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Abstract

We present and take advantage of the in-
herent visualizability properties of words
in visual corpora (the textual components
of vision-language datasets) to compute
concreteness scores for words. Our simple
method does not require hand-annotated
concreteness score lists for training, and
yields state-of-the-art results when evalu-
ated against concreteness scores lists and
previously derived scores, as well as when
used for metaphor detection.

1 Introduction

One of the most pervasive problems in cognitive
science, linguistics, and AI has been establishing
the semantic relationship between language and
vision (Miller and Johnson-Laird, 1976; Wino-
grad, 1972; Jackendoff, 1983; Waltz, 1993). In re-
cent years, new datasets have emerged that enable
researchers to approach this question from a new
angle: that of determining both how linguistic ex-
pressions are grounded in visual images, and how
features of visual images are expressible in lan-
guage. To this end, large vision and language (VL)
datasets have become increasingly popular, mostly
used in combined VL tasks, such as visual caption-
ing and question answering, image retrieval and
more. However, visual corpora, the language cor-
pora created in the service of image annotation,
have properties that have yet to be exploited. Nat-
urally, they tend to prefer concrete object labels
and tangible event descriptions over abstract con-
cepts and private or mental states (Dodge et al.,
2012).

In this work, we provide further evidence that
visual corpora are indeed less abstract than gen-
eral corpora, and characterize this as a property of
what we term a word’s visibility score. We then

show how this notion can be used to measure the
concreteness of words, and demonstrate the use-
fulness of our calculated scores in solving the re-
lated problem of metaphor detection.

2 Related Work and Background

Figure 1: Visual Genome (top) with multiple cap-
tions, and SBU with a user-generated caption per
image.

2.1 Abstractness and concreteness

A common notion for the concreteness of a word
is to what extent the word represents things that
can be perceived directly through the five senses
(Brysbaert et al., 2014; Turney et al., 2011), such
as tiger and wet. Accordingly, an abstract word
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represents a concept that is far from immediate
perception, or alternatively, could be explained
only by other words (as opposed to be demon-
strated through image, taste, etc.), like fun and
truth.

Concreteness scores are currently applied in
tasks like concept visualization and image descrip-
tion generation, event detection in text and more.
Previous methods for measuring words’ concrete-
ness used annotated datasets for training. The list
by Turney et al. (2011) contains 114k pairs of
words and concreteness scores, automatically gen-
erated by an algorithm trained on the MRC dataset
(Coltheart, 1981). Köper and im Walde (2017)
generated a huge concreteness scores list for 3M
words, using 32K pairs from the list by Brysbaert
et al. (2014) to train a neural network model with
high correlation scores with the existed lists.

2.2 Vision and Language Datasets

VL datasets come in different formats, but they all
match together visual and textual pieces of infor-
mation. The visual pieces can be photos, clip-arts,
paintings, etc., and the textual ones range from full
texts and sentences to single words (see Figure 1).
There are surprisingly few works that analyze vi-
sual corpora in terms of their linguistic properties.
Dodge et al. (2012) found that Flickr captions have
more references to physical objects. Ferraro et al.
(2015) compared visual corpora using a set of lin-
guistic criteria, including an abstract-to-concrete
ratio to estimate the concreteness level of a cor-
pus. We further discuss this task in Section 3.

3 The Concreteness Level of a Corpus

We demonstrate the differences in the concrete-
ness level of several corpora using two concrete-
ness ratings (or “concreteness scores”) lists, each
contains pairs of a word and a score, in some scale,
and potentially additional meta-data regarding the
annotation agreement. See Table 1 for examples.

The list of 40K concreteness ratings by Brys-
baert et al. (2014) contains ratings from 1.0 (ab-
stract) to 5.0 (concrete) for almost 40K terms, 37K
of them are unigrams1, along with metadata like
the standard deviation over the scores assigned to
a term by the 30 annotators. The authors aimed
to represent all English lemmas, for each they in-
cluded several forms, each was scored separately
(according to the definition in Section 2.1).

1The rest are bigrams, we worked with unigrams only.

40K (1.04-5.0) MRC (158-670)
turtle 5.0 (sd=0.0) 644
boat 4.93 (sd=0.37) 637
milk 4.92 (sd=0.39) 670
side 3.68 (sd=1.33) 394
symbol 3.11 (sd=1.37) 402
clean 3.07 (sd=1.41) 392
impossible 1.66 (sd=1.06) 198
immortality 1.52 (sd=0.87) 209
justification 1.52 (sd=0.83) 219

Table 1: Examples for words in the concreteness
lists annotated as mostly concrete, in the middle,
and mostly abstract.

The MRC psycholinguistic database (Colt-
heart, 1981) contains 4,295 words and concrete-
ness scores (range from 158 to 670), given by hu-
man subjects through psychological experiments.

3.1 Descriptions of Corpora Studied

Brown corpus (Francis and Kucera, 1964). Fol-
lowing Ferraro et al. (2015), a representative of a
non-visual “general”/“balanced” corpus.

Visual Genome (Krishna et al., 2016). The
largest VL dataset to date, containing 5.4M region
descriptions for more than 108K images, visual
question answers and more, all created through
crowd-sourcing. We used the set of all region de-
scriptions (see Figure 1) as corpus.

SBU Captioned Photo Dataset (Ordonez et al.,
2011). Another large scale dataset, containing user
generated image descriptions for 1M images, cre-
ated by quering Flickr. As a result, the captions
are not necessarily full or accurate (see Figure 1).

Flickr 30K (Young et al., 2014). 5 captions per
image for more than 31K real-world images from
Flickr, created through crowd-sourcing.

Microsoft COCO (Lin et al., 2014). Includes
object segmentation and 5 captions per image for
more than 300K images from Flickr.

ImageNet (Deng et al., 2009). A dataset
matching images and the corresponding WordNet
synsets (Miller et al., 1990). We gathered all avail-
able annotated synsets as the ImageNet corpus.

We also created a set of non-visual Brown cor-
pora by subtracting each of the corpora from the
Brown corpus, to each we refer as BrownNV −
V C in relation to some visual corpus V C.

3.2 Setup and Comparison Results

Given a corpus, we divided the words in each
concreteness scores list into two non-overlapping
sets (words contained in the corpus and words not
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Corpus C-list Words-in Words-out Ave-in Ave-out Diff/Range% Abs-ratio

Brown
40K 18191 18742 3.02 2.91 2.74%

15.24%
MRC 3639 553 442.17 443.62 -0.28%

Visual Genome
40K 14968 21965 3.5 2.61 22.49%

—
MRC 3263 929 465.62 360.66 20.5%

MSCOCO
40K 11786 25147 3.52 2.71 20.52%

12.96%
MRC 2919 1273 469.21 380.79 17.26%

Flickr 30k
40K 9874 27059 3.57 2.75 20.76%

14.98%
MRC 2669 1523 471.45 391.38 15.63%

ImageNet
40K 8397 28536 3.96 2.68 32.52%

—
MRC 2365 1827 505.31 360.87 28.21%

SBU
40K 20746 16187 3.3 2.55 18.85%

3.74%
MRC 3789 403 452.67 345.41 20.94%

Table 2: Corpus concreteness measuring using different concreteness score lists.

Corpus D/R% 40K D/R% MRC
BrownNV − V G -14.47% -20.35%
BrownNV −MSCOCO -11.37% -17.13%
BrownNV − Flickr30k -10.30% -15.76%
BrownNV − ImageNet -12.15% -26.21%
BrownNV − SBU -15.13% -22.28%

Table 3: The Diff/Range% of the non-visual
Brown corpora.

contained in the corpus), and calculated the aver-
age concreteness score of each set, as well as the
difference of the two averages normalized by the
score range of the list (‘Diff/Range%’) (see Table
2). We can see the clear differences between the
concreteness level of the Brown corpus (negligi-
ble Diff/Range%) and the rest of the visual corpora
(15.0% - 32%), which show nicely that the Brown
corpus is indeed “balanced” in terms of concrete-
ness. The ‘Abs-ratio’ column refers to previous
results by Ferraro et al. (2015), who calculated an
abstract-to-concrete ratio (Abs-ratio) with a fixed
common-abstract-terms list, where corpus words
in the list were considered as “abstract” and the
rest as “concrete”. The results were highly depen-
dent on corpus size (with more words outside the
fixed list (“concrete”) as vocabulary grows). Ac-
cordingly, the Abs-ratios of the Brown corpus and
most of the visual corpora were very similar, and
large corpora such as the SBU got significantly
lower ratios.

Table 3 shows the same calculations on the non-
visual Brown corpora. The large negative ratios
((-26)% - (-10)%) show that these corpora are less
concrete than the original Brown corpus, and are
much more abstract than all the visual corpora.

4 Predicting Concreteness Scores

The leading principal here is that words contained
in visual corpora tend to have significantly higher
concreteness scores, and words in non-visual cor-
pora tend to have significantly lower scores. We
do not use concreteness scores lists for training,
but only a visual corpus and a generic corpus to
build visibility scores for each word, from which a
concreteness score is estimated.

4.1 Visibility Scores
The concreteness score of a word w consists of the
concrete visibility score and the abstract visibility
score, both are normalized sums computed in the
same manner (with only the reference corpus dif-
ferent, a visual for the concrete case and a non-
visual for the abstract case). Each term nei(w) in
the set of n-best nearest neighbors of w (extracted
from a model of 300-dimensional vectors for 3M
terms from the Google News dataset 2) contained
in the reference corpus contributes its cosine sim-
ilarity to w (in(w) = 1.0 if w is in the reference
corpus, o/w 0.0), then the sum is normalized by
the sum of all similarities:

ConV isEmbScore(w) =

in(w) +
∑

nei(w)∈V isCor Sim(w, nei)

in(w) +
∑

nei(w) Sim(w, nei)
, (1)

AbsV isEmbScore(w) =

in(w) +
∑

nei(w)∈Brown−V isCor Sim(w, nei)

in(w) +
∑

nei(w) Sim(w, nei)
, (2)

2available at https://code.google.com/archive/p/word2vec
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max-sd num-neigh Spearman Pearson MSE

max(sd)
=1.89

Turney 0.74 0.74 0.58
100 0.72 0.72 0.61
50 0.71 0.70 0.72
10 0.63 0.62 1.11

med(sd)
=1.22

Turney 0.79 0.81 0.89
100 0.78 0.81 0.69
50 0.77 0.79 0.78
10 0.71 0.73 1.13

mean(sd)
=1.16

Turney 0.80 0.82 0.99
100 0.79 0.82 0.69
50 0.78 0.81 0.78
10 0.72 0.75 1.12

Table 4: Predicting concreteness scores.

The overall concreteness score for w is then:

ConcretenessScore(w) =

ConV isEmbScore(w)−AbsV isEmbScore(w) (3)

(2) and (1) range from 0.0 (non of the neighbors
is in the reference corpus) to 1.0 (all of them are).
Hence, (3) ranges between −1.0 and 1.0, where a
higher score means more concrete word.

Notice that no corpus-frequencies were taken
into account in the above sums. This is because
VL datasets are often human-focused with unreal-
istic high-weight for terms describing people. In
addition, words in the corpora were only lower-
caesd but not stemmed since we noticed it cut off
too much information, leading to poorer results
(due to the loss of potential discriminating con-
creteness features that are characteristic of many
derivational suffixes). For example, 40K’s scores
for several unstemmed forms of the stem woman:
woman (4.46), womanhood (2.55), womanishness
(1.79), womanize (2.82), womanlike (3.14).

4.2 Results and Discussion
To best demonstrate the strength of our method,
we present the results gathered by using a uni-
fied visual corpus that is both large enough to
be used as a reference corpus, and has higher
Diff/Range ratios. This unified corpus, which we
call the Big Visual Corpus (BVC) consists of the
Visual Genome, MSCOCO, Flickr30K, and Ima-
geNet, and contains over 98K lowercaesd (but oth-
erwise non-normalized) terms. Its Diff/Range%,
according to the 40K and MRC lists are 25.5% and
24.53%, respectively. The generic corpus used is
the Brown corpus, and respectively, the non-visual
reference corpus is BrownNV −BV C.

We follow the simple practice from Köper and
im Walde (2017) and map all scores into the same

interval using the following continuous function:

f(w) =
(b− a)(x−min)

max−min
+ a, (4)

where [min, max] is the original interval and [a, b]
the new interval. In our case, a = 1.04 (the min-
imum unigram score in the 40K list) and b =
5.0. We then compute the correlation between
our scores and the 40K list’s scores and compare
them to the correlations of the previously calcu-
lated scores by Turney et al. (2011) (see Table 4).
We parameterize over both the number of neigh-
bors (up to 100) taken into account in (1) and
(2) and the maximal standard deviation (sd) of
words in the 40K list we consider in computing
the correlations. Using the mean sd as a threshold
shows better correlations with the subset consid-
ered. Also, considering more neighbors improves
all evaluation metrics.

5 Metaphor Detection

We utilize our concreteness scores to solve the
task of Metaphor Detection, where a set of literal
and non-literal samples is given, and the goal is
to classify each into the correct class. We follow
Black’s (1979) observation that a metaphor is es-
sentially an interaction between two terms, creat-
ing an implication-complex to resolve two incom-
patible meanings. Operationally, we follow Tur-
ney et al. and their adoption of Lakoff and John-
son’s (1980) notion that metaphor is a way to move
knowledge from a concrete domain to an abstract
one. Hence, there should be a correlation between
the “degree of abstractness in a word’s context [...]
with the likelihood that the word is used metaphor-
ically.” (Turney et al., 2011). We show our results
on two annotated datasets:

5.1 The TSV Dataset

This dataset by Tsvetkov et al. (2014) in-
cludes several sets with instances annotated as
“metaphorical” or “literal” by 5 annotators, from
which we experimented with two sets. The
first set, which we call TSV-AN, contains 200
adjective-noun (AN) pairs, 100 instances per class.
For example, “clean conscience” is annotated as
metaphorical, and “clean air” as literal. The
second set, which we call TSV-SVO, contains
subject-verb-object (SVO) triples or pairs (when
missing ‘S’/‘O’), 111 for each class.

We build a logistic regression model using 10-
fold cross-validation for each of the TSV-AN and
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Dataset Features Precision Recall F1

TSV-AN

Linguistic 0.73 0.80 0.76
Visual 0.60 0.91 0.73
Multimodal 0.67 0.96 0.79
Vis-Emb. 0.84 0.72 0.77

TSV-SVO Vis-Emb. 0.83 0.80 0.81

Table 5: Results of our method (Vis-Emb.) on the
dataset by Tsvetkov et al. compared to previous
results by Shutova et al.

TSV-SVO sets. The feature vector for each phrase
in the sets is simple, consists of our assigned con-
creteness score for each word in the phrase. For
the second set, we divide each triple into two
pairs to get 150 “literal” ‘SV’/‘VO’ pairs and 165
“metaphorical” ones. We flipped the feature vec-
tor of the ‘VO’ pairs to represent scores in the
form of ‘OV’, so that the nouns and verb would
appear at consistent places in the vector. As a ref-
erence to our results, we bring previous results by
Shutova et al. (2016), who used linguistic embed-
ding model, visual embedding model, and a mul-
timodal model that mixed the two (see Table 5).

5.2 The TroFi dataset
The dataset by Birke and Sarkar (2006) con-
tains annotated “literal” and “non-literal” sen-
tences from the Wall Street Journal for 50 verbs.
We follow the exact same algorithm used in Tur-
ney et al. (2011) on a subset of 25 verbs, while
replacing their concreteness scores with ours.

We build a 5-dimensional feature vector for
each sentence, composed of the average concrete-
ness score of words with each of the following
part-of-speech tags: noun, proper noun, verb, ad-
jective, adverb. When there are no words with
a specific POS tag in the sentence, the value 0.0
is assigned to the corresponding place in the vec-
tor. The feature vectors are then used in a logistic
regression classifier to build a separate model for
each verb using 10-fold cross-validation. Table 6
shows our results along with the previous results
by Turney et al. (and their probability-matching
case).

6 Conclusion and Future Work

Even without the matching images, the captions
in vision and language datasets contain useful in-
formation regarding the visibility of words appear-
ing in them. In addition, the connection between
the visibility of a word and its concreteness level
is well known from psychological experiments.

Features Accuracy F1-score
Vis-Emb. 0.713 0.657
Turney et al. 0.734 0.639
Probability Matching 0.605 0.500

Table 6: Classifying the sentences related to 25
verbs in the TroFi dataset. Accuracy and F1-score
are macro-averaged.

We exploited these properties in crafting visibility
scores, based only on the occurrences of a word’s
neighbors (in the semantic space) in the visual cor-
pora, and calculated a concreteness score out of
them for the word. We then experimented within
the related task of metaphor detection, and showed
comparable results to previous works. Our method
and algorithm, though relatively simple and intu-
itive, give surprisingly good (comparable) results,
while not requiring any multimodal processing at
all.
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