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Abstract 

In this paper, we propose a semantic naïve 

Bayes classifier (SNBC) to improve the 

conventional naïve Bayes classifier (NBC) by 

incorporating “document-level” semantic 

information for document classification (DC). 

To capture the semantic information from each 

document, we develop semantic feature 

extraction and modeling algorithms. For 

semantic feature extraction, we first apply a 

log-Bilinear document modeling (LBDM) 

algorithm to transform each word into a 

semantic vector, and then apply principal 

component analysis (PCA) to the semantic 

space formed by the word vectors to extract a 

set of semantic features for each document. 

For semantic modeling, a semantic model is 

constructed using the semantic features of the 

training documents. In the testing phase, 

SNBC systematically integrates the semantic 

model and the conventional NBC to perform 

DC. The results of experiments on the 20 

News-groups and WebKB datasets confirm 

that, with the semantic score, SNBC 

consistently outperforms NBC with various 

language modeling approaches. 

1 Introduction 

Document classification (DC) is an important task in 

the information retrieval (IR) and natural language 

processing (NLP) areas. In recent years, many 

approaches have been developed for DC. Among 

them, a category of approaches views DC as a 

traditional ranking problem. These approaches first 

represent a document with a feature vector, known as 

the vector space model (VSM), and then machine 

learning algorithms can be applied to accomplish 

classification. Notable examples belonging to this 

category include support vector machine (Joachims, 

1998), decision tree (Comite et al., 2003), logistic 

regression (Genkin et al., 2005), and k-nearest 

neighbor (Kwon and Lee, 2003).  

Another successful category of approaches is based 

on the naïve Bayes classifier (NBC). NBC assumes 

that a document is generated from a probabilistic 

model. In the offline training process, the model 

parameters are estimated from a set of training 

documents. When performing DC, NBC calculates a 

conditional probability  dcP |  (the posterior 

probability that document d  belongs to class c ) and 

classifies the test document to the class that gives the 

highest  dcP | . When calculating  dcP | , NBC 

makes word independence (bag-of-words) 

assumptions and decomposes  dcP |  to a product of 

individual word probabilities. These word 

probabilities are usually characterized by a statistical 

language model. In practice, unigram language 

modeling (ULM) is a popular choice due to its 

effectiveness and computational efficiency (Peng and 

Schuurmans, 2003; Bai and Nie, 2004; Wu and Wang, 

2012). However, since NBC with ULM only 

considers frequencies of words occurring in a class, it 

may suffer from the problems of data sparseness and 

word usage diversity, leading to performance 

degradations for DC. To deal with the data sparseness 

(zero probability) problem of ULM, many smoothing 

techniques, such as Laplace (Bai and Nie, 2004) and 

Jelinek-Mercer (Jelinek and Mercer, 1980) smoothing 

techniques have been developed. 

The latent topic language modeling (LTM) 

approaches use a set of latent topics to decompose the 

relationships between documents and classes. 

Successful examples include latent semantic analysis 

(LSA) (Bellegarda, 2005; Deerwester et al., 1990), 

probabilistic latent semantic analysis (PLSA) 

(Hofmann, 1999a; Hofmann, 1999b), and latent 

Dirichlet allocation (LDA) (Blei 2011; Griffiths and 

Steyvers, 2004; Blei et al., 2003). For these 

approaches, classification scores are not computed 

directly based on the frequencies of the words but 

instead based on a set of latent topics along with the 

likelihoods that each class generates the respective 

topics. The use of latent topics effectively tackles the 

word usage diversity problem for ULM and performs 

DC in a concept matching manner. 

Although NBC with LTM approaches have taken 
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the semantic information into account, the document-

level semantic cues are not directly incorporated for 

the DC task (LTM approaches only extract the word 

frequency information from documents). In this paper, 

we intend to enhance the NBC-based approaches by 

incorporating document-level semantic information 

for DC. In the training phase, we estimate the 

parameters of the semantic model by using the 

training documents. In the testing phase, a semantic 

score is computed based on the given test document 

with a particular class. The final decision of DC is 

made based on a combined score from the semantic 

model and the traditional NBC. Since the proposed 

framework is derived based on the NBC framework, 

we name it “semantic NBC” (SNBC). We conduct 

experiments on two sets of corpora, namely 20 

Newsgroups and WebKB. Experimental results 

demonstrate that SNBC consistently outperforms 

NBC with various language modeling approaches.  

The remainder of this paper is organized as follows. 

Section 2 defines the notations and briefly reviews the 

related work. Section 3 introduces the proposed 

SNBC framework. Section 4 describes our 

experimental setup and discusses experimental results. 

Finally, we conclude this work in Section 5. 

2 Related Work 

In this section, we present notation and terminology to 

be used in the following discussions and review relat-

ed work to the proposed SNBC framework. 

2.1 Notation 

The basic unit in a DC task is word, which is denoted 

as w , where Vw , and V  denotes the vocabulary 

set. A document is a sequence of words, and we 

denote a document by d , where d  represents the 

total number of words in the document. A class is a 

predefined document class, and we denote a class by 

c . Assuming that we have C  distinct classes, the 

goal of DC is to classify a test document testd  into a 

specific class c , where Cc . 

2.2 Naïve Bayes Classifier with Language 

Modeling 

NBC performs DC in two stages: training and testing. 

In the training stage, a generative model is estimated 

based on the training documents for each class. In the 

testing stage, NBC calculates the posterior probability 

of each class given the evidence of the test document 

and selects the class that gives the highest probability 

 .|maxargˆ dcPc
c

    (1) 

By applying Bayes' theorem on  dcP | , we have 

 
   

 
   ,|

|
| cPcdP

dP

cPcdP
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where  cdP |  is the likelihood of document d  

under class c . Since NBC assumes that words in d  

are independent to each other,  cdP |  can be 

decomposed as 
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where  cwP |  is the class unigram probability, 

which indicates the likelihood of word w  occurring 

in the class c , and  dwn ,  denotes the frequency of 

word w  occurring in d . Generally, a unigram 

language model (ULM) is used for calculating 

 cwP | . However, ULM may encounter a data 

sparseness (zero-probability) problem. To deal with 

this problem, many smoothing techniques have been 

developed. Laplace and Jelinek-Mercer smoothing 

techniques are two successful examples. 

The Laplace smoothing technique calculates 

 cwP |  by 
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where  cwn ,  denotes the frequency of word w  

occurring in class c .  

The Jelinek-Mercer smoothing technique calculates 

 cwP |  by 
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where  wPBG  is a background language model 

obtained from the entire training corpus. The tunable 

parameter   in Eq. (5) can be determined based on a 

set of development data. Although many studies have 

proven that NBC with ULM can provide satisfactory 

performance, the method has a limitation: the 

classification process is based on literal term 

matching and only considers frequencies of words 

occurring in a class. Thus, NBC with ULM usually 

suffers from the issue of word usage diversity and 

polysemy, which can degrade the DC performance. 

2.3 Latent Topic Modeling 

In contrast to literal term matching, a latent topic 

language modeling (LTM) incorporates a set of latent 

topic variables to decompose the relationships 

between documents and classes. PLSA (Hofmann, 

1999a; Hofmann, 1999b) and LDA (Blei, 2011; 

Griffiths and Steyvers, 2004; Blei et al., 2003) are 

two representative LTM approaches. For PLSA, 

 cdP |  is formulated as 
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where kT  is the thk  latent topic variable, and K  

denotes the total number of latent topics. The word-

topic likelihood  kTwP |  and topic-class likelihood 

 cTP k |  can be estimated beforehand by 

maximizing the total log-likelihood of the training 

data. For traditional NBC with ULM, the model 

implicitly assumes that each word in a document is 

drawn from a single topic distribution. On the 

contrary, LTM generalizes the idea to allow a mixture 

of latent topics, which can overcome the word 

diversity problem of ULM.  

LDA shares a same concept as PLSA that uses a set 

of latent topic variables to model  cwP | . The major 

difference between LDA and PLSA is that PLSA 

assumes the parameters of topic models to be fixed 

and unknown, while LDA considers the parameters as 

random variables that follow a Dirichlet distribution. 

Because LDA uses a complex form for latent topic 

modeling, the estimation of model parameters is hard 

to be solved by an exact inference. To simplify the 

estimation, a variety of approximation algorithms, 

such as the variational Bayesian expectation 

maximization (VBEM) (Blei, 2011; Blei et al., 2003) 

and Gibbs sampling (Griffiths and Steyvers, 2004) 

algorithms, have been proposed. 

2.4 Log-Bilinear Document Modeling 

Log-Bilinear document modeling (LBDM) (Maas and 

Ng, 2010; Maas et al., 2011) can be considered as a 

relaxed version of LTM. LBDM attempts to learn the 

word representation with a semantic space and use 

training documents to constrain those semantically 

similar words to be represented in near vicinity. The 

major difference of LBDM and LTM is that LBDM 

aims to directly parameterize the model for capturing 

word representations, while LTM focuses on 

estimating a set of latent topics (Maas and Ng, 2010).  

For matching the empirical distribution of words in 

each document, LBDM introduces a document 

specific variable   and defines the probability of a 

document as 

   

      ,|

,

,
 









dw

dwn dwPP

ddPdP




 (7) 

where 
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where w  is a vector representation of word w , and 

wb  denotes a bias for word w . LBDM assumes that 

w  and   are in  , and the variable   is modeled 

by a Gaussian prior density. The probability  |wP  

indicates how close the vector representation of word 

w , w , is to  . 

Assuming that we are dealing with the entire set of 

document collection, D , the word representation 

matrix 
V

R





 (the thi  column vector of R  

denoting the vector representation of the thi  word in 

the vocabulary) and word bias 
V

b   (the thi  

component of b  denotes the bias term for the thi  

word in the vocabulary) can be estimated by 

   

      .,;|maxarg

,;maxargˆ,ˆ

,

,

,




 






DbR

bR

bR

bRDbR

d dw
d

dwn
dd dwPP

P



 (9) 

The integral over d  in Eq. (9) is intractable. To 

simplify the estimation, we assume that the posterior 

distribution is highly peaked around the MAP 

estimate of d . By adding regularization terms for 

R  and d  and taking the logarithm, the parameters 

of LBDM are approximately estimated by 
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,;ˆ|log,maxargˆ,ˆ
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bRbR
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(10) 

where d̂  denotes the MAP estimate of d  for each 

document Dd . Since the objective function in Eq. 

(10) is not convex, a coordinate ascent process is 

performed to estimate the parameters. The estimation 

process first optimizes the word representations ( R  

and b ) with keeping the MAP estimates d̂  of each 

document fixed. Next, we find the new MAP estimate 

for each document with keeping the word 

representations fixed. The two estimation processes 

are performed iteratively until reach convergence. 

When performing DC, for the class c , the MAP 

estimate of the variable ĉ  is estimated by using the 

word representations R , b , and a pseudo-document, 

which is a collection of the entire set of training 

documents belonging to class c . Next, the similarity 

between a document and a class c  is determined by 

1119



     

 
 

 

.
ˆexp

ˆexp

ˆ||

,

'
''

,


 





























dw

dwn

w
ww

T
c

ww
T
c

dw

dwn
c

b

b

wPcdP

V






 (11) 

3 Semantic Naïve Bayes Classifier 

NBC with LTM models has taken the semantic 

information into account and been confirmed effective 

for DC. However, the “document-level” semantic 

cues are not directly incorporated. In other words, 

documents are only treated as a sequence of words 

when determined the similarity between a class and a 

document (cf. Section 2). To exploit the semantic 

information of documents, we propose a semantic 

NBC (SNBC) framework in this paper. In what 

follows, we articulate the derivation of SNBC and the 

implementation process of SNBC to perform DC. 

3.1 Literal and Semantic Models of SNBC 

As presented in Section 2, NBC performs DC by 

conducting literal term matching (Eqs. (1)-(3)). To 

incorporate document-level semantic information, we 

divide  cdP |  into two parts, namely the literal part 

and the semantic part, and reformulate Eq. (1) as 

 

   

   ,|,maxarg

|maxarg

|maxargˆ

cPcddP

cPcdP

dcPc

ls
c

c
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  (12) 

where sd  and ld  denote the semantic and literal parts, 

respectively. By assuming that the literal and 

semantic parts are conditionally independent given a 

class, we have 

     .|||, cdPcdPcddP lsls    (13) 

As presented in Section 2,  cdP l |  can be estimated 

by NBC with any language modeling approaches. The 

calculation of semantic model,  cdP s | , will be 

detailed in the next section. 

3.2 Document-level Semantic Information 

Capturing 

This section describes the semantic feature extraction, 

semantic modeling, and semantic score calculation 

procedures in the SNBC framework. 

3.2.1 Semantic Feature Extraction 

As introduced in Section 2, LBDM can transform a 

word into a semantic vector representation. In the 

proposed SNBC framework, we incorporate LBDM to 

perform semantic feature extraction (SFE). Fig. 1 

illustrates the SFE process. Assume that we have cN  

documents in the 
thc  class. For the 

thn  document, 

we apply LBDM to represent each word into a 

semantic vector. The collection of word vectors in 

that document then forms a semantic subspace for that 

document, denoted as n
cE . Next, we apply principal 

component analysis (PCA) on n
cE  to extract its 

principal vectors, n
cF . Finally, we use the principal 

vectors n
cF  to capture main directions of semantic 

topics of the document n
cd . In this paper, we only use 

the eigenvector with the largest eigenvalue as the 

semantic feature for n
cd . We will study the use of 

multiple eigenvectors in our future work. 

3.2.2 Semantic Modeling and Score 

Calculation 

Figure 2 illustrates the semantic modeling process, 

which can be divided into training and testing stages. 

In the training stage, we use the semantic features of 

the training documents to estimate a semantic model, 

where each class is modeled by a semantic 

distribution. In this paper, we use the Gaussian 

mixture model (GMM) for semantic modeling. 

Because each class may include several sub-topics 

(e.g., tennis, basketball, and boxing are all categorized 

in the sports class), we believe that GMM is a suitable 

model to characterize the semantic distribution for 

 

Fig. 1. Semantic feature extraction (SFE) for the 
thc  
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each class. The semantic features of the training 

documents belonging to each class are used to train 

the GMM for that class. In the testing stage, for each 

class, the class specific SFE is performed to extract 

the semantic feature of the test document. Next, the 

extracted feature is tested on the class specific GMM 

to obtain the semantic score,  cdP s | , indicating the 

semantic likelihood of document d  on class c . Since 

the covariances for different GMMs may vary, we 

design a normalization algorithm to compensate the 

variations of semantic likelihoods by 
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 (13) 

where cF  is the semantic feature of the test document 

testd  for the 
thc  class, and the GMM model of class 

c  has cM  Gaussian components with mean vectors 

 
cM ,,1  , covariance matrices  

cM ,,1  , 

and mixture weights  
cM ,,1  . 

3.3 SNBC Score Calculation 

With NBC and the semantic model, we can calculate 

the final SNBC score by multiplying scores from 

three different information sources, namely the class 

prior, semantic information, and literal language 

modeling, as illustrated in Fig. 3. We further use   to 

control the scale of semantic information. Therefore, 

the classification rule for SNBC becomes 

       ,||maxargˆ ,




dw

dwn
s

c

cwPcPcdPc  (14) 

where the class prior,  cP , is simply kept uni-

form in this paper. 

4 Experiments 

This section describes our experimental setup, 

performance measure, and experimental results.  

4.1 Experimental Setup 

We conducted the DC experiments on 20 Newsgroups 

(20Ng) and WebKB datasets (http://web.ist.utl.pt/aca 

rdoso/datasets/) (Cardoso-cachopo and Oliveira, 

2003). The pre-processing steps include stemming, 

removing stop words, and removing numbers and 

words with occurrence below four. 20Ng contains 

roughly 20,000 documents, which distribute 

approximately even across 20 classes. These 

documents are randomly divided into 60% for training 

and 40% for testing. WebKB originally contains 

seven different categories, and we use four major 

classes in the experiments. Finally there are around 

4,200 documents, which are randomly divided into 

two thirds for training and one third for testing. Albeit 

that the way to systemically determine the values of 

the parameters in various machine learning 

approaches is still an open issue and needs further 

investigation and proper experimentation, the 

parameters in the following experiments are set 

empirically as follows. The number of latent topics 

and the dimension of LDBM are set to 10, which 

gives the optimal result in our preliminary 

experiments. For semantic modeling, the number of 

GMMs equals to the number of classes, and each 

GMM is characterized by 20 Gaussian components. 

The parameter   is set to 0.6.  

4.2 Performance Measure 

In the following DC experiments, we use the standard 

F1-score measure for evaluation. F1-score (F) can be 

decomposed into two parts, namely recall (R) and 

precision (P). 

,
  #

  #

examplespositive

predictionpositivecorrect
R   (15) 

,
  #

  #

predictionpositive

predictionpositivecorrect
P   (16) 
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2
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F




     (17) 

To evaluate the average F1-scores across all the 

classes, we adopt micro-averaged and macro-averaged 

F1-scores (Yang, 1999). The micro-averaged F1-score 

assigns a same weight across different classes while 

the macro-averaged F1-score gives each class a 

specific weight according to the number of documents 

within that class. 

4.3 Experimental Results 

 
 

Fig. 3. SNBC score calculation for a test document 
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First, we evaluate the performance of conventional 

NBC with various language models, including ULM 

with Jelinek-Mercer smoothing (JM), LDA, and 

LBDM; their average F1-scores evaluated on WebKB 

and 20Ng are listed as JM, LDA, and LBDM, 

respectively, in the upper three rows in Tables 1 and 2. 

From Tables 1 and 2, we observe that LDA 

outperforms JM and LBDM in most cases. The results 

indicate that topic modeling performs better than 

other language modeling approaches, which is 

consistent with many previous studies (Blei et al., 

2003). 

Next, we combine the above three NBC systems, 

namely JM, LDA, and LBDM, with the semantic 

information (as presented in Section 3.3); the 

corresponding results are listed as SNBC (JM), SNBC 

(LDA), and SNBC (LBDM), respectively, in the 

lower three rows of Tables 1 and 2. From the 

experimental results, we note that SNBC consistently 

outperforms conventional NBC systems. The 

improvements from NBC to SNBC have been 

confirmed statistically significant based on the t-test 

(Agresti and Franklin, 2008). The superscript * in 

Tables 1 and 2 indicates that the corresponding 

improvement is significant at the 0.05 confidence 

level. Our experimental results confirm that the 

document-level semantic information provides 

complementary knowledge to the NBC with LTM and 

thus improve its performance for DC. 

5 Conclusions 

This paper has proposed a semantic naïve Bayes 

classifier (SNBC) that incorporates document-level 

semantic information to improve the performance of 

the conventional NBC for the DC task. The SNBC 

framework includes a semantic feature extraction 

scheme to extract the semantic information of a 

training/test document and a semantic modeling 

algorithm to compute the semantic score for a given 

document. In the testing phase, SNBC combines the 

semantic score and the language modeling score to 

perform DC. Our experiments have been conducted 

on the 20 Newsgroups and WebKB datasets. The 

results demonstrated that SNBC can improve the DC 

performance in terms of Micro-F1 and Macro-F1 

scores for NBC with various language modeling 

techniques. The performance improvement of SNBC 

over NBC confirms the effectiveness of integrating 

document-level semantic information into the 

conventional NBC. Notably, this study adopts LBDM 

to prepare semantic features; other semantic 

extraction methods, such as PLSA and LDA, can also 

be used to prepare semantic features. More 

experiments on SNBC using different semantic 

extraction methods will be conducted and compared 

with other existing state-of-the-art approaches in the 

future. 
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