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In this study, optimization models using genetic algorithms (GAs) are proposed to study the
configuration of vowels and tone systems. As in previous explanatory models that have been
used to study vowel systems, certain criteria, which are assumed to be the principles governing
the structure of sound systems, are used to predict optimal vowels and tone systems. In most
of the earlier studies only one criterion has been considered. When two criteria are considered,
they are often combined into one scalar function. The GA model proposed for the study of tone
systems uses a Pareto ranking method that is highly applicable for dealing with optimization
problems having multiple criteria. For optimization of tone systems, perceptual contrast and
markedness complexity are considered simultaneously. Although the consistency between the
predicted systems and the observed systems is not as significant as those obtained for vowel
systems, further investigation along this line is promising.

1. Introduction

Studies of the universal characteristics of sound systems in human languages can be
pursued according to two different approaches, an inductive approach and a deductive
one. The inductive approach involves analyzing the database built from a survey of
a large number of languages to arrive at a list of “universal” features that can be
widely observed in the database. The deductive approach hypothesizes a number of
principles related to speech production and perception processes and predicts possible
systems using these principles. These two approaches, however, are often interwoven.
The principles hypothesized by the deductive approach are modified or falsified by
comparing the predictions with the results from the inductive analysis of real language
systems. At the same time, the ultimate aim for inductive analysis is to seek intrinsic
mechanisms and principles of human speech to explain the universals found in real
systems.

For the inductive approach in phonological studies, there are two large-scale
databases available. One is the Stanford Phonology Archiving (SPA) Project (Vihman
1977), which initially included 196 languages and was extended to 209 languages in
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1978. The other is the Phonological Segment Inventory Database (UPSID) (Maddieson
1984) at the University of California at Los Angeles, which initially included 371 lan-
guages and was later extended to 451 languages (Maddieson and Precoda 1990; Lade-
foged and Maddieson 1996). Many typological studies have been carried out based on
these two databases. For example, in studying vowel systems, Crothers (1978) reported
an analysis using the SPA database. Ladefoged and Maddieson (1990) and Schwartz
et al. (1997b) reported comprehensive analyses for the vowels systems in UPSID.

Along with typological studies of the languages in these databases, explanatory
models, which attempt to explore the intrinsic reasons for structures and universals,
have also been proposed. In the study of vowel systems, the principle of maximal per-
ceptual contrast has a long tradition in linguistics (Jakobson 1941; Wang 1968). This
principle suggests that a vowel system tends to achieve a maximum contrast among the
vowels in the system. A number of numerical studies adopting this principle have been
proposed (Liljencrants and Lindblom 1972; Crothers 1978; Lindblom 1986). Lindblom
(1986) proposed the sufficient perceptual contrast principle, under which more sys-
tems are predicted to be consistent with natural systems than is predicted by the max-
imal perceptual contrast principle. Boë, Schwartz, and Vallée (1994) and Schwartz et
al. (1997a) added a new consideration called the focalization principle that is based on
the observation that vowels with strong formant convergence would be perceptually
preferred. More recently, de Boer (1997, 2000, 2001) proposed a synthesized model in
which agents interact with each other through iterative imitation games. With explicit
optimization, agents can develop coherent vowel systems that are close to real systems.

All of the works cited above are concerned with vowel systems. Far fewer studies
are reported on other components of a sound system, including consonants, tones (in
tone languages), and pitch accent (in non–tone languages), than on vowels. Lindblom
and Maddieson (1988) reported a study on phonetic universals in consonant systems
using data from UPSID. They proposed that the structure of consonant systems does
not arise from a single principle such as the maximization of perceptual contrast. In-
stead, articulatory factors interact with perceptual factors. According to their proposal,
consonant inventories tend to evolve so as to achieve maximal perceptual distinctive-
ness at minimum articulatory cost.

There are some inductive studies on the universals of tone systems as well. For
example, Maddieson (1978) reviewed the phonological universals of tones by analyz-
ing data from SPA. Also, Cheng (1973) reported a detailed analysis of the tone systems
in Chinese dialects. We have not, however, found any explanatory models that apply
a deductive approach for tone systems in the way that such an approach has been
applied for vowel systems.

More recently, Redford, Chen, and Miikkulainen (2001) reported their studies on
the universal and variations of syllable structures (i.e., the combinations of vowels
and consonants). They developed a computational model based on a version of the
genetic algorithm (GA) (Holland 1975) to simulate the emergence of syllable systems
in a language. A set of functional constraints related to perceptual distinctiveness and
articulatory ease are taken into account as optimization objectives.

In this study, we report some optimization models using GAs to study optimal
vowel and tone systems. In these models, the optimal systems are derived from the
models based on various explicit optimization criteria and compared with observed
systems. First, in the study of vowel systems, we compare two sets of criteria, one
considering only the principle of maximal perceptual contrast (Liljencrants and Lind-
blom 1972), and the other considering both the intervowel perceptual distance and the
intravowel spectral salience, that is, the dispersion-focalization principle proposed by
Schwartz et al. (1997a). In the second set of criteria, the two objectives, that is, inter-
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vowel perceptual distance and the intravowel spectral salience, are combined into a
scalar function. In comparing our results with those of earlier studies, we find that the
GA models demonstrate the effectiveness of the GA method in identifying the optimal
vowel systems based on the above criteria.

Second, we apply the GA method to study tone systems. In our application, two
objectives (maximum perceptual contrast and minimum markedness complexity) are
taken into account to predict the “optimal” tone systems. Instead of combining the
two objectives into one fitness function, we use a multi-objective GA (MOGA) model
in which a Pareto ranking method is applied for the fitness function. For comparison,
we also try a simple GA model that uses only perceptual distance as the optimization
criterion. The predicted systems are compared with the real systems for the two sets
of criteria.

In the following parts of the article, Section 2 gives a brief introduction to a simple
GA and a MOGA. Section 3 reports the simulation we performed for vowel systems
and comparisons with previous reports. Section 4 introduces our models for tone sys-
tems, together with a new analysis of an available tone systems database. Conclusions
and discussion are given in Section 5.

2. Introduction to Genetic Algorithms

2.1 Simple Genetic Algorithm
GAs were first proposed by John Holland in the 1960s (Holland 1975) and have become
widely used in various disciplines. The original goal of Holland’s GAs was to study the
phenomena of adaptation formally by importing the mechanisms of natural adaptation
into computer simulation models. Most of the current applications of GAs, however,
are used for specific optimization problems in which the focus is on the derivation of
optimal solutions to the problem rather than the process of adaptation.

The basic idea of GAs is based on “natural selection,” the principle of “survival
of the fittest,” which assumes that the individual that is better fitted to a particular
environment produces more offspring than others in that environment that are less
well suited for it; its “fit” genes are then transmitted to the next generation. A GA
operates on a population of chromosomes, each generating a potential solution to
the studied problem. The process of a traditional simple GA is as follows: At the
beginning of the algorithm, a population is randomly initialized, and the fitness of
each chromosome is evaluated according to an objective function (also called a fitness
function). A number of chromosomes are selected as parents from the population
according to their fitness, and parents then undergo crossover and mutation to produce
offspring with certain probabilities. Offspring with better fitness are then inserted into
the population, replacing the inferior chromosomes in the previous generation. With
this replacement, usually the population size is kept constant. This cycle is repeated
for a given number of generations, or stopped when a solution obtained is deemed
optimal. This process leads to the evolution of a population in which the individuals
are more and more suited to their environment, just as in natural adaptation. Because
of its global search mechanism, a GA model usually can find global optimal solutions
in a more efficient way than traditional optimization methods.

2.2 Multi-objective Genetic Algorithm
In a traditional GA, the fitness function deals only with one optimization objective.
Many practical problems, however, are concerned with several equally important (and
usually conflicting) objectives. These types of problems are called multi-objective or
multicriteria optimization problems (MOPs) (Stadler 1988).
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Human language is an instance of an MOP. A language system is constrained by
many demands and requirements. We can consider the current language system to be
the product of an optimization process based on such constraints. The constraints can
be divided mainly into three categories—the speaker constraint, the listener constraint,
and the learner constraint—which often lead to different directions of development for
the system. For example, for a sound system, the requirements that arise from speaking
and listening often conflict with each other. A sound that is easy for a speaker to
produce may not be easy for the listener to perceive. Similarly, perceptually distinctive
sounds may be difficult to pronounce. A system with a high perceptual contrast may
have a high production cost at the same time, as is the case with the consonant set
[� k’ ts � m r �] suggested by Ohala in questioning the effectiveness of the principle
of maximum perceptual difference in explaining consonant universals (Lindblom and
Maddieson 1988).

We can see the effects of such a tug-of-war between conflicting requirements in
various aspects of a language system. For example, in the perception of tones, a com-
pletely level tone is the easiest, from a psychophysical viewpoint, to differentiate from
nonlevel tones. It requires much effort on the part of a speaker, however, to produce a
perfectly level tone. As a consequence of accommodating a speaker’s effort, the listen-
ers will shift their linguistic perception boundary between level and rising tones away
from the psychophysical boundary, to allow the speaker some freedom in articulation
(Wang 1976).

Also, in syntax, a language with free word order may give the speaker a high
degree of flexibility in constructing sentences; however, it places the burden on the
listener to figure out the relationships among the words. This is solved by signaling
the roles of words by various case markers. If the case marking system is too complex,
however, it will be hard for children to learn as they acquire the language. Therefore
there may exist a balance point among the three different constraints involved.

The most distinctive characteristic of an MOP is that it does not have one singular
optimal solution, but rather a set of nondominated,1 alternative solutions, which is
often called the Pareto-optimal set. Recently a set of algorithms, called multi-objective
genetic algorithms, have been developed specifically to solve such multi-objective
problems. MOGAs have received much attention, and many scientific and engineer-
ing applications employing them have been reported (Fonseca and Fleming 1998; Van
Veldhuizen and Lamont 2000).

The simplest and most common way to tackle an MOP is to combine its several
objectives into one scalar function as the fitness function. Different objectives in the
problem are given different weights based on some a priori knowledge (Stadler 1988).
(Early studies on sound system optimization with multiple criteria, such as Redford,
Chen, and Miikkulainen [2001] and Schwartz et al. [1997a], adopted this approach.)
Such knowledge is very often unavailable, however, and most of the time the weights
are chosen by trial and error. Thus the performance of the algorithm usually is sensitive
to or biased by the weights assigned to the objectives.

Within the GA approach, another method called Pareto ranking is often used in
the fitness evaluation. The several objective values of a particular chromosome are
maintained as a vector, instead of being combined by means of a scalar function into
one single fitness value. The fitness of a chromosome is determined by its ranking

1 Assuming a minimization problem with p objectives, dominance is defined as follows: x1 is said to
dominate x2 (or x2 to be inferior to x1), if the fitness of x1, f (x1), is partially less than the fitness of x2,
f (x2), that is, fi(x1) ≤ fi(x2), ∀i ∈ {1, 2, . . . , p}; and fi(x1) < fi(x2), ∃i ∈ {1, 2, . . . , p}. A nondominated
solution is a solution such that there are no other solutions whose objectives are all better than its.
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Figure 1
An illustration of Goldberg’s Pareto ranking method. The numbers in parentheses represent
the ranks for the chromosomes.

in the population, which is obtained from comparing its objective vector with that of
others. There are many methods for ranking the objective vectors of chromosomes, and
in this study we use the one proposed in Goldberg (1989). Goldberg’s method assigns
ranks according to the following procedures. First, the nondominated chromosomes
from the whole population are found, rank 1 is assigned to them, and they are removed
from further consideration in the ranking process. Then, another set of chromosomes
is found from the remaining population that is now nondominated (because of the
removal of those assigned rank 1) and is assigned rank 2, and so forth. To illustrate the
algorithm, Figure 1 gives an example. Points A, B, C, D, E, F, and G represent candidate
solutions to a problem whose goal is to minimize two objectives. The objective values
of the solutions are shown in the f1-f2 plane. According to Goldberg’s method, solutions
A, B, C, and D are all nondominated and therefore assigned rank 1 and removed.
Solutions E and F are now nondominated, so both have rank 2; G has rank 3, the
worst rank.

3. Optimization Model for Vowel Systems

In this study, we use a simple GA model to search for the optimal configuration of
systems of simple vowels. We apply various optimization criteria proposed by earlier
studies (Liljencrants and Lindblom 1972; Lindblom 1986; Schwartz et al. 1997a) in
our GA model and compare the predictions produced under the various criteria. We
also use two sets of vowel inventories to provide another type of comparisons. The
predictions are also compared with observed systems.

3.1 Implementation of the GA Model
The GA model consists of a population with a number of chromosomes, each repre-
senting a possible vowel system. Each vowel is encoded according to the three pri-
mary parameters of vowel articulation, that is, tongue height, tongue backness, and
lip roundness. The first two articulatory parameters are supposed to be continuous
within the range of [0,1], whereas the last parameter is a binary value. Though this
encoding method allows an infinite number of vowels, following previous studies
(Lindblom 1986; Schwartz et al. 1997a), we assume there is a limited inventory of pro-
totypes from which the system can select candidate vowels. Only normal plain vowels
are considered. The encoding of the prototypical vowels is designed according to the
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Figure 2
The F1 and F′

2 diagram of prototypical vowels. Left: 18 vowels from INVL; right: 24 vowels
from INVS.
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Figure 3
Crossover and mutation operations in simulation of three-vowel systems.

vowels’ position as shown in the International Phonetic Alphabet (IPA) vowel chart.
Although the IPA vowel chart is better interpreted as an acoustic chart than as an
accurate projection of the real articulation of vowels, the chart can still be assumed to
reflect the relative positions of different vowels for articulation.

Two inventories of vowel prototypes are used, denoted as INVL and INVS, respec-
tively. The former consists of 18 vowels from a set of 19 vowels given in Lindblom
(1986).2 The latter set includes 24 vowels extracted from the set of 33 vowels given
in Schwartz et al. (1997a). Figure 2 shows the two inventories in terms of the vowels’
first formants (F1) and transformed second formants (F′

2) (Fant 1966) (see Section 3.2
for further explanation), both expressed in terms of the Bark scale (Hartmann 1997).

In the GA model, one-point crossover and one-point mutation are used. Take the
simulation of three-vowel systems as an example. Two chromosomes are selected from
the population as parents, as shown in Figure 3. Parent 1 includes three vowels: �, ø,
and ε, represented by [0.0 0.5 1], [0.3 0.1 1], and [0.7 0.2 0], respectively. And the three
vowels �, �, and � are included in parent 2, represented by [0.0 1.0 0], [0.5 0.5 0],
and [1.0 1.0 0], respectively. Crossover is randomly chosen to take place between two
vowels, say, the second and the third vowel in the example, and the two chromosomes
exchange their vowels. Next, at random, a mutation occurs in the third vowel in the
second offspring: [ε] is changed to [œ]. So the two offspring generated from the pair
of parents are [�, ø, �] and [�, �, œ].

2 The original inrounding front vowel [y] is deleted, as it is not a common primary vowel, and the
outrounding [ü] is changed to symbol [y] to conform with the IPA transcription.
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The crossover and mutation rates are both set to 1.0 in order to give GA a high
efficiency in searching for the optimal solution. If the genetic operations generate an
offspring with the same vowel occurring more than once in a system, this offspring is
removed from the population, and a new chromosome is randomly generated. These
offspring with higher levels of fitness than those that have been removed are then
inserted into the population to keep the population size constant.

3.2 Fitness Evaluation Functions
Two sets of criteria are taken into account in evaluating fitness of the candidate vowel
system. One considers only the principle of maximal perceptual contrast (Liljencrants
and Lindblom 1972), and the other considers both the intervowel perceptual distance
and the intravowel spectral salience related to the proximity of formants (i.e., the
dispersion-focalization principle proposed by Schwartz et al. [1997a]).

For the first criterion, the objective is to minimize the following fitness function:

F1 =

n−1∑
i=1

n∑
j=i+1

1
d2

ij
(1)

where dij is the perceptual distance between vowels i and j. Various metrics for cal-
culating perceptual distance between vowels have been proposed based on percep-
tual experiments manipulating different combinations of formants and amplitudes of
speech signals (Schwartz et al. 1997a). Usually the acoustic parameters, that is, the
higher formants (F2, F3, and F4), are first combined and transformed into an “equiva-
lent second formant” F′

2, and the auditory distance between two vowels is calculated as
the weighted Euclidean distance in the space of F1 and F′

2, where the weight between
F1 and F′

2 is determined by λ:

dij =
√

(F1i − F1j)2 + λ(F′
2i − F′

2j)
2 (2)

In this study, two methods of calculating F′
2 are tried, one proposed in Fant (1966),

and one given in Schwartz et al. (1997a), to examine the effect of different metrics of
calculating perceptual contrast. Therefore, we will have two fitness functions regarding
the first criterion, perceptual contrast, denoted as F1F and F1S, with the latter based
on Schwartz’s method and the former based on Fant’s.

The second criterion includes another objective in addition to the above F1, the
intravowel formant convergence:

Fc =

n∑
i=1

−1
(F2i − F1i)2 +

n∑
i=1

−1
(F3i − F2i)2 +

n∑
i=1

−1
(F4i − F3i)2 (3)

The overall fitness function for the second set of criteria is a weighted summation of
the above two objectives:

F2 = F1 + αFc (4)

The values of λ and α are crucial for the prediction. Schwartz et al. (1997a) tested
a number of values and found that the following ranges give the best prediction with
their vowel inventory:3 0.04 ≤ λ ≤ 0.09 and 0 ≤ α ≤ 0.4. In our experiments, we
choose the values λ = 0.0625 and α = 0.3, which are within the above ranges.

3 Note that the λ in our formula 2 corresponds to λ2 in Schwartz et al. (1997a); the range of λ is
therefore modified accordingly.
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Table 1
Frequent vowel systems in UPSID and predicted vowel systems using different inventories
and fitness functions.

N Observed systems Predicted systems

INVS INVL

3 [i, a, u](14)

F1F:
F1S:
F2:
S0:

[i, a, u]
[i, a, u]
[i, a, u]
[i, a, u]

[i, a, u]
[i, a, u]
[i, a, u]

4

[i, ‘e’, a, u](14)
[i, a, u, �](5)
[i, a, ‘o’, u](2)
[e, a, o,�](2)

F1F:
F1S:
F2:
S0:

[i, ε, a, u]
[i, ε, a, u]
[i, ‘e’, a, u]
[i, ‘e’, a, u]

[i, ε, a, u]
[i, ε, a, u]
[i, ε, a, u]

5 [i, ‘e’, a, ‘o’, u](97)
[i, ε, a, u, �](3)

F1F:
F1S:
F2:
S0:

[i, ε, a, ‘o’, u]
[i, ε, a, ‘o’, u]
[i, ε, a, ‘o’, u]
[i, ‘e’, a, ‘o’, u]

[i, ε, a, 	, u]
[i, ε, a, 	, u]
[i, ε, a, 	, u]

6

[i, ‘e’, a, ‘o’, u, �](26)
[i, ‘e’, a, ‘o’, u, �](12)
[i, ‘e’, æ, �, ‘o’, u](12)
[i,e, a, 	, o, u](4)

F1F:
F1S:
F2:
S0:

[i, e, æ, a, ‘o’, u]
[i, e, æ, a, o, u]
[i, e, æ, a, ‘o’, u]
[i, ε, a, ‘o’, u, �]

[i, ε, a, 	,u, �]
[i, æ, a, 	, u, ø]
[i, ε, a, 	, u,�]

7

[i, e, ε, a, 	, o, u](23)
[i, ‘e’, æ, a, ‘o’, u, �](6)
[i, ‘e’, a, ‘o’, u, �, y](5)
[i, ‘e’, a, ‘o’, u, �, �](4)
[i, e, ε, a, ‘o’, u, �](3)

F1F:
F1S:
F2:
S0:

[i, ‘e’, æ, a, ‘o’, u, �]
[i, e, æ, a, 	,u, �]
[i, e, æ, a, ‘o’, u, �]
[i, e, ε, a, ‘o’, u, �]

[i, e, ε, æ, a, 	, u]
[i, e, æ, a, 	, u, �]
[i,e, æ, a, 	, u, �]

3.3 Results and Analysis
We predict the optimal three- to seven-vowel systems using six sets of experiments,
each involving a combination of one of the two vowel inventories (INVL and INVS) and
one of the three different fitness functions (F1F, F1S and F2). The predicted systems are
listed in Table 1, together with the commonly observed systems found in the UPSID
database, as given in Schwartz et al. (1997a), and the predictions given in Schwartz et
al. (1997a) using the same parameters as those for F2 here (listed as S0).

First, we compare the predictions resulting from experiments using the same vowel
inventory but different fitness functions. The two perceptual distance metrics (F1F and
F1S) produce the same predictions for systems of small sizes (i.e., three-, four- and
five-vowel systems), but different predictions for larger systems (i.e., six- and seven-
vowel systems), which means that predictions for larger systems are more sensitive to
the transformation of F′

2. That transformation used in Schwartz et al. (1997a) produces
a more spread perceptual space in the F′

2 dimension, and especially [i] has a much
larger F′

2 than Fant’s transformation. It is hard to give an overall evaluation of which
perceptual distance metric gives better predictions based on the results we obtained.
F1S predicts a symmetric six-vowel system, whereas F1F does not, when INVS is used
as the vowel inventory; when INVL is used as the vowel inventory, however, F1S
predicts a strange six-vowel system with a front rounded vowel ø that is rarely attested
in primary vowel systems, whereas F1F predicts a system close to the second frequent
observed system in natural languages.

From the comparison of the two fitness functions F1S and F2, we can see that
the predictions they make in most cases are the same. There are some exceptions
(i.e. in those experiments using INVS in four-, six- and seven-vowel systems and in
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those using INVL in six-vowel systems). Predictions given by F2 differ from those
given by F1S only in some small variations between ε and ‘e’, ‘o’ and o, 	 and ‘o’. F2
does not predict more nonperipheral vowels than F1S, inconsistent with the proposal
of Schwartz et al. (1997a), although the parameters are set within the optimal range
suggested by them. The discrepancies between our results and Schwartz et al. (1997a)
may need further examination, because our experiment using the same F2 and INVS
as those in Schwartz et al. (1997a) produced different predictions of optimal five-, six-
and seven-vowel systems than those they reported (reproduced as the list of S0 in the
table), given λ = 0.0625 and α = 0.3. When λ is set to 0.09 for the five-vowel system,
however, and when λ = 0.025 and α = 0.1 for the six-vowel system, the predictions
are the same as those in Schwartz et al. (1997a).

Second, we compare predictions resulting from experiments employing the same
fitness function but different inventories. Though the original data set from which
INVS is selected is said to be carefully controlled to sample the acoustic space as
evenly as possible (Schwartz et al. 1997a), we do not see much difference between
INVS and INVL for predicting small-sized systems. If we consider the vowel ε in
Lindblom’s inventory to be equivalent to the vowel ‘e’ in Schwartz et al. (1997a), 	 to
be equivalent to ‘o’, and � to be equivalent to �, then the predictions resulting from
the two inventories are almost the same. This is not surprising, since we can see from
Figure 2 that the peripheral vowels in the two vowel inventories are almost the same in
the F1-F′

2 plane. However, for the six-vowel system produced in combination with any
of the three fitness functions and the seven-vowel systems produced in combination
with the first fitness function (F1F), there are some big differences between the two
vowel inventories. This may be mainly because the nonlow unrounded back vowels
are much farther away from rounded back vowels in INVS than in INVL.

Comparing the predicted systems with the observed systems, we find that only
the most frequently observed three- and four-vowel systems are predicted, and that
other predictions do not match the observed systems. The reasons for these results
may include the following: First, the vowel inventories, especially INVL, do not pro-
vide enough prototypes for predicting vowel systems, such as ‘e’ and ‘o’, which are
not included in INVL; second, the perceptual distance metric used in the study may
have not perfectly reflected the actual human perception mechanism; and third, only
one optimal system can be identified using the current simple GA model. Further
considerations of the optimization criteria for the GA model that include the sufficient
perceptual contrast principle proposed by Lindblom (1986) instead of the maximal
perceptual contrast principle may lead to more consistent predictions. Also the central
vowel �, which occurs often in large vowel systems, may call for another optimiza-
tion criterion in addition to the current ones (Schwartz et al. 1997a). GA models are
promising in carrying out such investigations in which multiple optimization criteria
are addressed simultaneously. The following study on the optimal tone systems is
such an experiment.

4. Optimization Model for Tone Systems

A tone language is a language having lexically contrastive pitch on each syllable (Pike
1948). Tone languages are found in many parts of the world (Wang 1991). Though
tone is as fundamental a constituent in tone languages as are vowels and consonants,
to our knowledge, there has been no explanatory or numerical model proposed to
enable studies of the universal structure of tone systems comparable to those being
conducted for vowel and consonant systems. In this section, we extend the GA models
reported above for vowel systems to study the configuration of tone systems from the
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Level
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31
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13
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131

Falling-rising Rising-falling

Figure 4
Numeric and corresponding graphic representation of the 19 tones proposed in Gandour
(1983). Tones not found in Wang (1967) are underlined.

optimization perspective. Two different sets of criteria are investigated. The first set
considers only the perceptual contrast between tones, as in the study of vowel systems
in Section 3; the second takes both perceptual contrast and markedness complexity into
account. The predicted systems are analyzed and compared with those reported from
empirical studies.

4.1 Tone Inventory and Chromosome Representation
In a procedure similar to the one we used for the simulation of vowels, we first choose
a tone inventory from which a system selects individual tones. Wang (1967) suggested
13 idealized tones in his study of the phonological features of tones, including five
level (11, 22, 33, 44, and 55), two rising (35 and 13), two falling (53 and 31), two
falling-rising (535 and 313), and two rising-falling (353 and 131).4 These 13 tones are
considered to represent the maximum contrasts found between tones in any language.
In a later tone perception experiment, Gandour (1983) used an extended set of 19
tones, adding to Wang’s list two rising tones (15 and 24), two falling tones (51 and
42), and two complex tones (424 and 242). In this study, we take Gandour’s 19 tones,
shown in Figure 4, as the inventory.

In the model, a chromosome is represented by a number of tones, each of which
is selected from among the 19 tones of the inventory. Each tone is described by three
numerals representing its shape. The genetic operations and parameters are the same
as those in the vowel models.

4.2 Fitness Evaluation Functions
4.2.1 The First Objective. It is assumed that tone systems tend to have a maximum
perceptual contrast within the system, much like that proposed for vowel systems. As
in the study of vowel systems, we need to derive a method to calculate the perceptual
distance between tones. In this study, we use the experimental results from Gandour
(1983) to develop such a metric to measure this perceptual distance.

Gandour’s experiment was designed to investigate the perceptual dimension of
tone and the effect of linguistic experience on a listener’s perception of tone. Gandour

4 Tones are represented according to Chao’s (1930) conventional five-level transcription system.
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D
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Figure 5
Dimensions 1 and 2 of the two-dimensional INDSCAL tone space (adapted from Gandour
[1983]).

synthesized speechlike monosyllables [wa] with the 19 types of tones superimposed
on them. Four groups of participants who were from four tone languages (Cantonese,
Mandarin, Taiwanese, and Thai) and one group from a nontone language (English)
made judgments about the degree of dissimilarity between paired stimulus tones. The
collected data were analyzed by an INDSCAL (individual differences scaling) model,
and the perceived perceptual dissimilarity among the 19 tone types is presented in a
perceptual space in Figure 5. Using these results, we design a metric for calculating
the perceptual distance between a pair of tones i and j as their Euclidean distance in
the perceptual plane:

dij =
√

(Dim1i − Dim1j)2 + (Dim2i − Dim2j)2 (5)

where Dim1i and Dim2i represent the two coordinates of tone i in the perceptual plane.
Similarly to the method used in the vowel systems, the perceptual contrast within a
tone system is measured by the total perceptual distance for all pairs of tones. The
fitness function is therefore the same as the F1 given in Section 3.2.

4.2.2 The Second Objective. Following the first objective of considering perceptual
contrast, the second consideration would naturally be determining the cost of produc-
ing various tones. Various mechanisms for controlling the tension of vocal cords and
subglottal air pressure and their effect in regulating pitch change have been proposed
(Ohala 1978). Different laryngeal muscles, such as the cricothyroid, sternohyoid, and
sternothyroid muscles, are found to perform various actions in raising or lowering
vocal pitch. An asymmetry is found in the maximum speed of rises as compared to
falls in pitch change, which suggests that falling tones may in some sense be easier
to produce than rising tones (Collier 1984; Ohala 1978). Level tones are found to be
universally preferred to contour tones, and simple contour tones to complex contour
tones (Maddieson 1978), which may be due to the different production cost of various
types of tones. It is hard, however, to quantify these differences, and no systematic
measurements have been made available yet.

Because of the lack of data measuring the effort required to produce different
tones, we chose another criterion as the second objective: the markedness complexity,
which is based on a study of phonological features of tones proposed in Wang (1967).
Each tone is assigned a complexity value based on the analysis of tones with features
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Table 2
Relative complexity of tones as defined by marking conventions (adapted from Wang [1967]).

55 11 44 22 33 35/15 13/24 53/51 31/42 535 313/424 353 131/242

CONTOUR u u u u u m m m m m m m m
HIGH + − + − − + − + − + − + −

CENTRAL u u m m m u u u u u u u u
MID u u u u m u u u u u u u u

RISING u u u u u + + − − + + + +
FALLING u u u u u − − + + + + + +
CONVEX u u u u u u u u u u u m m

COMPLEXITY 1 1 2 2 3 4 4 4 4 4 4 5 5

and marking conventions, as shown in Table 2. In the table, “m” stands for the marked
specification, which is the favored specification, and “u” for unmarked. As there is
no empirical ground for favoring either +HIGH or −HIGH, or RISING or FALLING,
the features of [HIGH], [RISING] and [FALLING] are only analyzed by its presence
or not by assigning + or −, instead of specifying their markedness. We note that the
assignment of + and − may need further justification or modification with regard to
our discussion above on rising and falling tones. In this study, however, we still adopt
this analysis presented in the table for our simulation. The specifications “m,” “+,” and
“−” each add one unit to the complexity of a particular tone, whereas “u” does not.

Although we have maintained in Table 2 the original complexity assignment for
the 13 typical tones given in Wang (1967), we have incorporated the six additional
tones proposed by Gandour (1983). It is assumed that tone pairs such as 35 and 15,
13 and 24, 53 and 51, 31 and 42, 313 and 424, and 131 and 242 are of the same
complexity. As far as we are aware, there is no tone system having more than two
falling or rising contrasts that all provide lexical distinctions. Those transcriptions of
tone systems that do incorporate more than two rising or two falling tones may be
due to overdifferentiation within a single tone paradigm, as suggested in Wang (1967).

Markedness is a method of representing the linguist’s knowledge of a phonolog-
ical system. This knowledge derives primarily from observations of three sorts: the
frequency of distribution of the sounds in the languages of the world, the patterns
of historical change in sound systems, and the acquisition of sounds in children and
the dissolution of sounds in linguistic pathology. Therefore the complexity assigned to
tones based on markedness may reflect an integrated effect of perception, production,
and learnability.

The two objectives, perceptual distance and markedness complexity, are taken
into account in a MOGA model using the Pareto ranking method, as introduced in
Section 2.2, to predict optimal tone systems. Simulation results are shown in Section 4.4.

4.3 Empirical Data Analysis
Before reporting the results of our simulation, we report our analysis of an available
database of observed tone systems with which we can compare our predictions. To
our knowledge, there is no large database for tone systems of the same scale as SPA
or UPSID for vowel and consonant systems. We have been able to find, however, a
computer database consisting of 737 entries from various dialect5 locations in China

5 The “dialects” we used here are referred to as the various languages such as Mandarin, Cantonese,
Min dialect, and Wu dialect.
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Table 3
Frequencies of occurrence of the 19 tone types in the normalized Cheng database.

Tone 31 53 55 42 35 24 313 44 33 13

Frequency 326 294 291 281 262 248 241 219 185 167

Tone 11 51 22 424 353 242 131 15 535

Frequency 86 78 66 27 12 8 8 6 1

Table 4
Frequencies of occurrence and different sizes of tone system in both the original and the
normalized Cheng database.

Size 3 4 5 6 7 8 9 Total

Frequency(original) 26 497 105 91 10 7 1 737
Frequency(normalized) 22 448 86 79 4 2 641

Types(normalized) 19 162 72 60 4 2 319

compiled by Cheng (1973). Some of the 737 entries are from the same location, but
from different reports or at different times. They are considered individual systems
in our analysis since they were obtained independently and we want to consider as
many systems as possible in our analysis, though it is possible that our analysis may
be contaminated by the unequal quality of the entries.

To make comparison with predicted systems possible, we normalize nontypical
tones in Cheng’s database to the 19 typical ones. For example, tones 54, 12, and 324
are converted to 53, 13, and 313, respectively. Such normalization also provides some
advantage in dealing with different types of transcription of the same system. Very
often different researchers have their own individual strategies of transcription, and
different informants employed for the same dialect also have individual differences
in their speech. Therefore controversies often arise, such as whether a particular tone
in Cantonese is 13 or 23. By normalizing the tones in Cheng’s database into the 19
typical tones, some such controversies will be resolved. Table 3 shows the frequencies
of occurrence of the 19 types of tones in the normalized database. When the changes
in the database as a result of normalization create a situation in which the same tone
occurs more than once in one system, that system is excluded from the normalized
database for further analysis. The original database includes 737 systems with 606
different tone types. After normalization, there were 641 systems of 319 different tone
types. Table 4 shows the frequencies of different sizes of tone system in both the
original and the normalized database. Systems with four tones are by far the most
frequent type.

Figure 6 shows the tone types occurring in the four-tone normalized systems.
Frequencies of occurrence are indicated beside each tone. We can see that tones are
heavily clustered in three areas in the perceptual plane: the upper right (including
tones 42, 51, 31, 22, 11, 131) (cluster 1), the lower right (24, 13, 424, 313, 15) (cluster 2),
and the middle left (55, 44, 35, 53, 33, 353, 242) (cluster 3). Tone 535, although it does
not occur in the normalized four-tone systems, can also be classified in cluster 3, as
inferred from Figure 5. When we calculate the frequencies of occurrence of tones in
these three areas for three-, four-, and five-tone systems, as shown in Table 5, we find
that most of the systems tend to select tones from each of the three individual clusters,
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      cluster 2

  cluster 153(60)

353(6)

33(37)

44(50)

55(66)

35(59)
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15(4)

13(37)

313(56)

242(1)

11(17)
131(4)

22(23)
42(68)

51(26)
31(68)

Figure 6
Frequency of tone occurrence in observed four-tone systems shown in the perceptual space
(total 162 systems).

Table 5
Number of tones in the three clusters in perceptual space and percentage of systems having
tones from each of the three clusters.

Percentage of
systems having
tones from each

Number of Number of Number of Number of of the three
systems tones in C1 tones in C2 tones in C3 clusters

Three-tone system 19 19 17 21 73.7
Four-tone system 162 206 163 279 75.0
Five-tone system 72 107 91 162 74.3

rather than selecting tones from only one or two clusters. The percentages of systems
having tones from each of the three clusters are shown in the last column of Table 5.
We can infer from the data in Table 5 that there tends to be a great deal of perceptual
contrast within the systems, since the tones from separate clusters often have larger
perceptual distances between them than tones in the same cluster. Furthermore, four-
and five-tone systems do not employ tones from the three clusters evenly. It is obvious
that cluster 2, which includes most of the rising tones (except high rising tone 35, which
is contoured in cluster 3), contributes fewer tones to four- and five-tone systems than
the other two clusters. This implies that rising tones are less preferred in the observed
systems.

4.4 Simulation Results and Comparison with Observed Systems
Tables 6, 7, and 8 give the predicted “optimal” three-, four- and five-tone systems
obtained from the GA model. A number of tone systems that occur frequently in
the normalized database are also given in the tables for comparison. The frequencies
with which the tone systems were observed in the normalized database are given in
parentheses besides the tones.

For a system of a given size, the model using only the first objective (maximal
perceptual contrast) predicts only one optimal system, which is indicated with aster-
isks in the tables. This optimal system has the maximum perceptual contrast but the
largest markedness complexity. On the other hand, the two-objective model predicts a
number of optimal systems besides the optimal one predicted by the single-objective
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Table 6
Predicted optimal and frequent observed three-tone systems.

Predicted systems Observed systems

Perceptual Complexity t1 t2 t3 Perceptual Complexity t1 t2 t3
distance distance (frequency)

*14.41 9 55 31 15 12.97 9 55 31 424(3)
13.77 7 55 22 15 11.52 12 42 35 13(1)
13.97 6 55 11 31 8.84 11 33 53 313(2)

Table 7
Predicted optimal and frequent observed four-tone systems.

Predicted systems Observed systems

Perceptual Complexity t1 t2 t3 t4 Perceptual Complexity t1 t2 t3 t4
distance distance (frequency)

*24.63 12 55 11 31 15 22.42 14 44 53 31 13(21)
24.55 10 55 11 31 15 22.02 13 55 42 31 24(27)
23.67 9 44 22 11 15 21.98 13 55 53 31 24(17)
23.24 8 55 44 11 13 21.03 13 55 51 35 313(20)

Table 8
Predicted optimal and frequent observed five-tone systems.

Predicted systems Observed systems

Perceptual Complexity t1 t2 t3 t4 t5 Perceptual Complexity t1 t2 t3 t4 t5
distance distance (frequency)

*39.20 17 55 53 31 15 13 35.90 13 55 44 22 31 13(1)
38.44 14 55 11 53 15 13 35.82 17 55 42 31 24 313(4)
38.60 12 55 44 11 31 15 34.54 15 55 44 42 24 13(1)
38.17 10 55 44 22 11 15 32.33 12 55 22 11 31 24(1)

32.15 10 55 44 33 11 24(1)
28.12 17 11 51 53 42 24(2)
27.09 18 44 53 42 31 35(3)

model. These optimal systems, like the points A, B, C, and D shown in Figure 1, form
a Pareto-optimal set. They are equally good in terms of the overall fitness including
the two objectives (large perceptual contrast and small markedness complexity). The
two-objective model may be viewed as a possible implementation of the sufficient
perceptual contrast proposed for the study of optimal vowel systems by Lindblom
(1986).

We can observe in the predicted systems characteristics similar to those in the
observed systems, particularly the uneven utilization of the three clusters in the per-
ceptual space. If we assume that tones within the same cluster are interchangeable,
then we can see that most of the predicted optimal systems have corresponding ob-
served systems, except one prediction for a three-tone system (55, 11, 31), which does
not include a tone from cluster 2.

The predicted systems seem to exploit more tones in the outer area of the per-
ceptual space, such as 55, 11, 31, and 15, whereas in the observed systems, tones in
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the relative inner area, such as 35, 53, 42, 24, and 313, are more frequent. High rising
tone 15 occurs often in predicted systems because of its high salience in the perceptual
space. In the observed systems, however, tone 15 is very infrequent (only six occur-
rences among the 641 systems observed). In the observed systems, pairs of contrasting
tones, such as 24 and 42, 13 and 31, occur quite often. These contrasting pairs are not
clear in our prediction. Tone 31 co-occurs more frequently with tone 15 than with tone
13, which again is due to the perceptual salience of tone 15.

The observed systems include more tones close to the center of the perceptual
space, whereas the predicted systems prefer tones located in its periphery. This pattern
is similar to one observed in a long-standing problem in the study of vowel systems
(Liljencrants and Lindblom 1972). In observed vowel systems, especially the larger
systems, central vowels commonly occur (examples can be seen in Table 1), whereas
the proposed optimal vowel systems predict them only rarely. The utilization of fewer
peripheral areas in observed systems than in predicted ones suggests that the role of
maximizing perception contrast in the models may need to be adjusted or that more
optimization criteria in addition to the perceptual contrast and markedness complexity
should be added.

Moreover, the markedness complexity we hypothesize is an abstract measure that
incorporates many factors, including perception and production. Thus the considera-
tion of perception contrast may have been duplicated in the fitness function. This may
be another reason for the discrepancy mentioned in the preceding paragraph. When
more empirical studies in the physiology of tone production are available, we may
consider tone production as an individual objective in the fitness function, which we
would expect to allow better predictions.

5. Conclusions and Discussion

In this article, we apply optimization models using GAs to study the configuration
of vowels and tone systems. The approach we use is similar to that in previous ex-
planatory models that have been used to study vowel systems. Certain criteria, which
are assumed to be the principles governing the structure of sound systems, are used
to predict optimal systems. In most of the previous studies (Liljencrants and Lind-
blom 1972; Crothers 1978; Lindblom 1986), only one criterion has been considered.
When two criteria have been considered, the two objectives are combined into a sin-
gle weighted function (Boë, Schwartz, and Vallée 1994). In our study of vowel systems,
the simple GA model we use also adopts a weighted function to combine two crite-
ria, perceptual contrast and focalization. In our study of tone systems, however, we
apply a MOGA model that uses a Pareto ranking method to consider two criteria,
perceptual contrast and markedness complexity, simultaneously, without combining
them into a scalar function. A priori knowledge of the weights of the two criteria are
not necessary.

Another advantage of an MOGA is that we can obtain a set of Pareto-optimal
results, instead of only one. An MOGA model generates more optimal predictions
than a single-objective model, and therefore it is more likely to predict more systems
that are close to the systems actually observed. Although the consistency between
the predicted systems and the observed systems in the current study is not as sig-
nificant as that obtained for vowel systems, further investigation along this line is
promising.

Following the deductive approach pursued in this study, we can design various
criteria to predict optimal systems. The deductive approach provides convenience and
freedom in the manipulation of different parameters in the models, such as the param-
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eters λ and α in Schwartz et al. (1997a), to test different hypothesized mechanisms. It is
necessary, however, to seek explanations for such parameters in terms of physiological
or cognitive constraints.

Studies taking the deductive approach must not be pursued independent of the
inductive approach. For example, in the study of tone systems, few comprehensive
tone databases are available. The resources on which our investigation of tone sys-
tems relies, including the experiment in Gandour (1983) and the database in Cheng
(1973), are based mostly on the observation of tone languages found in Asian. The
incorporation of data from other types of tone languages in Africa and America is
expected to help in refining our explanatory hypothesis about the configuration of the
systems.

Lastly, we would like to point out that although in this study we apply optimiza-
tion to predict vowel and tone systems, we do not imply that there exist any explicit
and/or global optimization processes in the formation of such systems. We have no
grounds to believe that speakers are aware of what sounds will provide maximal per-
ceptual contrast or require the least production effort and therefore deliberately choose
those sounds. Optimization must be an emergent property from the interactions of lan-
guage users (de Boer 2000, 2001). Each individual speaker has certain physiological
and cognitive constraints which limit the sounds it is possible for him to make and
assign preference to certain of those sounds over others. These constraints, however,
provide only a range of possible sounds. It is the interactions among individuals that
determine precisely which systems among those that are possible will emerge. This is
why different configurations of sound systems, even suboptimal ones in the sense of
some hypothesized criteria, can be observed in real systems. Research including mod-
eling from this perspective is promising and may lead to more realistic predictions of
sound systems.
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