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Abstract

We propose an end-to-end neural network
to predict the geolocation of a tweet. The
network takes as input a number of raw
Twitter metadata such as the tweet mes-
sage and associated user account informa-
tion. Our model is language independent,
and despite minimal feature engineering,
it is interpretable and capable of learning
location indicative words and timing pat-
terns. Compared to state-of-the-art sys-
tems, our model outperforms them by 2%-
6%. Additionally, we propose extensions
to the model to compress representation
learnt by the network into binary codes.
Experiments show that it produces com-
pact codes compared to benchmark hash-
ing algorithms. An implementation of the
model is released publicly.1

1 Introduction

A number of applications benefit from geographi-
cal information in social data, from personalised
advertising to event detection to public health
studies. Sloan et al. (2013) estimate that less than
1% of tweets are geotagged with their locations,
motivating the development of geolocation predic-
tion systems.

Han et al. (2012) introduced the task of pre-
dicting the location based only the tweet mes-
sage. A key difference to previous work is that
the prediction is made at message or tweet level,
while predecessor methods tend to focus on user-
level prediction (Backstrom et al., 2010; Cheng
et al., 2010). Since then, various methods have
been proposed for the task (Han et al., 2014; Chi
et al., 2016; Jayasinghe et al., 2016; Miura et al.,

1https://github.com/jhlau/
twitter-deepgeo

2016), although most systems are engineered for
a particular platform and language (e.g. website-
specific parsers and language-specific tokenisers
and gazetteers). Another strand of research lever-
ages the social network structure to infer location;
Jurgens et al. (2015) provided a standardised com-
parison of these systems. Our focus in this pa-
per is on using only the tweets, although Rahimi
et al. (2015) showed that the best approach maybe
to combine both types of information.

In applications where fast retrieval of co-located
tweets is necessary (e.g. disaster detection), effi-
cient representation of large volume of tweets con-
stitute an important issue. Traditionally, hashing
techniques such as locality sensitive hashing (In-
dyk and Motwani, 1998) are used to compress data
into binary codes for fast retrieval (e.g. with multi-
index hash tables (Norouzi et al., 2012, 2014)), but
it is not immediately clear how they can interact
with raw Twitter metadata — as they often require
a vector as input — and incorporate supervision.2

To this end, we propose an end-to-end neu-
ral network for tweet-level geolocation prediction.
Our network is designed to be interpretable: we
show it has the capacity to automatically learn lo-
cation indicative words and activity patterns from
different regions.

Our contribution in this paper is two-fold. First,
our model outperforms state-of-the-art systems by
2-6%, even though it has minimal feature engi-
neering and is completely language-independent,
as it uses no gazetteers or language preprocess-
ing tools such as tokenisers or parsers. Second,
our network can further compress learnt represen-
tations into compact binary code that incorporates
information about the tweet and its geolocation.
To the best of our knowledge, this is the first end-
to-end hashing method for tweets.

2In our case, the supervised information is the geolocation
of tweets.
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2 Related Work

Early work in geolocation prediction operated at
the user-level. Backstrom et al. (2010) devel-
oped a methodology to predict the location of
a user on Facebook by measuring the relation-
ship between geography and friendship networks,
and Cheng et al. (2010) proposed a content-based
prediction system to predict a Twitter user’s lo-
cation based purely on his/her tweet messages.
Han et al. (2012) introduced tweet-level predic-
tion, where they first extract location indicative
words by leveraging the geotagged tweets and then
train a classifier for geolocation prediction using
the location indicative words as features. Extend-
ing on this, systems were developed to better rank
these location indicative or geospatial words by lo-
cality (Chang et al., 2012; Laere et al., 2014; Han
et al., 2014). More recently, Han et al. (2016) pro-
posed a shared task for Twitter geolocation predic-
tion, offering a benchmark dataset on the task.

Hashing is an effective method to compress data
for fast access and analysis. Broadly there are two
types of hashing techniques: data-independent
techniques which design arbitrary functions to
generate hashes, and data-dependent techniques
that leverage pairwise similarity in the training
data (Chi and Zhu, 2017). Locality-sensitive hash-
ing (lsh: Indyk and Motwani (1998)) is a widely-
known data-independent hashing method that uses
randomised projections to generate hashcodes.
It preserves data characteristics and guarantees
the collision probability between data points.
fasthash (Lin et al., 2014), on the other hand, is
a supervised data-dependent hashing that incorpo-
rates label information to determine pairwise sim-
ilarity. It uses decision tree based hash functions
and graph cut-based binary code inference to deal
with high dimensionality training data.

3 Geolocation Prediction

3.1 Dataset

We use the geolocation prediction shared task
dataset (Han et al., 2016) for our experiments.
There are 2 proposed tasks, predicting geolocation
given: (1) a tweet (tweet-level); and (2) a collec-
tion of tweets by a user (user-level). For each task,
there is a hard classification evaluation setting for
predicting a city class, and a soft evaluation setting
for predicting latitude and longitude coordinates.

We explore only the more challenging tweet-

Partition #Tweets #Characters
Training 8.9M 554M

Development 7.2K 439K
Test 10K 629K

Table 1: Dataset statistics.

level prediction task. In terms of evaluation set-
ting, we experiment with the hard classification
setting, where the network is required to predict
one out of 3362 cities. Note that the metadata of
a tweet includes not only the message but a vari-
ety of information such as creation time and user
account data such as location and timezone.

Training, development and test partitions are
provided by the shared task organisers.3 We pre-
process the data minimally, removing tweets that
have less than 5 characters in the training parti-
tion (development and testing data is untouched)
and keeping all character types that have occurred
5 times or more in training. Unseen character to-
kens are represented by <UNK>. Preprocessed
statistics of the dataset is given in Table 1.

3.2 Network Architecture
The overall architecture of our model (henceforth
deepgeo) is illustrated in Figure 1. deepgeo
uses 6 features from the metadata: (1) tweet mes-
sage; (2) tweet creation time; (3) user UTC offset;
(4) user timezone; (5) user location; and (6) user
account creation time.4

Each feature from the metadata is processed by
a separate network to generate a feature vector fj .
These feature vectors are then concatenated (with
dropout applied) and connected to the penultimate
layer:

f̂ = f1 ⊕ f2...⊕ fN (1)

r = tanh(Wr f̂) (2)

where N is the number of features (6 in total), r ∈
RR is the hidden representation at the penultimate
layer and Wr is model parameter. For brevity, we
omit biases in equations.

r is fully connected to the output layer and ac-
tivated by softmax to generate a probability distri-
bution over the classes. The model is trained with

3The organisers provide full metadata for the test parti-
tion but only the tweet IDs for training and development par-
titions. We collect metadata for training/development tweets
using the Twitter API.

4We also tested user description and username, but pre-
liminary experiments found these features are not very use-
ful.
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Figure 1: Overall architecture of deepgeo.

minibatches and optimised using Adam (Kingma
and Ba, 2014) with standard cross-entropy loss.

We design several networks for the raw features.
The first is a character-level recurrent convolu-
tional network with a self-attention component for
processing the tweet message (Section 3.2.1). The
second is an RBF network5 for processing num-
bers (Section 3.2.2). The third is a simple convo-
lutional network for processing user location (Sec-
tion 3.2.3), and the last is an embedding matrix for
user timezone. We treat the timezone as a categor-
ical feature, and learn embeddings for each time-
zone (309 unique timezones in total). Note that
these feature-processing networks are disjointed
and there is no parameter sharing between them.

3.2.1 Text Network

For the tweet message, we use a character-level
recurrent convolutional network (Lai et al., 2015),
followed by max-over-time pooling with a fixed
window size and an attentional component to gen-
erate the feature vector, as illustrated in Figure 2.

Let xt ∈ RE denote the character embedding of
the t-th character, we run a bi-directional LSTM
network (Hochreiter and Schmidhuber, 1997) to
generate the forward and backward hidden states
hf

t and hb
t respectively.6 We then concatenate the

left and right context’s hidden states with xt and

5Also known as mixture density network.
6LSTM is implemented using one layer without any peep-

hole connections and forget biases are initialised with 1.0.

generate:

x̂t = hf
t−1 ⊕ xt ⊕ hb

t+1

gt = ReLU(Wgx̂t)

where x̂t ∈ R3E , Wg ∈ RO×3E and gt ∈ RO.
We iterate for each character to generate gt for all
time steps (Wg can be interpreted as O convolu-
tional filters each with a window of 3 × E strid-
ing 3 steps at a time). Next, we apply max-over-
time (narrow) pooling with window size P over
the vectors:

ĝt = max(gt,gt+1, ...,gt+P−1)

where ĝt ∈ RO and max is a function that returns
the element-wise maxima given a number of vec-
tors of the same length. If there are T characters
in the tweet, this yields (T −P +1) ĝ vectors, one
for each span.

By setting P = T , we could generate one vector
for the whole tweet. The idea of using a smaller
window is that it enables a self-attention compo-
nent, thereby allowing the network to discover the
saliency of a character span — for our task this
means attending to location indicative words (Sec-
tion 3.4). We define the attention network as fol-
lows:

αt = vᵀtanh(Wvĝt)
a = softmax(α0, α1, ..., αT−P )

where Wv ∈ RV×O, v ∈ RV and a ∈ RT−P+1.
Given the attention, we compute a weighted mean
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Figure 2: Text Network.

to generate the final feature vector:

ftext =
T−P∑
t=0

atĝt

where at denotes the t-th element in a, and ftext ∈
RO.

3.2.2 RBF Network
There are three time features in the metadata:
tweet creation time, user account creation time and
user UTC offset. The creation times are given in
UTC time (i.e. not local time), e.g. Thu Jul 29
17:25:38 +0000 2010 and the offset is an integer.

For the creation times, we use only time of the
day information (e.g. 17:25) and normalise it from
0 to 1.7 UTC offset is converted to hours and nor-
malised to the same range.8

The aim of the network is to split time into mul-
tiple bins. We can interpret each hour as one bin
(24 bins in total) and tweets originated from a par-
ticular location (e.g. Europe) favour certain hours
or bins. This preference of bins should be dif-
ferent to tweets from a distant location (e.g. East
Asia). Assuming each bin follows a Gaussian dis-
tribution, then the goal of the network is to learn

7As an example, 17:25 is converted to 0.726.
8UTC offset minimum is assumed -12 and maximum

+14 based on: https://en.wikipedia.org/wiki/
List_of_UTC_time_offsets.

the Gaussian means and standard deviations of the
bins.

Formally, given an input value u, for bin i the
network computes:

ri = exp
(−(u− µi)2

2σ2
i

)
where ri is the output value and µi and σi are the
parameters for bin i. Let B be the total number of
bins, the feature vector generated by a RBF net-
work is given as follows:

frbf = [r0, r1, ..., rB−1]

where frbf ∈ RB .

3.2.3 Convolutional Network
Location is a user self-declared field in the meta-
data. As it is free-form text, we use a stan-
dard character-level convolution neural network
(Kim, 2014) to process it. The network architec-
ture is simpler compared to the text network (Sec-
tion 3.2.1): it has no recurrent and self-attention
layers, and max-over-time pooling is performed
over all spans.

Let xt ∈ RE denote the character embedding of
the t-th character in the tweet. A tweet of T char-
acters is represented by a concatenation of its char-
acter vectors: x0:T−1 = x0⊕x1⊕ ...⊕xT−1. We
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use convolutional filters and max-over-time (nar-
row) pooling to compute the feature vector:

gt = ReLU(Wgxt:t+Q−1)
fconv = max(g0,g1, ...,gT−Q)

whereQ is the length of the character span, Wg ∈
RO×QE (Wg can be interpreted as O convolu-
tional filters each with a window of Q × E) and
gt, fconv ∈ RO.

3.3 Experiments and Results

We explore two sets of features for predicting ge-
olocation, using: (1) only the tweet message; and
(2) both tweet and user metadata. For the latter ap-
proach, we have 6 features in total (see Figure 1).
Classification accuracy is used as the metric for
evaluation.

We tune network hyper-parameter values
based on development accuracy; optimal hyper-
parameter settings are presented in Table 2. The
column “Message-Only” uses only the text con-
tent of tweets, while “Tweet+User” incorporates
both tweet and user account metadata.

For tweet message and user location, the maxi-
mum character length is set to 300 and 20 charac-
ters respectively; strings longer than this threshold
are truncated and shorter ones are padded.9 Mod-
els are trained using 10 epochs without early stop-
ping. In each iteration, we reset the model’s pa-
rameters if its development accuracy is worse than
that of previous iteration.

We compare deepgeo to 3 benchmark sys-
tems, all of which are systems submitted to the
shared task (Han et al., 2016):

Chi et al. (2016) propose a geolocation pre-
diction approach based on a multinomial naive
Bayes classifier using a combination of automati-
cally learnt location indicative words, city/country
names, #hashtags and @mentions. A frequency-
based feature selection strategy is used to select
the optimal subset of word features.

Miura et al. (2016) experiment with a simple
feedforward neural network for geolocation clas-
sification. The network draws inspiration from
fastText (Joulin et al., 2016), where it uses
mean word vectors to represent textual features
and has only linear layers. To incorporate multiple

9Tweets can exceed the standard 140-character limit due
to the use of non-ASCII characters.

Network Hyper- Message- Tweet+
Parameter Only User

Overall

Batch Size 512
Epoch No. 10
Dropout 0.2

Learning Rate 0.001
R 400

Text
Max Length 300 300

E 200 200
P 10 10
O 600 400

Time B – 50
UTC Offset B – 50

Timezone
Embedding

– 50
Size

Location

Max Length – 20
E – 300
Q – 3
O – 300

Account
B – 10

Time

Table 2: deepgeo hyper-parameters and values.

Accuracy System Features
0.146 Chi et al. (2016) Message Only
0.212 deepgeo Message Only
0.409 Miura et al. (2016) Tweet + User Metadata
0.428 deepgeo Tweet + User Metadata

0.436 Jayasinghe et al. (2016)

Tweet + User Metadata,
Gazetteer,

URL IP Lookup,
Label Prop. Network

Table 3: Geolocation prediction test accuracy.

features — tweet message, user location, user de-
scription and user timezone — the network com-
bines them via vector concatenation.

Jayasinghe et al. (2016) develop an ensemble
of classifiers for the task. Individual classifiers are
built using a number of features indepedently from
the metadata. In addition to using information em-
bedded in the metadata, the system relies on exter-
nal knowledgebases such as gazetteer and IP look
up system to resolve URL links in the message.
They also build a label propagation network that
links connected users, as users from a sub-network
are likely to come from the same location. These
classifiers are aggregated via voting, and weights
are manually adjusted based on development per-
formance.

We present test accuracy performance for all
systems in Table 3. Using only tweet message as
feature, deepgeo outperforms Chi et al. (2016)
by a considerable margin (over 6% improvement),
even though deepgeo has minimal feature en-
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Tweet True Predicted 1st Span 2nd Span 3rd SpanLabel Label
Big thanks to @LouSnowPlow and all #CleanSidewalk
participants today. You really make Louisville shine. To
be happy, be compassionate!

louisville-
ky111-us

louisville-
ky111-us ‘Louisville’ ‘ake Louisv’ ‘ Louisvill’

McDonald’s with aldha (@ Jalan A. P. Pettarani)
http://t.co/HDVkhsKWBa makassar-38-id makassar-38-id ‘Pettarani)’ ‘ Pettarani’ ‘ettarani) ’

Let’s miss ALL the green lights on purpose! - every
driver in Moncton this morning moncton-04-ca halifax-07-ca ‘in Moncton’ ‘ncton this’ ‘Moncton th’

Harrys bar toilet selfie @sophiethielmann @ Carluc-
cio’s Newcastle https://t.co/rKT7RGe7Nd

newcastle upon
tyne-engi7-gb

newcastle upon
tyne-engi7-gb ‘s Newcastl’ ‘wcastle ht’ ‘castle htt’

Makan terossssssss wkwkwk (with Erwina and Indah at
McDonald’s Bintara) - https://t.co/lT3KERFgap bekasi-30-id bekasi-30-id ‘ Bintara) ’ ‘ntara) - h’ ‘intara) - ’

@EileenOttawa For better or worse it’s a revenue
stream for Twitter made available to businesses. We all
have to get used to it.

toronto-08-ca ottawa-08-ca ‘tawa For b’ ‘ttawa For ’ ‘nOttawa Fo’

Hunt work!! (with @hadiseptiandani and @Febrianti-
vivi at Jobforcareer Senayan) - https://t.co/u9myRDidtR jakarta-04-id jakarta-04-id ‘nayan) - h’ ‘ Senayan) ’ ‘enayan) - ’

Table 4: Examples of top character spans. Length of span is 10 characters. “1st Span” denotes the span
that has the highest attention weight, “2nd Span” and “3rd Span” the second and third highest weight
respectively.

Feature Set Accuracy
All Features 0.428
−Text 0.342 (−0.086)

−Tweet Creation Time 0.419 (−0.009)

−UTC Offset 0.431 (+0.003)

−Timezone 0.422 (−0.006)

−Location 0.228 (−0.200)

−Account Creation Time 0.424 (−0.004)

Table 5: Feature ablation results.

gineering and is trained at character level. Next,
we compare deepgeo to Miura et al. (2016).
Both systems use a similar set of features from
the tweet and user metadata. deepgeo sees an
encouraging performance, with almost 2% im-
provement. The best system in the shared task,
Jayasinghe et al. (2016), remains the top per-
former. Note, however, that their system de-
pends on language-specific processing tools (e.g.
tokenisers), website-specific parsers (e.g. for ex-
tracting location information from user profile
page on Instagram and Facebook) and external
knowledge sources (e.g. gazetteers and IP lookup)
which were inaccessible by other systems.

To better understand the impact of each fea-
ture, we present ablation results where we remove
one feature at a time in Table 5. We see that the
two most important features are the user location
and tweet message. These observations reveal that
self-declared user location appears to be a reliable
source of location, as task accuracy drops by al-
most half when this feature is excluded. For the
other features, they generally have a small or neg-

ligible impact.

3.4 Qualitative Analyses

The self-attention component in the text net-
work (Section 3.2.1) captures saliency of charac-
ter spans. To demonstrate its effectiveness, we se-
lect a number of tweets from the test partition and
present the top-3 spans that have the highest atten-
tion weights in Table 4.

Interestingly, we see that whenever a location
word is in the message, deepgeo tends to focus
around it (e.g. Louisville and Newcastle). Occa-
sionally this can induce error in prediction, e.g.
in the second last example the network focuses
on Ottawa even though the word has little signifi-
cance to the true location (Toronto). Focussing on
the right span does not necessarily result in correct
prediction as well; as we see in the third exam-
ple the network focuses on Moncton but predicts a
neighbouring city Halifax as the geolocation.

Next, we look at the Gaussian mixtures learnt
by the RBF network. Using the gold-standard city
labels, we collect bin weights (frbf) for tweet cre-
ation times (from test data) for 6 cities and plot
them in Figure 3. Each Gaussian distribution rep-
resents one bin, and its weight is computed as a
mean weight over all tweets belonging to the city
(line transparency indicates bin weight). Bins that
have a mean weight < 0.075 are excluded.

For London (Figure 3c), we see that most tweets
are created from 10:00–20:00 local time.10 For
Jakarta (Figure 3e), tweet activity mostly centers
around 11:00–23:00 local time (04:00–16:00 UTC

10London’s UTC offset is +00 so no adjustment is neces-
sary to convert to local time.
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Figure 3: Tweet creation time distribution for 6 cities. Times in all plots are in UTC time. Sub-caption
indicates a city’s UTC offset.
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Figure 4: Histogram of r element values. Fields in the subcaptions denote vector dimension (R), corrup-
tion level (σ) and l scaling factor (α). Range of y-axis for the same vector dimension is standardised.

time). Most cities share a similar activity period,
with the exception of Istanbul (Figure 3d): Turk-
ish people seems to start their day much later,
as tweets begin to appear from 15:00–01:00 local
time (12:00 to 22:00 UTC time).

Another interesting trend we find is that for two
cities (Los Angeles and Kuala Lumpur), there is
a brief period of inactivity around noon (12:00) to
evening (18:00) in local time. We hypothesise that
most people are working during these times, and
are thus too busy to use Twitter.

4 Hashing: Generating Binary Code For
Tweets

deepgeo creates a low-dimensional dense vector
representation (r) for a tweet in the penultimate

layer. This representation captures the message,
user timezone and other metadata (including the
city label) that are incorporated to the network dur-
ing training.

Storing the dense vector representation for a
large volume of tweets can be costly.11 If we
can compress the dense vectors into compact bi-
nary codes, it would save storage space, as well
as enabling more efficient retrieval of co-located
tweets, e.g. using multi-index hash tables for K-
nearest neighbour search (Norouzi et al., 2012,
2014).

Inspired by denoising autoencoders (Yu et al.,
2016; Vincent et al., 2010), we binarise the dense

11If a tweet is represented by a vector of 400 32-bit floating
point numbers, 1B tweets would take 1.6TiB of space.
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Bits deepgeo
deepgeo deepgeo lsh fasthash
+noise +loss word2vec deepgeo word2vec deepgeo

100 0.147 0.149 0.146 0.013 0.053 0.116 0.140
200 0.143 0.143 0.140 0.019 0.072 0.128 0.160
300 0.136 0.137 0.141 0.021 0.082 0.133 0.165
400 0.132 0.135 0.136 0.022 0.086 0.135 0.170

Table 6: Retrieval MAP performance.

R deepgeo
deepgeo deepgeo
+noise +loss

100 0.420 0.396 0.410
200 0.428 0.417 0.414
300 0.420 0.416 0.422
400 0.428 0.419 0.418

Table 7: Classification performance for deepgeo
with the addition of noise and loss term l.

vector generated by deepgeo by adding Gaus-
sian noise. The intuition is that the addition of
noise sharpens the activation values in order to
counteract the random noise.

Equation (1) is thus modified to: f̂ = (f1 ⊕
f2...⊕ fN ) +N (0, σ2), whereN (0, σ2) is a zero-
mean Gaussian noise with standard deviation (or
corruption level) σ.12

In the addition to the Gaussian noise, we also
experiment with an additional loss term l to pe-
nalise elements that are not in the extrema: l =
α × 1

R

∑R−1
i=0 |(ri − 1)(ri + 1)|, where ri is the

i-th element in r and α is a scaling factor. We set
σ = α = 0.1, as both values were found to pro-
vide good performance.

To better understand the effectiveness of the
noise and loss term l in binarising the vector
values, we present a histogram plot of r ele-
ment values from test data in Figure 4, for R =
100, 200, 300, 400. We see that the addition of
noise and l helps in pushing the elements to the ex-
trema. The noise term appears to work a little bet-
ter than l, as the frequency for the −1.0 and +1.0
bins is higher. We also observe that there is a small
increase in middle/zero values as R increases from
100 to 400, suggesting that there are more un-
used hidden units when number of parameters in-
creases. We present classification accuracy perfor-
mance when we add noise (deepgeo+noise)
and l (deepgeo+loss) in Table 7. The perfor-
mance drops a little, but generally stays within a
gap of 1%. This suggests that both noise and l

12Dropout is applied to f̂ , i.e. after the addition of noise.

works well in binarising r without trading off clas-
sification accuracy significantly.

Next we evaluate the retrieval performance us-
ing the binary codes. We binarise r for devel-
opment and test tweets using the sign function.
Given a test tweet, we retrieve the nearest devel-
opment tweets based on hamming distance, and
calculate average precision.13 We aggregate the
retrieval performance for all test tweets by com-
puting mean average precision (MAP).

For comparison, we experiment with two hash-
ing techniques: lsh (Indyk and Motwani, 1998)
and fasthash (Lin et al., 2014) (see Section 2
for system descriptions). The input required for
both lsh and fasthash is a vector. We test 2
types of input for these methods: (1) a word2vec
baseline, where we concatenate mean word vec-
tors of the tweet message, user account’s time-
zone and location, resulting in a 900-dimension
vector;14 and (2) deepgeo representation r. The
rationale for using deepgeo as input is to test
whether its representation can be further com-
pressed with these hashing techniques.15

We present MAP performance for all systems
in Table 6. Looking at deepgeo systems (col-
umn 2–4), we see that adding noise and l helps,
although the impact is greater when the bit size is
large (300/400 bits). For lsh, which uses no la-
bel information, word2vec input produces poor
binary code for retrieval. Changing the input to
deepgeo improves retrieval considerably, imply-
ing that the representation produced by deepgeo
captures geolocation information.
fasthash with word2vec input vector per-

forms competitively. For smaller bit sizes (100 or
200), however, the gap in performance is substan-

13We remove 1328 test tweets that do not share city labels
with any development tweets.

14300-dimension word2vec (skip-gram) vectors are
trained on English Wikipedia.

15lsh and fasthash are trained using 400K tweets due
to large memory requirement. We also tested these models
using only 150K tweets, and found marginal performance
improvement from 150K to 400K, suggesting that they are
unlikely to improve even if it is trained with the full data.
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tial. Pairing fasthash with deepgeo produces
the best retrieval performance: for 200/300/400
bits it outperforms deepgeo+noise by 2–4%.
Interestingly for 100 bits fasthash is unable to
compress deepgeo’s representation any further,
highlighting the compactness of deepgeo repre-
sentation for smaller bit sizes.

5 Conclusion

We propose an end-to-end method for tweet-level
geolocation prediction. We found strong perfor-
mance, outperforming comparable systems by 2-
6% depending on the feature setting. Our model
is generic and has minimal feature engineering,
and as such is highly portable to problems in other
domains/languages (e.g. Weibo, a Chinese social
platform, is one we intend to explore). We propose
simple extensions to the model to compress the
representation learnt by the network into binary
codes. Experiments demonstrate its compression
power compared to state-of-the-art hashing tech-
niques.
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