 

p(Z, Y) :- c(X, Y), p(Z, X). 

X=X. 

Y=X :-X=Y. 

arc(Xl, A, Y) :-X = Xl, arc(X, A, Y). 

arc(X, At, Y) :-A = Ai, arc(X, A, Y). 

arc(X, A, Yi) :-Y = Yi, arc(X, A, Y). 

con(C1) :- C = Ci, con(C). 

3rd sg(Y) :- X = Y, 3rd_sg(X). 
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