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Aspects of abstract finite-state morphology 
are introduced and demonstrated. The use 
of two-way finite automata for Arabic noun 
stem and verb root inflection leads to ab- 
stractions based on finite-state transition 
network topology as well as the form and 
content of network arcs. Nonconcatenative 
morphology is distinguished from concate- 
native morphology by its use of movement 
on the output tape rather than the input 
tape. The idea of specific automata for 
classes of inflection inheriting some or all 
of the nodes, arc form and arc content of 
the abstract automaton is also introduced. 
This can lead to novel linguistic generali- 
ties and applications, as well as advantages 
in terms of procedural efficiency and repre- 
sentation. 

1 I n t r o d u c t i o n  

Finite-state approaches to morphology provide ways 
of analyzing surface forms by appealing to the no- 
tion of a finite-state transducer which in turn mim- 
ics an ordered set of rewrite rules. Instead of in- 
termediate forms being introduced (as would hap- 
pen if rewrite rules are used (e.g. [Narayanan and 
Mehdi, 1991] for Arabic morphology)), the finite- 
state transducer works on two tapes (one represent- 
ing lexical structure, the other the surface struc- 
ture) and switches states if the symbols currently 
being scanned on the two tapes match the condi- 
tions of the state transition. Following the distinc- 
tion expressed by Kay [1987], two-level morphol- 
ogy is a specialization of finite-state morphology in 
that intermediate forms are not required even in 

the grammatical formalism (e.g. [Koskenniemi, 1983; 
Koskenniemi, 1984]). The only representations re- 
quired are those for the lexical and surface forms, 
together with ways of mapping between the one and 
the other directly. Surface forms express the result 
of any spelling-change interactions between dictio- 
nary/lexicon primitives. A typical architecture of 
a two-level morphological system [Karttunen, 1983; 
Kataja and Koskenniemi, 1988] consists of a dictio- 
nary/lexicon component containing roots, stems, af- 
fixes and their co-occurrence restrictions, and an au- 
tomaton component which codes for the mappings 
between dictionary/lexicon forms and surface real- 
izations. 

One of the problems faced by two-level approaches 
was their handling of nonconcatenative morphol- 
ogy. The main difference between Semitic and non- 
Semitic languages is that inflectional patterns are not 
straightforwardly concatenative (where morphemes 
are simply concatenated with roots, stems and each 
other) but 'interdigitate' or 'intercalate', i.e. the alTLx 
pattern is distributed among the constituents of the 
root morpheme. For example, the Arabic root 'd_r_s' 
('study') intercalates with the inflectional pattern 
'_u_i_' (perfect passive) to form the stem 'duris' ('was 
studied'), which in turn can be inflected to signify 
number and gender 1. This nonconcatenative aspect 
of Arabic can be problematic for a traditional two- 
level approach which bypasses intermediate forms. 
The problem concerns the way roots, stems (roots for 
Arabic verbs, stems for Arabic nouns) and inflection 
patterns are represented and stored. It is obviously 
not practical to store all the possible inflected forms 

1Modern written Arabic rarely marks the vowels 
(short vowels are marked by diacritics), in this case the 
'u' and 'i' in 'duris', except in beginners' books on Arabic. 
The (text) realization has the form Mrs'. 
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of each root. Instead, roots are usually separated 
from inflections. Morphological analysis of a string 
then consists of identifying the root and following 
pointers to inflections which may themselves contain 
pointers to other inflections [Karttunen, 1983]. The 
nonconcatenative aspect of Arabic means that, when 
processing a 'word' from beginning to end, differ- 
ent constituents of different inflections are ertcounted 
during root and inflection identification. The tradi- 
tional idea of identifying a root and then following 
a pointer to types of inflection depending on im- 
mediately contiguous constituents of the inflection 
cannot be adopted. This forced the ALPNET re- 
searchers, for example, to adopt a novel way of stor- 
ing and identifying inflections [Beesley el al., 1989; 
Beesley and Newton, 1989; Beesley, 1990]. In their 
system there are two types of lexicon: the root lexi- 
con, and the pattern lexicon. The root lexicon stores 
(three-consonant) roots in the form 'X_Y_Z', and 
the pattern lexicon stores inflectional patterns in the 
form '_A_B_', where the underscores '_' are called de. 
tours. Starting with the pattern lexicon, the analysis 
routines recursively switch between the two types of 
lexicon whenever a detour character is found. 

This interesting solution raises the question of 
what aspect of morphology detouring is meant to 
reflect or express. If detouring is based simply on im- 
plementation and efficiency criteria, it is open to the 
possible criticism that an alternative, efficient way 
of handling intercalation which expresses some lin- 
guistic generalities whilst being consistent with the 
two-level approach should be preferred. Also, it is 
not clear what the implications of detouring are for 
parallel evaluation. However, one possible advantage 
is that detouring forces inflectional patterns to be 
kept together in the dictionary, rather than splitting 
them up into even smaller fragments, as might be re- 
quired by a simple two-level approach. For instance, 
without detouring, patterns of the form '_A_B_' may 
need to be split up into lexical entries first for the 
'A' and then, at a different level, for 'B'. The fact 
that 'A' and 'B' together represent a certain class of 
morphological phenomena might be lost. 

2 R e p r e s e n t i n g  i n t e r c a l a t i o n  

An alternative approach to nonconcatenative mor- 
phology consists of usin G the idea of prosodic tem- 
plates [McCarthy, 1981J, whereby the underlying 
patterns of vowels and consonants are described. For 
instance, Kay [1987] provides a four-level account 
of how the Arabic root 'ktb' ('write') is mapped 
onto the stem 'aktabib' (imperfective active form) 
by means of the template 'VCCVCVC' (where 'V' 
stands for vowel and 'C' for consonant) and eight 
transitions. The first tape contains the root, the sec- 
ond the template, the third the intercalative vowels 
(vocalism), and the fourth the surface form. State 
switches are determined by 'frames' of quadruples 
which specify what each tape symbol must be. There 

is an overhead attached to the formulation of indi- 
vidual templates and quadruples (which represent 
the mapping rules) for even a restricted set of lex- 
ical entries. More generally, there is nothing in the 
templates themselves which allows underlying pat- 
terns to emerge or be used. This has led to the 
examination of ways of making abstractions on and 
classifying templates. For instance, inheritance and 
default-based approaches, as used in artificial in- 
telligence, can be adopted for template and lexical 
entry representation [DeSmedt, 1984], so that du- 
plicate and redundant information can be deleted 
from individual entries if the path they are on al- 
ready contains this information. Research has fo- 
cused on unification-based formalisms for inheritance 
network representation (e.g.[Flickinger et al., 1985; 
Shieber, 1986; Porter, 1987; Evans and Gazdar, 1990; 
Bird and Blackburn, 1990; Reinhard and Gibbon, 
1991]). 

The question arises as to whether it is possi- 
ble to achieve the generalities obtainable through 
a prosodic template approach within a multi-level 
finite-state model. Briefly, we hypothesize, in addi- 
tion to the lexical and surface levels, an abstract level 
of automaton representation at which classes of in- 
flectional phenomena are given an abstract represen- 
tation. These abstract automata are translated into 
two-level automata for specific morphological phe- 
nomena. Concatenative and nonconcatenative pat- 
terns of inflection are represented not via the dictio- 
nary but at an abstract automaton component level. 
Applications of abstract automata to Arabic noun 
stems and verb roots are described below. 

3 A r a b i c  n o u n  s t r u c t u r e  

A noun stem in Arabic is inflected according to 
Case Type (nominative, accusative, genitive), Num- 
ber (singular, dual, plural), Gender (feminine and 
masculine), and Definite/Indefinite. These mainly 
are suffixes added to the noun stem. The case end- 
ings determine the vowelisation of the end letter of 
the stem. 

The Indefinite Noun Endings are: 
Singular 
Nominative: - / u n / "  (double damma) (e.g. wal- 

adon *d)) 
Accusative: - / a n / "  (fatha) (e.g. waladan "ld)) 
Genitive: - / en / .  (kasra) (e.g. waladen aJ)) 
Dual 
Nominative: - /ani /~I  (e.g. waladani ~laJ)) 
Accusative: - / ayn i /~ .  (e.g. waladyni x:eaJ~) 
Genitive: as for accusative. 
Plural 
In Arabic there are three types of plural. These are 

the Sound Masculine Plural (SMP), the Sound Femi- 
nine Plural (SFP), and the Broken Plural (BP). The 
SMP is for male human beings 2. For example ¢ . , .~  

2Exception: sana - year ~ which can take the SMP. 
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('engineer') becomes o ~ . , ~  or O~. ~v. depending on 
the case ending. The SFP is for female human be- 
ings, inanimates, and most foreign words that  have 
been incorporated into the language. For example, 
~Jt~ ('scientist') becomes "b'LJt~ or ~,LJ~, again de- 
pending on the case ending. Similarly, 'car' (an inan- 
imate object) ( ;).t~ ) becomes %'b.t~ or o b t ~ .  The 
BP does not follow any regular pattern and is for 
nouns that  do not fall into the above categories. But 
this is not necessarily the case. For example, o¢.! 
('son' - -  male human) can be pluralised to *~.i which 
is a broken plural. 

The SMP Ending 
Nominative: - /oon/~.~ (e.g. muhamiyoon o ~ 1 . ~ )  
Accusative: -/yyn/O~. (e.g. muhamiyyn O=,L~) 
Genitive: as for the accusative 
The SFP Ending 
If there is the feminine ending of ~ then it needs to 

be removed before adding the SFP ending. 
Nominative:-/atun/"b-1 (e.g. maktabatun ° b ~ )  
Accusative: - / a t e n / f , i  (e.g. maktabaten o . t ~  
Genitive: as for the accusative 
The definite noun endings are the same as for the 

indefinite noun, except that  al ( JI ) is added to the 
beginning of the noun. When a noun is made defi- 
nite, the nunation is lost, so any ending with double 
fatha, kasra, or damma would be reduced to a single 
fatha, kasra, or damma. For example, "~J, ( 'boy') 
becomes "aJjJl ( 'the boy'). 

4 Network representation 

The noun structure system to be described below 
produces surface forms of lexical representation and 
so is a generator of inflected nouns. Generation is 
achieved by the use of finite-state transition networks 
(FSTNs). FSTNs realize finite-state tables (FSTs) 
which can be used for providing the mappings be- 
tween lexical and surface structure. For instance, 
consider the FST in Figure 1 and the associated 
transition network in Figure 2. According to the 

Input 
h a 

1. 2 0 
States 2. 0 3 

3. 2 0 
4: 0 0 

Figure 1: FST for a Laughing Machine 

tabular representation, if we're in state 1 (first row) 
and an 'h '  is the current input character found (first 
column), then we switch to state 2 and look at the 
next character. If we're in state 1 and an 'a'  or '!' 
is found, then we switch to an error state (0). If 
we're in state 2 and an 'a'  is found, we switch to 
state 3 and read the next character, otherwise we 

h 6 

Figure 2: FSTN for the FST in Figure 1 

switch to an error state. States 1, 2 and 3 are non- 
terminal (signified by the full-stops), whereas state 4 
is terminal (signified by ':'). This FST specifies the 
state-switching behaviour of any machine which is to 
accept strings of the form '{ha}n[ ' , i.e. one or more 
occurrences of 'ha'  followed by an exclamation mark. 
The same FST can be interpreted as a generator of 
such strings if ' Input '  is changed to 'Output '  in Fig- 
ure 1. The 'conditions' on arcs are reinterpreted as 
characters to be output in this case. 

The transition network in Figure 2 is constructed 
directly from the FST: nodes are labeled with state 
numbers, and arcs specify the input conditions before 
a state switch can occur. Double-circled nodes in the 
transition network signify start  and terminal nodes. 
Given such FSTs and equivalent transition networks 
for Arabic noun and verb structures, Prolog was used 
to implement the automata.  Start and end states 
are declared with the predicates s t a r t _ s t a t e ( X )  a n d  
e n d _ s t a t e ( Y )  where X and Y represent state num- 
bers, and arc declarations have the form: a r c  (Cur -  
r e n t S t a t e ,  N e x t S t a t e ,  [ I n p u t S t r i n g ] ,  [ O u t p u t -  
S t r ing]) .  The third argument consists of the param- 
eters I n p u t  C h a r a c t e r ,  D i r e c t i o n ,  Offset ,  and 
the fourth refers (for nouns) to the characters for the 
output word. The direction indicates how to move 
the scanning head across the input. It can be o n e  
of two values: r for right, and I for left. The offset 
indicates by how much to move left or right along 
the input tape. (Right or left zero is the same as not 
moving.) The use of directions and offsets (a non- 
zero offset of n can be regarded as n separate state 
transitions of one move in the required direction) 
means that  the automata  used here are examples 
of two-way finite automata [Rabin and Scott, 1959; 
Sheperdson, 1959; Hopcroft and Ullman, 1979]. 

The system works in the following way for Sin- 
gular Nominatives (and similarly for all the other 
noun inflections). A request for 'bnt '  ('girl') to be 
inflected with Singular Nominative produces the list 
[b ,n , t ,+ ,o ,n ]  which is then fed to the appropriate 
automaton. The FSTN for the Singular Nominative 
automaton can be seen in Figure 3 and its associated 
FST in Figure 4. The first character, 'b', is identi- 
fied. The current arc statement is matched against 
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Input Output Current 
Character List State 

Figure 3: FSTN for the Singular Nominative 

States 

1: 1 
2. 0 
3. 4 
4. 0 
5. 0 
6: 0 
7: 0 

Lexical level 
-b o n 
2 0 0 0 
0 7 3 0 
0 0 0 0 
0 0 5 6 
0 0 0 6 
0 0 0 0 
0 0 0 0 

Figure 4: FST for the Singular Nominative 

the arc facts of the automaton. For the first letter we 
have: are(1,?,[b,?,?],[?]), i.e. what is the state to be 
moved to from state 1, and what is to be produced 
at this stage? This will match against the stored 
arc(1,1,[Anychr,r ,1] ,[Anychr]) ,  i.e. if in state 1 
and any character found, then stay in state 1 and 
move one position to the right (offset) after copying 
the character ('b') to the output. The next character 
is then scanned. This matching process is repeated 
until the whole of the input word has been read. 

Figure 5 shows how the output string is built up for 
input [b~n~t~+,o~n]. For the first four steps the pro- 
cedure is straightforward: the input is echoed to the 
output list. The boundary sign (+) is replaced with 
a null value ("). When the first of the case ending let- 
ters is met, nothing is produced until a check is made 
whether the previous output character needs chang- 
ing. The automaton therefore moves back to the end 
of the stem to check the end character (line 7). For 
this particular example, the character remains the 
same, and the automaton moves forward again to 
the first case ending (line 8). The offsets for move- 
ment backwards and forwards leaves the automaton 
at the same position as in line 6. The bottom line 
shows the output list at the end of the traversal of 
the automaton. (The 'O' in the output list refers 
to the double damma.) Null values are deleted, and 
the output list sent to the Arabic output routines. 
Narayanan and Hashem [1992] provide example runs 
and more detail about the implementation. 

b 1 
b [b] 1 
b [b,n] 1 
t [b,n,t] 1 
+ [b,n,t,'] 2 
o [b,n,t," ,"] 3 
t [b,n,t," ,"1 4 
o [b,n,t," ," ,"] 5 
n [b,n,t," ," ," ,O] 6 

Figure 5: Building The Output String 

5 I n h e r i t a n c e - b a s e d  d e r i v a t i o n  

Two-way automata for all nine types of inflection 
(three Case by three Number) can be constructed 
from abstract ones. For instance, the noun system 
used two abstractions on number. Figure 6 repre- 

( 

) 

) 
Figure 6: The abstract automaton for the Singular 
and Plural 

sents the abstract automaton form for all three cases 
(nominative, accusative and genitive) of singular and 
plural, and Figure 7 of dual. 

() 

Figure 7: The abstract automaton for the Dual 

Specific automata, for example for Dual Accusat- 
ive and Genitive (Figure 8), can be derived from the 
abstract dual automaton by means of the specific 
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automaton inheriting the basic form of the abstract 
automaton and adding specific arcs and nodes (spe- 
cialization), as will be described later. 

Figure 8: FSTN for the Dual Accusative/Genitive 

6 V e r b  s t r u c t u r e  

The major difference between concatenative and 
nonconcatenative two-way automata for Arabic is 
that, for nonconcatenation, movement in both di- 
rections is required within the output tape rather 
than the input tape, so that affix information can 
be inserted between root characters. For concate- 
native two-way automata (as for the nouns), any 
moves are to the beginning or ending of the stem 
on the input tape, and if the last character of the 
stem needs changing this happens before the affix 
output is added. 

Arabic verb structure is well-documented (e.g. 
[McCarthy, 1981; Hudson, 1986]). The following ta- 
ble gives the perfect active and perfect passive stems 
of the first three forms of 'ktb' only, but these are 
adequate to demonstrate the abstraction principles 
involved here. 

Form Active Passive 
I katab kutib 
II kattab kuttib 
III kaatab kuutib 

The input representation is of the form [<roo t>  
+ <vowels>],  e.g. [k,t ,b,+,a,a] with a request for 
Form II results in 'kattab', and [k, t ,b,+,u, i  I results 
in 'kuutib' if Form III passive is requested. 

The following six statements describe an automa- 
ton (Figure 9) for generating Form I stems. 

(1) a r c ( l , 2 ,  [C , r , 1 ] ,  [C_, r ,0] )  
(2) axc(2 ,3 ,  [C , r , 1 ] ,  [C_, r ,1] )  
(3) a r c ( 3 , 4 ,  [C , r , 1 ] ,  [C , r ,1 ] )  
(4) v x c ( 4 , 6 , [ + , r , 1 ] , [ " , r , 1 ] )  
(5) a r c (S ,6 ,  I'V,r, 1],  I ' [V, l ,4] ,  [ "  , r , 4 ] ] )  
(e) a r c ( e , 7 ,  [V , r ,1 ] ,  [ [V,1 ,2] ,  [ "  , r , 2 ] ] )  

The output argument of the arc  statement is more 
complex than for nouns. The output argument [X, 

Figure 9: Automaton for Form I 

D, N] means 'After moving N steps in direction D, 
write X', where X can be a consonant C or vowel V. 
Also, the output argument can consist of one or two 
lists, the first for moving in one direction, the other 
to return the head to an appropriate location on the 
output tape for the next state. For instance, given 
the input [k,t ,b,+,a,a] with a request for Form I, 
arc (1) would produce 'C_' (i.e. the first consonant 
is output together with a blank space to its right). 
The same would happen for the second consonant 
by arc (2). Arc (3) produces only a consonant, so 
in state 4 the output tape contains 'C_C_C', with 
the head of the output tape resting on the last C. 
Arc (4) acts as a check that exactly three consonants 
have been found. Arc (5) makes the output head 
move left four positions (to the first blank between 
two Cs) and inserts the V before moving back to 
its original position (and writing a null value again 
over the existing null value). Arc 6 works similarly, 
except that the offset is only two. The input has been 
scanned sequentially, one character at a time. 

This automaton also works for perfect passive 
Form I stems: 'a' and 'a' are replaced by 'u' and 
'i'. Also, Form II can inherit the Form I automaton 
and add two specializations. First, arc (2) is changed 
so that instead of one C being written two copies of 
the C are made (i.e. (2a)), and arc (5) has offset 5 
and not 4 (i.e. (ha)): 

(2a) a r c ( 2 , 3 ,  [C , r , 1 ] ,  [CC_,r,1])  
(Sa) a r c ( S , e ,  IV , r , 1 ] ,  [ [V , I ,S ] ,  [ "  , r , S ] ] )  

Form III can inherit from Form I and add its two 
specializations, namely, arc (1) is changed so that 
two blanks are introduced (i.e. (lb)), and arc (5) so 
that two Vs are written (i.e. (bb)). The offset when 
moving left is 5, and when returning 4. 

( lb)  a r c ( l , 2 ,  [C , r , 1 ] ,  [C__,r,O]) 
(Sb) axc(S,6 ,  IV , r , 1 ] ,  [ [W/,1 ,S] ,  [ '  ' , r , 4 ] ] )  

7 A b s t r a c t  a u t o m a t a  a n d  i n h e r i t a n c e  

The abstract automaton underlying Forms I, II and 
III is given in Figure 10. The solid lines specify those 
arcs which are core to all specific automata, and the 
dashed lines signify arcs which will be specialized. In 
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,V 
cb 

Q 

Figure 10: Abstract automaton for Forms I, II and 
III 

the arcs of the automata for Forms I, II and III the 
pattern of output Cs and Vs has specialized (as in 
(lb), (2a) and (5b)) and so have offsets (as in 5(a) 
and 5(b)). Inheritance is multiple since the automa- 
ton for Form III inherits (2) from Form I as well as 

1. the right return offset of 4 from (5) of Form I, 
i.e. arc(5,6, [V,r,1], [[V,1,4], [~', r,4]]), and 

2. the move left (before writing) offset from (5a) of 
Form II, i.e. arc(5,6, IV,r,1], [[V, 1,5], ~',r,5]]). 

Form III also specializes its V pattern, i.e. arc(5, 
6, [V,r,1], [[VV, 1, 5], [",r,4]]). In all cases, there 
are seven states and fixed length stems depending 
on their form. The inheritance structure for these 
three Forms is given in Figure 11. Form 0 specifies 
the core arcs which are inherited by all specific au- 
tomata and cannot be specialized, and subsequent 
automata can further specialize their behaviour b y  
adding their own arcs or changing contents of arcs 
inherited from other automata. 

The inheritance status of an arc is given by another 
argument in the arc representation. Arcs therefore 
have the following form in the implemented system: 

arc  (S 1, S2, IP, OP, status) 

where S1 and $2 are state numbers, IP and OP are 
the sets of input and output parameters, respectively, 
and 'status' is 0 for core and non-zero for non-core. 
In the case of representing the inheritance relation- 
ships between the different Forms, any non-zero sta- 
tus value refers to the Form for which the arc is a 
specialization. The Form I automaton is therefore 
fully described by: 

(1) arc( l ,2,  I t , r ,  
(2) arc(2,3, [C,r, 
(3) arc(3,4, [C,r, 
(4) az'c(4,S, [+ , r ,  
(6) arc(S,e, [V,r, 

1], [C_,r,O], l) 
1], [c_,r, 1], 1) 
13, [C,r, 1] ,o) 
1 ] , [" ,r ,1 ] ,o )  
i ] ,  [ [v , l ,4] ,  [" ,r,4]] ,  l) 

(6) az'c(6,7, IV,r,1], [ [V, l ,2 ] ,  [ ' ' , r , 2 ] ]  O) 
where status 1 refers to Form I specialization. Form 
II automata are fully described by: 

a0~ (3),(4),(6) 

n I (1),(2),(5) 

~ (lb),(2),(Sb) 

Figure l h  Inheritance structure for Forms I, II and 
III 

(1) arc( l ,2,  [C,r,1],  [C_,r,O] ,1) 
(2a) arc(2,3, [C,r,1],  [CC_,r,l] ,2) 
(3) arc(3,4, [C,r,1],  [C,r,1] ,0) 
(4) arc(4,5, [+,r ,1] ,  [ "  ,r,1] ,o) 
(Sa) arc(5,6, [V,r ,1] ,  [ [V,1,6],  [ ' '  , r ,5 ] ]  ,2) 
(6) arc(e,7, [V,r,1],  [[v,1,2],  [ "  ,r ,2]]  o) 
where status 2 refers to Form II specialization. Sim- 
ilarly for Form III: 

(lb) arc( l ,2,  [C,r ,1] ,  [C__,r,O] ,3) 
(2) arc(2,3, [C,r,1], [C_,r,1] ,1) 
(3) arc(S,4, [C,r,1], [C,r,1] ,0) 
(4) arc(4,fi,  [+ ,r ,1] ,  [ '~ ,r ,1] ,O) 
(sb) arc(s,e, Iv,r,1], [ [ w , l , s ] ,  ["  ,r,4]] .s) 
(6) arc(6,7, IV,r,1], [[V,1,2], [ ' ' , r ,2 ] ] ,O)  
where (5b) has been constructed out of (5) and 5(a), 
i.e. the state number's, input argument and right re- 
turn offset of 5, and the move left offset of 5, respec- 
tively. Ideally, these changes to (5) and (5a) will be 
carried out within the Form III object. 

8 Discussion 

The work reported here demonstrates the feasibil- 
ity of adopting an abstract automaton, three-level 
approach to Arabic. Of particular importance is 
the distinction between abstract and particular FSA, 
where abstract automata represent classes of inflec- 
tional phenomena at an abstract level. They also 
represent algorithmic (processing) generalities. For 
instance, crossing sequences, i.e. movement across 
cells on the input (for nouns) and output (for verbs) 
tapes, cannot have repeated states with the head 
moving in the same direction (otherwise we may be 
in a loop). The first time movement left takes place, 
the state number must be odd (3 for nouns, 5 for 
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verbs). Subsequent crossings must be in opposite di- 
rections. 

The examples presented deal with significant frag- 
ments of Arabic, and potentially useful ways of rep- 
resenting Arabic verb Forms in inheritance networks 
have been identified. Other advantages to the three- 
level model involve the. applicability of parallelism 
and the general way that the model is faithful to the 
two-level approach. There is a clear separation be- 
tween the top level of abstract automata dealing with 
classes of inflection, on the one hand, and the knowl- 
edge expressed in the dictionary component, on the 
other. Also, the abstract automata express general 
inflectional processes: particular automata derived 
from these abstract automata handle individual in- 
flectional variations. 

Another advantage is that the three-level model 
may actually be intuitively more plausible as a gen- 
eral model of how native speakers acquire morpho- 
logically rich languages such as Arabic. The child 
may construct the abstract automata for classes of 
inflectional variations after exposure to individual 
words and sentences, and then use these abstract 
automata to make sense of the remaining inflectional 
variations not so far encountered. And with regard 
to the teaching of Arabic, the abstract automata 
may represent a teaching strategy whereby the over- 
all structure of Arabic inflection types can be taught 
before specific ones are introduced. 

There are implications for grammatical descrip- 
tions of inflectionally-rich languages. Most Arabic 
grammar books introduce inflectional variations in 
the form of complete tables which need to be memo- 
rized. Abstract automata may provide a more struc- 
tured description of morphological phenomena. And 
finally, and perhaps most interestingly, the abstract 
level of automata description makes possible the 
comparison and contrasting of morphological phe- 
nomena across different but related morphologically 
rich languages. Analysis of inflections in different 
languages can be based on automata topology and 
arc form and content. This can lead to language- 
independent morphological theories of inflectional 
types. Research is continuing on all these aspects, 
as well as on relationships with structured Markov 
models [Kornai, 1991] and multi-tape autosegmental 
phonology [Wiebe, 1992]. 
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