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Abstract 

The pat tern  matching capabilities of 
neural networks can be used to loc- 
ate syntactic constituents of natural lan- 
guage. This paper describes a fully auto- 
mated hybrid system, using neural nets 
operating within a grammatic frame- 
work. It addresses the representation 
of language for connectionist processing, 
and describes methods of constraining 
the problem size. The function of the 
network is briefly explained, and results 
are given. 

1 Introduction 

The pat tern matching capabilities of neural net- 
works can be used to detect syntactic constituents 
of natural language. This approach bears compar- 
ison with probabilistic systems, but has the ad- 
vantage that  negative as well as positive inform- 
ation can be modelled. Also, most computation 
is done in advance, when the nets are trained, 
so the run time computational load is low. In 
this work neural networks are used as part  of a 
fully automated system that  finds a partial parse 
of declarative sentences. The connectionist pro- 
cessors operate within a grammatic framework, 
and are supported by pre-processors that  filter the 
data  and reduce the problem to a computation- 
ally tractable size. A prototype can be accessed 
via the Internet, on which users can t ry  their own 
text (details from the authors). It will take a sen- 
tence, locate the subject and then find the head of 
the subject. Typically 10 sentences take about 2 
seconds, 50 sentences about  4 seconds, to process 
on a Sparcl0 workstation. Using the prototype on 
technical manuals the subject and its head can be 
detected in over 90% of cases (See Section 7). 

The well known complexity of parsing is ad- 
dressed by decomposing the problem, and then 

locating one syntactic constituent at a time. The 
sentence is first decomposed into the broad syn- 
tactic categories 

pre-subject - subject - predicate 

by locating the subject. Then these constituents 
can be processed further. The underlying prin- 
ciple employed at each step is to take a sentence, 
or part  of a sentence, and generate strings with 
the boundary markers of the syntactic constituent 
in question placed in all possible positions. Then 
a neural net selects the string with the correct 
placement. 

This paper gives an overview of how natural  
language is converted to a representation that  the 
neural nets can handle, and how the problem is 
reduced to a manageable size. It then outlines 
the neural net selection process. A comprehensive 
account is given in (Lyon, 1994); descriptions of 
the neural net process are also in (Lyon, 1993; 
Lyon and Frank, 1992). This is a hybrid sys- 
tem. The core process is data  driven, as the para- 
meters of the neural networks are derived from 
training text. The neural net is trained in super- 
vised mode on examples that  have been manually 
marked "correct" and "incorrect". It will then be 
able to classify unseen examples. However, the ini- 
tial processing stages, in which the problem size is 
constrained, operate within a skeletal grammatic 
framework. Computational tractabili ty is further 
addressed by reducing data  through the applica- 
tion of prohibitive rules as local constraints. The 
pruning process is remarkably effective. 

2 The corpus of sentences f rom 
technical manuals  

This work has principally been developed on text  
of technical manuals from Perkins Engines Ltd.,  
which have been translated by a semi-automatic 
process (Pyre, 1993). Now, a partial parse can 
support such a process. For instance, frequently 
occurring modal verbs such as "must" are not dis- 
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Figure I: The frequency of constituent length for pre-subject and subject in 351 sentences 

tinguished by number in English, but  they are in 
many other languages. It is necessary to locate 
the subject, then identify the head and determ- 
ine its number in order to translate the main verb 
correctly in sentences like (1) below. 

If a cooler is fitted to the geaxl~ox, [ the pipe 
[ connections ] of the cooler ] must be regu- 
laxly checked for corrosion. (1) 

This parser has been trained to find the syntactic 
subject head that  agrees in number with the main 
verb. The manuals are written using the PACE 
(Perkins Approved Clear English) guidelines, with 
the aim of producing clear, unambiguous texts. 
AlI declarative sentences have been extracted for 
processing: about  half were imperatives. This 
level of classification can be done automatically 
in future. Table 1 and Figure 1 show some of the 
characteristics of the corpus. 

Number of sentences 351 
Average length 17.98 words 
No. of subordinate clauses 
In pre-subject 65 
In subject 19 
In predicate 136 
Co-ordinated clauses 50 

Punctuation marks are counted as words, formulae as 
1 word. 

Table 1: Corpus statistics 

3 Language representation (I) 
In order to reconcile computational feasibility to 
empirical realism an appropriate form of language 

representation is critical. The first step in con- 
straining the problem size is to part i t ion an unlim- 
ited vocabulary into a restricted number of part-  
of-speech tags. Different stages of processing place 
different requirements on the classification system, 
so customised tagsets have been developed. For 
the first processing stage we need to place the sub- 
ject markers, and, as a further task, disambiguate 
tags. It was not found necessary to use number 
information at this stage. For example, consider 
the sentence: 

Still waters run deep. (2) 
The word "waters" could be a 3rd person, singu- 
lar, present verb or a plural noun. However, in 
order to disambiguate the tag and place the sub- 
ject markers it is only necessary to know tha t  it is 
a noun or else a verb. The sentence parsed at the 
first level returns: 

[ Still waters ] run deep. (2.1) 

The tagset used at this stage, mode 1, has 21 
classes, not distinguished for number. However, 
the head of the subject is then found and num- 
ber agreement with the verb can be assessed. At 
this stage the tagset, mode 2, includes number in- 
formation and has 28 classes. Devising optimal 
tagsets for given tasks is a field in which further 
work is planned. We need larger tagsets to cap- 
ture more linguistic information, but  smaller ones 
to constrain the computational load. Information 
theoretic tools can be used to find the entropy of 
different tag sequence languages, and support  de- 
cisions on representation. 

A functional approach is taken to tagging: 
words are allocated to classes depending on their 
syntactic role. For instance, superlative adjectives 
can act as nouns, so they are initially given the 2 
tags: noun or adjective. This approach can be ex- 
tended by taking adjacent words which act jointly 
as single lexical items as a unit. Thus the pair 
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"most <adject ive>" is taken as a single superlat- 
ive adjective. 

Text is automatically tagged using the first 
modules of the CLAWS program (1985 version), in 
which words are allocated one or more tags from 
134 classes (Garside, 1987). These 134 tags are 
then mapped onto the small customised tagsets. 
Tag disambiguation is part  of the parsing task, 
handled by the neural net and its pre-processor. 
This version of CLAWS has a dictionary of about 
6,300 words only. Other words are tagged using 
suffix information, or else defaults are invoked. 
The correct tag is almost always included in the 
set allocated, but  more tags than necessary are of- 
ten proposed. A larger dictionary in later versions 
will address this problem. 

R e p r e s e n t i n g  syntact ic  b o u n d a r y  markers 

In the same way that  tags are allocated to words, 
or to punctuation marks, they can represent the 
boundaries of syntactic constituents, such as noun 
phrases and verb phrases. Boundary markers can 
be considered invisible tags, or hypertags, which 
have probabilistic relationships with adjacent tags 
in the same way that  words do. (Atwell, 1987) 
and (Church, 1989) have used this approach. If 
embedded syntactic constituents are sought in a 
single pass, this can lead to computational over- 
load (Pocock and Atwell, 1994). Our approach 
uses a similar concept, but  differs in that  embed- 
ded syntactic constituents are detected one at a 
time in separate steps. There are only 2 hyper- 
tags - the opening and closing brackets marking 
the possible location(s) of the syntactic constitu- 
ent in question. Using this representation a hier- 
archical language structure is converted to a string 
of tags represented by a linear vector. 

4 Constraining the generation of 
candidate strings 

This system generates sets of tag strings for each 
sentence, with the hypertags placed in all possible 
positions. Thus, for the subject detection task: 

Then the performance of the pump must be 
monitored. (3) 

will generate strings of tags including: 

[ Then ] the performance of the pump must 
be monitored. (3.1) 
[ Then the ] performance of the pump must 
be monitored. (3.2) 

Then [ the performance of the ] pump must 
be monitored. (3.n) 
Then [ the performance of the pump ] must 
be monitored. (3.n + 1) 

Hypertags are always inserted in pairs, so that  
closure is enforced. There were arbi t rary limits of 
a maximum of 10 words in the pre-subject and 10 
words within the subject for the initial work de- 
scribed here. These are now extended to 15 words 
in the pre-subject, 12 in the subject - see Section 
7. There must be at least one word beyond the 
end of the subject and before the end-of-sentence 
mark. Therefore, using the initial restrictions, in 
a sentence of 22 words or more (counting punc- 
tuation marks as words) there could be 100 al- 
ternative placements. However, some words will 
have more than one possible tag. For instance, 
in sentence (1) above 5 words have 2 alternative 
tags, which will generate 25 possible strings be- 
fore the hypertags are inserted. Since there are 
22 words (including punctuation ) the total  num- 
ber of strings would be 25 * 100 -- 3200. It  is not 
feasible to detect one string out of this number: if 
the classifier marked all strings incorrect the per- 
centage wrongly classified would only be 0.03%, 
yet it would be quite useless. In order to find the 
correct string most of the outside candidates must 
be dropped, 

The skeletal  grammat ic  framework 

A minimal grammar, set out in (Lyon, 1994) in 
EBNF form, is composed of 9 rules. For instance, 
the subject must contain a noun-type word. Ap- 
plying this particular rule to sentence (3) above 
would eliminate candidate strings (3.1) and (3.2). 
We also have the 2 arbitrary limits on length of 
pre-subject and subject. There is a small set of 
4 extensions to the grammar, or semi-local con- 
straints. For instance, if a relative pronoun oc- 
curs, then a verb must follow in that  constituent. 
On the technical manuals the constraints of the 
grammatic framework put  up to 6% of declarative 
sentences outside our system, most commonly be- 
cause the pre-subject is too long. A small number 
are excluded because the system cannot handle a 
co-ordinated head. With the length of pre-subject 
extended to 15 words, and subject to 12 words, an 
average of 2% are excluded (7 out of 351). 

Proh ib i t i on  tables  

The grammatic framework alone does not reduce 
the number of candidate strings sufficiently for 
the subject detection stage. This problem is ad- 
dressed further by a method suggested by Bar- 
ton et al. (Barton, Berwick and Ristad, 1987) 
that local constraints can rein in the generation 
of an intractable number of possibilities. In our 
system the local constraints are prohibited tag 
pairs and triples. These are adjacent tags which 
are not allowed, such as "determiner - verb" or 
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Figure 2: Overview of the syntactic pat tern  recognition process 

"start  of subject - verb". If during the genera- 
tion of a candidate string a prohibited tuple is en- 
countered, then the process is aborted. There are 
about  100 prohibited pairs and 120 triples. By us- 
ing these methods the number of candidate strings 
is drastically reduced. For the technical manu- 
als an average of 4 strings, seldom more than 15 
strings, are left. Around 25% of sentences are left 
with a single string. These filters or "rules" differ 
fundamentally from generative rules that  produce 
allowable strings in a language. In those cases 
only productions that  are explicitly admitted are 
allowed. Here, in contrast,  anything that  is not 
expressly prohibited is allowed. At this stage the 
data  is ready to present to the neural net. Figure 
2 gives an overview of the whole process. 

5 Language representation (II) 

Different network architectures have been invest- 
igated, but  they all share the same input and out- 
put  representation. The output  from the net is a 
vector whose 2 elements, or nodes, represent "cor- 
rect" and "incorrect", "yes" and "no" - see Figure 
3. The input to the net is derived from the candid- 
ate strings, the sequences of tags and hypertags. 
These must be converted to binary vectors. Each 
element of the vector will represent a feature that  
is flagged 0 or 1, absent or present. 

Though the form in which the vector is written 
may give an illusion of representing order, no se- 

quential order is maintained. A method of repres- 
enting a sequence must be chosen. The sequential 
order of the input is captured here, partially, by 
taking adjacent tags, pairs and triples, as the fea- 
ture elements. The individual tags are converted 
to a bipos and tripos representation. Using this 
method each tag is in 3 tripos and 2 bipos ele- 
ments. This highly redundant  code will aid the 
processing of sparse data  typical of natural  lan- 
guage. 

For most of the work described here the sen- 
tence was dynamically t runcated 2 words beyond 
the hypertag marking the close of the subject. 
This process has now been improved by going fur- 
ther along the sentence. 

6 The function of the net 

The net that  gave best results was a simple single 
layer net (Figure 3), derived from Wyard  and 
Nightingale's Hodyne net (Wyard and Nightin- 
gale, 1990). This is conventionally a "single layer" 
net, since there is one layer of processing nodes. 
Multi-layer networks, which can process linearly 
inseparable data, were also investigated, but  are 
not necessary for this particular processing task. 
The linear separability of data  is related to its 
order, and this system uses higher order pairs 
and triples as input. The question of appropriate 
network architecture is examined in (Pao, 1989; 
Widrow and Lehr, 1992; Lyon, 1994). 
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Figure 3: The single layer net: showing the feed forward process 

The training process 

The net is presented with training strings whose 
desired classification has been manually marked. 
The weights on the connections between input and 
output  nodes are adjusted until a required level 
of performance is reached. Then the weights are 
fixed and the trained net is ready to classify un- 
seen sentences. The prototype accessible via the 
Internet has been trained on sentences from the 
technical manuals, slightly augmented. 

Initially the weighted links are disabled. When 
a string is presented to the network in training 
mode, it activates a set of input nodes. If an 
input node is not already linked to the output  
node representing the desired response, it will be 
connected and the weight on the connection will 
be initialised to 1.0. Most input nodes are con- 
nected to both outputs,  since most tuples occur 
in both grammatical and ungrammatical strings. 
However, some will only be connected to one out- 
put  - see Figure 3. 

The input layer potentially has a node for each 
possible tuple. With 28 tags, 2 hypertags and a 
start  symbol the upper bound on the number of 
input nodes is 313 + 312. In practice the max- 
imum activated is currently about 1000. In test- 
ing mode, if a previously unseen tuple appears it 
makes zero contribution to the result. The activ- 
ations at the input layer are fed forward through 
the weighted connections to the output  nodes; 
where they are summed. The highest output  

marks the winning node. If the desired node wins, 
then no action is taken. If the desired node does 
not win, then the weight on connections to the de- 
sired node are incremented, while the weights on 
connections to the unwanted node are decremen- 
ted. 

This algorithm differs from some commonly 
used methods. In feed forward networks trained 
in supervised mode to perform a classification task 
different penalty measures can be used to trigger a 
weight update. Back propagation and some single 
layer training methods typically minimise a met- 
ric based on the least squared error (LSE) between 
desired and actual activation of the output  nodes. 
The reason why a differentiable error measure of 
this sort is necessary for multi-layer nets is well 
documented, for example see (Rumelhart  and Mc- 
Clelland, 1986). However, for single layer nets we 
can choose to update weights directly: the error at 
an output  node can trigger weight updates on the 
connections that  feed it. Solutions with LSE are 
not necessarily the same as minimising the num- 
ber of misclassifications, and for certain types of 
data  this second method of direct training may be 
appropriate. Now, in the natural  language domain 
it is desirable to get information from infrequent 
as well as common events. Rare events, rather  
than being noise, can make a useful contribution 
to a classification task. We need a method that  
captures information from infrequent events, and 
adopt a direct measure of misclassification. This 
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may be bet ter  suited to data  with a "Zipfian" dis- 
tr ibution (Shannon, 1951). 

The update  factor is chosen to meet several re- 
quirements. It should always be positive, and 
asymptotic to maximum and minimum bounds. 
The factor should be greatest in the central re- 
gion, least as it moves away in either direction. 
We are currently still using the original Hodyne 
function because it works well in practice. The 
update  factor is given in the following formula. If 
5-- +1 for strengthening weights and ~ = -1 for 
weakening them, then 

wn~,o = l + l + (~ , Wold) 4 wo~d 

Recall tha t  weights are initialised to 1.0. After 
training we find that  the weight range is bounded 
by 

10 -3 < w < 5.0 

Total t ime for training is measured in seconds. 
The number of iterative cycles tha t  are necessary 
depends on the threshold chosen for the trained 
net to cross, and on details of the vector represent- 
ation. The demonstrat ion prototype takes about 
15 seconds. With the most recent improved rep- 
resentation about  1000 strings can be trained in 1 
second, to 97%. The results from using these nets 
are given in Table 3. It  was found that  triples 
alone gave as good results as pairs and triples to- 
gether. And though the nets easily train to 99% 
correct, the lower threshold gives slightly better  
generalisation and thus gives better  results on the 
test data. 

T h e  t e s t i n g  p r o c e s s  

When the trained net is run on unseen data  the 
weights on the links are fixed. Any link that  is 
still disabled is activated and initialised to 0, so 
that  tuples which have not occurred in the train- 
ing corpus make no contribution to the classific- 
ation task. Sentences are put  through the pre- 
processer one at a time and the candidate strings 
which are generated are then presented to the net- 
work. The output  is now interpreted differently. 
The difference between the "yes" and "no" activ- 
ation levels is recorded for each string, and this 
score is considered a measure of grammaticality, 
P. The string with the highest I" score is taken as 
the correct one. 

For the results given below, the networks were 
trained on par t  of the corpus and tested on an- 
other par t  of the corpus. For the prototype in 
which users can process their own text,  the net 
was trained on the whole corpus, slightly augmen- 
ted. 

7 Resul t s  

There are several measures of correctness tha t  can 
be taken when results are evaluated. The most 
lenient is whether or not the subject and head 
markers are placed correctly - the type of measure 
used in the IBM/Lancaster  work (Black, Garside 
and Leech, 1993). Since we are working towards a 
hierarchical language structure, we may want the 
words within constituents correctly tagged, ready 
for the next stage of processing. "correct- A" also 
requires tha t  the words within the subject are cor- 
rectly tagged. The results in  Tables 2 and 3 give 
an indication of performance levels. 

8 Using negative information 

When parses are postulated for a sentence negat- 
ive as well as positive examples are likely to occur. 
Now, in natural  language negative correlations are 
an important  source of information: the occur- 
rence of some words or groups of words inhibit 
others from following. We wish to exploit these 
constraints. (Brill et al. , 1990) recognised this, 
and introduced the idea of dis t i tuents .  These are 
elements of a sentence that  should be separated, 
as opposed to elements of cons t i tuen t s  tha t  cling 
together. Brill addresses the problem of finding 
a valid metric for distituency by using a gener- 
alized mutual information statistic. Distituency 
is marked by a mutual information minima. His 
method is supported by a small 4 rule grammar.  

However, this approach does not fully capture 
the sense in which inhibitory factors play a neg- 
ative and not just a neutral  role. We want to dis- 
tinguish between items that  are unlikely to occur 
ever, and those that  have just  not happened to 
turn up in the training data. For example, in sen- 
tence (3) above strings 3.1, 3.2 and 3.n can never 
be correct. These should be distinguished from 
possibly correct parses tha t  are not in the train- 
ing data. In order tha t  "improbabilities" can be 
modelled by inhibitory connections (Niles and Sil- 
verman, 1990) show how a Hidden Markov Model 
can be implemented by a neural network. 

The theoretical ground for incorporating negat- 
ive examples in a language learning process ori- 
ginates with Gold's work (Gold, 1967; Angluin, 
1980). He examined the process of learning the 
grammar of a formal language from examples. He 
showed that ,  for languages at least as high in the 
Chomsky hierarchy as CFGs, inference from pos- 
itive data  alone is strictly less powerful than  in- 
ference from both positive and negative da ta  to- 
gether. To illustrate this informally consider a 
case of inference from a number of examples: as 
they are presented to the inference machine, pos- 
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no. of no. of % sents with % sents % sents with 
training sents, test sents, subject correct subject and head 

found measure A found 
220 42 100 100 95 
198 63 97 97 90 
204 58 95 95 93 
276 50 94 94 

Table 2: Performance on text  from Perkins manuals after 6% sentences have been excluded 

no. of no. of % sents with % sents % sents with 
training seats, test sents, subject correct subject and head 

found measure A found t 
309 42 100 97.6 97.6 
288 63 98.4 96.8 96.8 
292 59 98.3 98.3 96.6 
284 67 94.0 94.0 94.0 

Table 3: Performance on text  from Perkins manuals, using improved representation and larger training 
set, after 2% sentences have been excluded 

sible grammars are postulated. However, with 
positive data  alone a problem of over generaliz- 
ation arises: the postulated grammar may be a 
superset of the real grammar, and sentences that  
are outside the real grammar could be accepted. 
If both positive and negative data  is used, counter 
examples will reduce the postulated grammar so 
that  it is nearer the real grammar. Gold developed 
his theory for formal languages: it is argued that  
similar considerations apply here. A grammar 
may be inferred from positive examples alone for 
certain subsets of regular languages (Garcia and 
Vidal, 1990), or an inference process may degen- 
erate into a look up procedure if every possible 
positive example is stored. In these cases negat- 
ive information is not required, but they are not 
plausible models for unbounded natural language. 
In our method the required parse is found by infer- 
ring the grammar from both positive and negative 
information, which is effectively modelled by the 
neural net. ~-hture work will investigate the effect 
of training the networks on the positive examples 
alone. With our current size corpus there is not 
enough data. 

R e l a t i o n s h i p  b e t w e e n  t h e  n e u r a l  ne t  a n d  
p r o h i b i t i o n  t a b l e  

The relationship between the neural net and the 
rules in the prohibition table should be seen in 
the following way. Any single rule prohibiting 
a tuple of adjacent tags could be omitted and 
the neural network would handle it by linking 
the node representing that  tuple to "no" only. 
However, for some processing steps we need to re- 

duce the number of candidate tag strings presen- 
ted to the neural network to manageable propor- 
tions (see Section 4). The data  must be pre- 
processed by filtering through the prohibition rule 
constraints. If the number of candidate strings is 
within desirable bounds, such as for the head de- 
tection task, no rules are used. Our system is data  
driven as far as possible: the rules are invoked if 
they are needed to make the problem computa- 
tionally tractable. 

9 C o n c l u s i o n  

Our working prototype indicates tha t  the methods 
described here are worth developing, and that  con- 
nectionist methods can be used to generalise from 
the training corpus to unseen text. Since data  
can be represented as higher-order tuples, single 
layer networks can be used. The traditional prob- 
lems of training times do not arise. We have also 
used multi-layer nets on this data: they have no 
advantages, and perform slightly less well (Lyon, 
1994). 

The supporting role of the grammatic frame- 
work and the prohibition filters should not be un- 
derestimated. Whenever the scope of the system 
is extended it has been found necessary to enhance 
these elements. 

The most laborious part  of this work is prepar- 
ing the training data. Each time the representa- 
tion is modified a new set of strings is generated 
that  need marking up. An autodidactic check is 
now included which speeds up this task. We run 
marked up training data  through an early version 
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of the network trained on the same data, so the 
results should be almost all correct. If an "incor- 
rect" parse occurs we can then check whether that 
sentence was properly marked up. 

Some of the features of the system described 
here could be used in a stochastic process. 
However, connectionist methods have low compu- 
tational loads at runtime. Moreover, they can util- 
ise more of the implicit information in the training 
data by modelling negative relationships. This is 
a powerful concept that can be exploited in the ef- 
fort to squeeze out every available piece of useful 
information for natural language processing. 

Future work is planned to extend this very lim- 
ited partial parser, and decompose sentences fur- 
ther into their hierarchical constituent parts. In 
order to do this a number of subsidiary tasks will 
be addressed. The system is being improved by 
identifying groups of words that act as single lex- 
ical items. The decomposition of the problem can 
be investigated further: for instance, should the 
tag disambiguation task precede the placement of 
the subject boundary markers i.n a separate step? 
More detailed investigation of language represent- 
ation issues will be undertaken. And the critical 
issues of investigating the most appropriate net- 
work architectures will be carried on. 
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