
Chinese Deterministic Dependency Analyzer: Examining Effects of

Global Features and Root Node Finder

Yuchang CHENG, Masayuki ASAHARA and Yuji MATSUMOTO

Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan

{yuchan-c, masayu-a, matsu}@is.naist.jp

Abstract

We present a method for improving

dependency structure analysis of Chi-

nese. Our bottom-up deterministic ana-

lyzer adopt Nivre’s algorithm (Nivre

and Scholz, 2004). Support Vector Ma-

chines (SVMs) are utilized to deter-

mine the word dependency relations.

We find that there are two problems in

our analyzer and propose two methods

to solve them. One problem is that

some operations cannot be solved only

using local feature. We utilize the

global features to solve this. The other

problem is that this bottom-up analyzer

doesn’t use top-down information. We

supply the top-down information by

constructing SVMs based root node

finder to solve this problem. Experi-

mental evaluation on the Penn Chinese

Treebank Corpus shows that the pro-

posed extensions improve the parsing

accuracy significantly.

1 Introduction

Many syntactic analyzers for English have been

implemented and have demonstrated good per-

formance (Charniak, 2000; Collins, 1997; Rat-

naparkhi, 1999). However, implementation of

Chinese syntactic structure analyzers is still lim-

ited, since the structure of the Chinese language

is quite different from other languages. There-

fore the experience in processing western lan-

guages cannot be guaranteed that it can apply to

Chinese language directly (Lee, 1991). Chinese

language has many special syntactic phenomena

substantially different from western languages.

Discussions about such characteristics of Chi-

nese language can be found in the literature

(Chao 1968; Li and Thompson 1981; Huang

1982).

About the previous work of Chinese depend-

ency structure analysis, Zhou proposed a rule

based approach (Zhou, 2000). Lai et al. pro-

posed a span-based statistical probability ap-

proach (Lai, 2001). Ma et al. proposed a statistic

dependency parser by using probabilistic model

(Ma, 2004). Using machine learning-based ap-

proaches for dependency analysis of Chinese is

still limited. In this paper, we propose a deter-

ministic Chinese syntactic structure analyzer by

using global features and a root node finder.

Our analyzer is a dependency structure ana-

lyzer. We utilize a deterministic method for de-

pendency relation construction. First, a

dependency relation matrix is constructed, in

which each element corresponds to a pair of to-

kens. A likelihood value is assigned to the de-

pendency relation of each pair of tokens.

Second, the optimal dependency structure is es-

timated using the likelihood of the whole sen-

tence, provided there is no crossing between

dependencies. A bottom-up algorithm proposed

by (Nivre and Scholz, 2004) is use for a deter-

ministic dependency structure analysis. Our de-

pendency relations are composed by machine

learners. SVMs (Vapnik, 1998) deterministically

estimate if there is a dependency relation be-

tween a pair of words in the methods.

However, this method has two problems. First,

some operations in the algorithm needs long

distance information. However, the long dis-

tance information cannot be available if we as-

sume a context of a fixed size in all operations.

17

The second problem is that the top-down infor-

mation isn’t used in the bottom-up approach.

We use the global features to solve the first

problem and we construct a SVM-based root

node finder in our system to supplement the top-

down information.

Our analyzer is trained on the Penn Chinese

Treebank 5.0 (Xue et al., 2002), which is a phrase

structure annotated corpus. The phrase structure

is converted into a dependency structure accord-

ing to the head rules. We perform experimental

evaluation in several settings on this corpus.

In the next section, we describe our determi-

nistic dependency structure analysis algorithm.

Section 3 shows the global features and the two-

step process. Section 4 describes the use of the

root node finder. Section 5 describes the ex-

perimental setting and the results. Finally, we

summarize our findings in the conclusion.

2 Parsing method

This chapter presents a basic parsing algorithm

proposed by (Nivre and Scholz, 2004). The al-

gorithm is the base of our dependency analyzer.

This algorithm is based on a deterministic ap-

proach, in which the dependency relations are

constructed by a bottom-up deterministic

schema. While Nivre’s method uses memory-

based learning, we use SVMs instead. The algo-

rithm consists of two major procedures:

(i) Extract the surrounding features for the

focused node (or node pair).

(ii) Estimate the dependency relation opera-

tion for the focused node by a machine

learning method.

Example: (The great triumph that Cheng Cheng-Kung recaptured Taiwan.)

Fig. 1. The operations of the Nivre algorithm

recaptured

VV

(name)

NR

S I

recaptured

VV

(name)

NR

S I

Right

S I

recaptured

VV

(name)

NR

S I

Left

S I S I

Reduce

S I S I

Shift

recaptured

VV

(name)

NR

Taiwan

NR

Taiwan

NR

recaptured

VV

(name)

NR

Taiwan

NR

recaptured

VV

(name)

NR

Taiwan

NR

DE

DEG

DE

DEG

recaptured

VV

(name)

NR

Taiwan

NR

recaptured

VV

(name)

NR

Taiwan

NR

great

VA

DE

DEG

great

VA

DE

DEG

Triumph

NN

great

VA

great

VA

DE

DEG

DE

DEG

great

VA

Taiwan

NR

Taiwan

NR

position t-1 position n position n+1position t

t-1 n n+1t

t-1 n n+1t

t-1 n n+1t t-1 n n+1t

t-1 n n+1t

t-1 n n+1t

t-1 n n+1t

A{ } A{ -> }

A{ -> } A{ -> , -> }

A{ -> ,

-> }

A{ -> ,

-> }

A{ -> ,

-> }

A{ -> ,

-> }

18

2.1 Algorithm

We utilize a bottom-up deterministic algorithm

proposed by (Nivre and Scholz, 2004) in our

analyzer. In the algorithm, the states of analyzer

are represented by a triple AIS ,, . S and I are

stacks, S keeps the words being in consideration,

and I keeps the words to be processed. A is a list

of dependency relations decide during the algo-

rithm. Given an input word sequence W, the

analyzer is initialized by the triple φ,,Wnil .

The analyzer estimates the dependency relation

between two words (the top elements of stack S

and stack I). The algorithm iterates until the list

I becomes empty. Then, the analyzer outputs the

word dependency relations A.

There are four possible operations for the con-

figuration at hand:

Right: Suppose the current triple is

AInSt ,|,| (t and n are the top elements, S and

I are the remaining elements in the stacks), if

there is a dependency relation that the word t

depends on word n, add the new dependency

relation ()nt → into A, remove t from S. The

configuration now becomes (){ }ntAInS →,|, .

Left: In the current triple is AInSt ,|,| , if

there is a dependency relation that the word n

depends on the word t, adds the new dependency

relation ()tn → into A, push n onto the stack S.

The configuration now becomes

(){ }tnAIStn →,,|| .

Suppose the current triple is AInSt ,|,| , if

there is no dependency relation between n and t,

check the following conditions.

Reduce: If there are no more words 'n (In ∈')

which may depend on t, and t has a parent on its

left side, the analyzer removes t from the stack S.

The configuration now becomes AInS ,|, .

Shift: If there is no dependency between n and t,

and the triple doesn’t satisfy the conditions for

Reduce, then push n onto the stack S. The con-

figuration now becomes AIStn ,,|| .

These operations are depicted in Fig. 1. Given

an input sentence of length N (words), the ana-

lyzer is guaranteed to terminate after at most 2N

actions. The dependency structure given at the

termination is well-formed if and only if the re-

lations in A constitute a single connected tree.

This means that the algorithm produces a well-

formed dependency graph.

2.2 Machine learning method

A classification task usually involves with train-

ing and testing data which consist of annotated

data instances. Each instance in the training set

contains one “target value” (class label) and

several “attributes” (features). The goal of a

classifier is to produce a model which predicts

target value of data instances in the testing set

which only give the attributes.

SVMs are binary classifiers based on the

maximal margin strategy. Suppose we have a set

of training data for a binary classification prob-

lem:)y)...(y(nn11 ,, , where nR∈i is the fea-

ture vector of the i-th sample in the training data

and }1,1{ −+∈iy is the class label of the sample.

The goal is to find a decision function

))(()(
∈

+=
SV

ii

i

bKyasignxf i, for an input vec-

tor . The vectors SV∈ are called support

vectors, which are representative examples.

Support vectors and other constants are deter-

mined by solving a quadratic programming

problem.)(zx,K is a kernel function which maps

vectors into a higher dimensional space. We use

the polynomial kernel: dK)1()(zxzx, ⋅+= . The

performance of SVMs is better than using other

machine learning methods, such as memory

based learning or maximum entropy method, in

our analyzer. This is because that SVMs can

adopt combining features automatically (using

the polynomial kernel), whereas other method

cannot. To extend binary classifiers to multi-

class classifiers, we use the pair-wise method,

which utilizes 2Cn binary classifiers between all

pairs of the classes (Kreel, 1998). We use

Libsvm (Lin et al., 2001) in our experiments.

2.3 Features (Local features)

 It should be noted that we use a different ma-

chine learner from the original method (Nivre,

2004). Nivre’s work used memory based learn-

ing in their analyzer, we utilize SVMs in our

analyzer. Therefore, the features of our analyzer

are different from the original Nivre’s method.

In our method, the analyzer considers the de-

pendency of two nodes (n,t) which are in current

19

triple. The nodes include the word, the POS-tag

and the information of its children. The context

features we use are 2 preceding nodes of node t

(and t itself), 2 succeeding nodes of node n (and

n itself), and their child nodes. The distance be-

tween nodes n and t is also used as a feature.

We call these features as local features.

3 Global features and two-step process

In the algorithm, the operation Reduce needs

the condition that the node n should have no

child in I. However, it is difficult to check this

condition. In a long sentence, the modifier of the

focused node n may be far away from n. More-

over, some non-local dependency may cause this

kind of error. In this section, we will describe

this problem and a solution to it.

3.1 Global features

The analyzer selects features for deciding the

optimum operation, and then gives these fea-

tures to machine learner. The machine learner

uses the same information to decide the opti-

mum operation even when these operations es-

sentially disagree. However, the different

operation consists of different condition. In the

deterministic bottom-up dependency analysis,

we can generally consider the process as two

tasks:

Task 1: Does the focused word depend on a

neighbor node?

Task 2: Does the focused word may have a

child in the remaining token sequence?

In the Task 1, the problem can be resolved by

using the information of the neighbor nodes.

This information is possibly the same as the fea-

tures that we described in section 2.3. However,

these features may not be able to resolve the

problem in task 2. For resolving the problem in

task 2, we need the information of long distance

dependency. In Fig. 2, for example, the analyzer

is considering the relation between focused

words “ (tell)” and “ (he)”. The features

used in this original analysis are the information

of words “ (please)”, “ (tell)”, “ (he)”,

“ (what time)” and “ (prepare)”. These

features are “local features”. The correct answer

in this situation is the operation “Shift”. It is

because the word “ (tell)” has a child “

(start)” which is not yet analyzed and the fo-

cused words don’t depend on each other. How-

ever, the local features do not include the

information of word “ (start)”. Therefore,

the analyzer possibly estimates the answer as the

operation “Reduce”. The results make a mistake

in this situation because of the lack of long dis-

tance information. To resolve this problem, we

should refer some information of long distance

dependency in machine learning. The informa-

tion about long distance relations is defined as

“global features”. In this paper, we select the

words which remain in stack I but don’t be con-

sider in local features as global features.

Fig. 2. An example of the ambiguity of deciding the long distance dependency relation and using two-

steps classification dependency relation

prepareplease

you

tell I What time startHe

S I

(Please tell me what time he will prepare to start.)

Classification

with local

features

Output :shift

Local features
Global features

Classification

with global

features

Output :

reduce

20

3.2 two-step process

To use the global features, we cannot use them

immediately because the global features are not

effective in all operations. For using global fea-

tures efficiently, we propose a two-step process

in our analyzer. The analysis processes are di-

vided to two processes. First, the analyzer uses

only the local features (as described in Section

2.3) to decide the optimum operation. If the re-

sult is “Reduce” or “Shift”, it means that the

focused words do not have any dependency rela-

tion. The analyzer leaves the decision to another

machine learner that makes use of global fea-

tures. The analyzer will select global features for

analyzing the Task 2. Then the analyzer outputs

the final answer of this analysis process.

Fig. 2 describes an example of using two-step

classification for analyzing dependency relation.

In this example, the focused words are “ (I)”

and “ (He)”. The word “ (I)” depends on

the word “ (tell)”. The local features are

surrounded by dotted line and the global features

are surrounded by solid line. The analyzer used

local features to analyze the operation of this

situation. The result is the operation “shift”. The

analyzer then selected the global features to ana-

lyze again and the output is the operation “re-

duce”. The final result of this situation is the

operation “reduce”.

4 The root node finder

In Isozaki’s work (Isozaki et. al, 2004), they

adopted a root finder in their system to find the

root word of the input sentence. Their method

used the information of the root word as a new

feature for machine learning. Their experiments

showed that information of root word was a

beneficial feature. However, we think the infor-

mation of root word can be used not only as the

feature of machine learning, but also can be used

to divide the sentence. Therefore, the complex-

ity of the sentence can be alleviated by dividing

the input sentence.

4.1 Root node and dividing sentence by

using root finder

In the fundamental definition of dependency

structure, there is one and only one head word in

a dependency structure. An element cannot have

dependents lying on the other side of its own

governor.

These peculiarities imply that the head word

divides the phrase into two independent parts

and each part does not cross the head word. As

in Fig. 3, the original input sentence has a root

word (the head word of phrase) “ (and)”.

There are not any dependency relation which

crosses the root word. Therefore we can divide

this sentence into two sub-sentence “ (exo-

dus) / (do) / (study) / (and)” and ”

(and) / (go) / (foreign country) / (do)

/ (visit)”. Both these sub-sentences have

their root word and the root word is ” (and)”.

We can conceive that to analyze the dependency

structure of the full sentence is to analyze the

dependency structure of two sub-sentences.

Combining structures of two sub-sentences, we

can get the full structure of original sentence.

Our dependency analyzer is a bottom-up deter-

ministic analyzer. Instinctively, the accuracy of

analyzing short sentence is significantly better

than analyzing long sentence. Thus the perform-

ance of the dependency analyzer can be im-

proved by this method.

4.2 Constructing a root finder

To use the root node, we should construct the

root finder. Similarly to Isozaki’s work, we use

machine learner (SVMs) to construct the root

finder. We refer to the features which are used

in Isozaki’s work and investigate other effective

features. The performance of our root node

finder is 90.71%. This is better than the root ac-

curacy of our analyzer (86.22%, see Table 2).

Fig. 3. Dividing the phrase as two phrases by the root

word

(To Leave native country to study and to visit other country.)

The root word

The root word The root word

Original input

sentence:

Divide by the

root word:

Part 1 Part 2

21

Therefore, using the root finder can give the de-

pendency analyzer more top-down information.

The tags and features of the root finding are

shown in Fig. 4. We extract all root words in the

training data and tagging every word to show

that it is root word or not. For example, the root

word in Fig. 4 is “ (get)”. The root finder

analyzes each word in the sentence and gives the

tag “true” or “false” to indicate the root word.

The features for machine learning of root finder

include the contextual features (the information

about the focused word, the two preceding

words, and two succeeding words) and the word

relation features (the words which are in the out-

side of the window). Other effectual features

include the Boolean features “root word is

found” and “the focus word is the first/last word

of sentence”. For example, the contextual fea-

tures of the word “ (economic)“ include

information of the focused (n) word “ (eco-

nomic)”, the “n-1”th word “ (wide)”, the

“n-2”th word ” (DE)”, the “n+1”th word”

 (environment)” and the “n+2”th word ”

(will)”. The word relation features include the

preceding word set { (China)}, the suc-

ceeding word set { , , , } and

the Boolean features are:

“root_word_is_found=false”,

“first_word=false” ,”last_word=false”.

When we use the root finder to analyze the

root word of the sentence, we do not know the

structure of input sentence (either the phrase

structure or the dependency structure). It may

look odd that the root finder can analyzes the

root word without any information of the struc-

ture. However, this analysis is practicable. Natu-

rally, the root word of a sentence is usually a

verb (about 61% of sentences have a verb as the

root word in our testing corpus). For example, in

the example 1 of Fig. 5 “ / / (I go to

school)”, we know the POS-tags are “noun, verb,

noun” thus we can find that the root word is ”

(go)”. However, many sentences include more

then one verb or the root word is not verb (in NP

or PP…etc.). We can not only choose the verbs

as root word directly. To decide the root word of

complex sentences, there are some special

word/POS relations that can be used to estimate

the root node of a sentence. Considering the root

finder in Fig. 4, the root finder gives the root tag

to each word of the sentence.

The processes of analyzing the root word can

be thought as two tasks:

Task 1: Does the focus word depend on a

neighbor word?

Task 2: Are there any special relation in the sen-

tence?

 In Fig. 4, the contextual features (two pre-

ceding words and two succeeding words) can be

used to process the Task 1, and the word rela-

tion features can be used to process the Task 2.

If the focused word possibly depends on

neighbor words, it is impossible that the focused

word is the root word. Therefore these words

will be tagged as “false”.

Alternately, considering the example 2 in Fig.

5, the sentence has a verb “ (recapture)”,

but the special word “ (DE)” is in the right

side of the verb “ (recapture)”. Therefore,

the verb “ (recapture)” is possibly in the

(DE)-phrase and the verb cannot be the root

word. The special word “ (DE)” resembles a

preposition and it is always the last word of DE-

phrase. Therefore, although we do not know the

structure of sentence, we can identify which

words can be the root word by the relation and

position of the features. If the features of the

focused word include the special word relations

Fig. 4. The features and tag of root finder

Word POS Tag

NR false

DEG false

JJ false

NN false

NN false

AD false

VV true

JJ false

DEG false

NN false

EOS

Position 0

Position -1

Position -2

Position 1

Position 2

Focus word

Contextual

feature

Word

relation Fig. 5. The examples of analyzing the root word

of sentences

Root

NR VV NR DEG VA NN
(The great triumph that Cheng Cheng-Kung recaptured
Taiwan.)

DT VV NN

(I go school.) Root

Example 1:

Example 2:

22

(for example, the focused word is in the preposi-

tional phrase), it isn’t the root word. The fea-

tures “word relations” in Fig. 5 can consider this

situation.

5 Experiments

5.1 Corpus and estimation

We use Penn Chinese Treebank 5.0 (Xue et al.,

2002) in our experiments. This Treebank is rep-

resented by phrase structure and doesn’t include

the head information of each phrase. The first

step of using Penn Chinese Treebank is to derive

the head rules for deciding the head word of

each phrase. Some examples of head rules are

shown in Table 1. We convert the Treebank by

using these head rules. The training corpus in-

cludes about 377,408 words for learning and

63,886 words for testing. It should be noted that

the punctuation mark “ ” marks the end of a

sentence in the Treebank. However, the punc-

tuation mark “‚” also can be the end of a sen-

tence. It is hard to determine the dependency

rule of the clauses on the both side of comma.

Therefore, to decide the dependency relation

which crosses a punctuation mark “‚” is difficult.

We do not deal with the ambiguity of commas

and divide the sentence by the punctuation mark

“‚”.

Phrase The order of deciding the head

of phrase (from left)

ADJP CC PZ ADJP JJ

ADVP CC PZ AD

CLP PZ CLP M LC

DP DP CLP QP DT

DVP DEV DEC DEG

VCP VC VV

Table 1. Some examples of head rules

The performance of our dependency structure

analyzer is evaluated by the following three

measures:

Dependency Accuracy:

relationsdependencyofnumber

relationsdependencyanalyzedcorrectlyofnumber
=

Root Accuracy:

clausesofnumber

nodesrootanalyzedcorrectlyofnumber
=

Sentence Accuracy:

clausesofnumber

clauseanalyzedcorrectlyfullyofnumber
=

5.2 Results and discussion

Our experimental results are shown in Table. 2.
First row in the table is the result of our basic
analyzer (Nivre algorithm with SVMs), second
and third row show the effects of the proposed
extensions. The last row is the result of combin-
ing the two extensions. We had used McNemar
test to confirm the significance of the methods.
The McNemar test proves that using the pro-
posed methods improve the analyzers signifi-
cantly. Comparing the results of our basic
analyzer to related works, our analyzer (dep.
Accuracy: 87.64) is better than (Ma et al., 2004,
dep. Accuracy: 80.38) and (Zhou, 2000, dep.
Accuracy of newspaper: 67.7). However, these
researches used different corpus. We cannot
compare the performances directly.

According to the second row of Table. 2, di-
viding the process of classification as two steps
can improve the performance of dependency
analyzer. However, the improvement of using
this method is limited. This is because that long
distance relations are not many in the corpus.
The absence of global information does not oc-
cur in the sentences without long distance rela-
tions. Another reason is the distribution of
operations. The instances of operations in our
experimental corpus are not balanced. The op-
eration “reduce” is the least (7.8%) and it is far
less than other operations. Therefore the in-
stances for creating the model of operation “re-
duce” are not satisfactory. These facts result in
that our experiment of using two step classifica-
tion cannot improve the analyzer remarkably.

About the experiment of utilizing root finder
in our analyzer, we tried to adopt the root infor-
mation to the analyzer (using the information as
features for machine learning). However, the
performance is worse than the baseline (the fun-
damental analyzer “Nivre+SVMs”). Therefore,
we use our method to improve the analyzer by
using root information (dividing the sentence
according to root node).

According to the third row of Table. 2, divid-
ing the sentence into two sub-sentences can im-
prove the performance of dependency analyzer.
However, the sentence accuracy cannot increase
reliably. This result shows that using root finder
and dividing sentence can reconstruct some mis-
takes in sentences. Certainly, the performance of
the root finder influences the analyzer strongly.
If we use a perfect root node finder into our ana-
lyzer, the performance will improve signifi-
cantly.

23

The last row of Table. 2 shows the results of
combining the two proposed methods (using
global features and root node finder) to improve
our analyzer. Combining two methods can in-
crease the dependency accuracy better than us-
ing either one of the methods. It means that
some analysis errors of fundamental analyzer
can be resolved by using both improvement
methods. Therefore using combined method
cannot supply higher improvement.

 Dep.
Acc.

Root
Acc.

Sent.
Acc.

Baseline
(Nivre with
SVMs)

85.25 86.18 59.98

Baseline with
two-step
process

85.44 86.22 60.1

Baseline with
root node
finder

86.13 90.94 61.33

Baseline with
two-step
process and
root node
finder

86.18 90.94 61.33

Table 2. The experimental results

6 Conclusion and future work

In this paper, we present two methods to im-
prove a deterministic dependency structure ana-
lyzer for Chinese. This basic analyzer
implements a bottom-up deterministic algorithm
with SVMs. We convert a phrase structure anno-
tated corpus (Penn Chinese Treebank) to de-
pendency tagged corpus by using head rules.
According to the properties of Chinese language
and dependency structure, we try to add a root
finder in our dependency analyzer to improve
the analyzer. Moreover, considering the machine
learning process of our analyzer, we divide the
process into two processes to improve the per-
formance of analyzer. The improving methods
(using root finder and dividing machine learning
process) showed to improve the analyzer.

Future work includes three points. First, we
should improve the performance of the root
finder. Second, we should construct a useful
prepositional phrase chunker, because the
prepositional phrase is a major error source of
our basic analyzer. The original analyzer tends
to let the preposition governing a partial subtree
of the full phrase. According to the properties of
Chinese language, the prepositional phrases in
Chinese are head-initial. Intuitively, if we can
extract the prepositional phrases from sentence,
the complexity of the sentence will decrease.

Thus an important task is how to chunk the
prepositional phrase in the sentence.

Finally, we should deal with the ambiguity of

the meaning of punctuation mark “,”. The defi-

nition of “sentence” is ambiguous in Chinese. In

Chinese articles, the normal ending mark of a

sentence is the punctuation mark “ ”. However,

the mark “‚” is often used at the end of a sen-

tence. To distinguish the meaning of the punc-

tuation mark “‚” is difficult. Therefore, we

should adopt semantic analysis in our analyzer.

References
1. Eugene Charniak, 2001. Immediate-Head Parsing

for Language Models. pages 124-131, NAACL-
2001.

2. Yuen Ren Chao, 1968. A Grammar of Spoken
Chinese. Berkeley, CA: University of California
Press.

3. Michael Collins, Brian Roark, 2004, Incremental
parsing with the Perceptron algorithm. Pages 112-
119, ACL-2004.

4. J. Huang, 1982. Logical relations in Chinese and
the theory of grammar Doctoral dissertation, Mas-
sachusetts Institute of Technology, Cambridge.

5. Ulrich. H.-G. Kre el, 1998. Pairwise classification
and support vector machines. In Advances in
Kernel Methods, pages 255–268. The MIT Press.

6. Chih Jen Lin, 2001. A practical guide to support
vector classification, http://www.csie.ntu.edu.tw/
~cjlin/libsvm/.

7. Lai, Bong Yeung Tom, Huang, Changning, 1994.
Dependency Grammar and the Parsing of Chinese
Sentences. PACLIC 1994

8. Hideki Isozaki, Hideto Kazawa, Tsutomu Hirao,
2004. A Deterministic Word Dependency Ana-
lyzer Enhanced With Preference Learning, pages
275-281, COLING-2004

9. Charles Li, and Thompson Sandra A., 1981. Man-
darin Chinese. University of California Press.

10. Lin-Shan Lee, Long-Ji Lin, Keh-Jiann Chen, and
James Huang, 1991. An Efficient Natural Lan-
guage Processing System Specially Designed for
the Chinese Language. ComputationaI Linguistics,
Volume 17, Number 4.

11. Ma Jinshan, Zhang yu, Liu ting, and Li sheng,
2004. A Statistical Dependency Parser of Chinese-
under Small Training Data. IJCNLP 2004 Work-
shop: Beyond shallow analyses, Formalisms and
statistical modeling for deep analyses.

12. Joakim Nivre and Mario Scholz, 2004. Determi-
nistic Dependency Parsing of English Text. Pages
64-70, COLING-2004.

13. Adwait Ratnaparkhi, 1999. Learning to parse
natural language with maximum entropy models.
Machine Learning, 34(1-3) pages151–175.

14. Vladimir N. Vapnik, 1998. Statistical Learning
Theory. A Wiley-Interscience Publication.

15. Nianwen Xue, Fu-Dong Chiou, Martha Stone
Palmer, 2002. Building a Large-Scale Annotated
Chinese Corpus. COLING 2002

16. Ming Zhou, 2000. A block-based robust depend-
ency parser for unrestricted Chinese text. The sec-
ond Chinese Language Processing Workshop
attached to ACL-2000.

24

