
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1159–1170,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Entity Extraction in Biomedical Corpora: An Approach to Evaluate Word
Embedding Features with PSO based Feature Selection

Shweta Yadav, Asif Ekbal, Sriparna Saha, Pushpak Bhattacharyya
Indian Institute of Technology Patna

Bihar, India
{shweta.pcs14,asif,sriparna,pb}@iitp.ac.in

Abstract

Text mining has drawn significant atten-
tion in recent past due to the rapid growth
in biomedical and clinical records. Entity
extraction is one of the fundamental com-
ponents for biomedical text mining. In
this paper, we propose a novel approach of
feature selection for entity extraction that
exploits the concept of deep learning and
Particle Swarm Optimization (PSO). The
system utilizes word embedding features
along with several other features extracted
by studying the properties of the datasets.
We obtain an interesting observation that
compact word embedding features as de-
termined by PSO are more effective com-
pared to the entire word embedding fea-
ture set for entity extraction. The pro-
posed system is evaluated on three bench-
mark biomedical datasets such as GENIA,
GENETAG and AiMed. The effective-
ness of the proposed approach is evident
with significant performance gains over
the baseline models as well as the other ex-
isting systems. We observe improvements
of 7.86%, 5.27% and 7.25% F-measure
points over the baseline models for GE-
NIA, GENETAG, and AiMed dataset re-
spectively.

1 Introduction

The tremendous amount of information accumu-
lated in the domains of molecular biology has
drawn the attention of biomedical natural lan-
guage processing (BioNLP) community in order
to facilitate the development of various tools for
various text processing applications, curation and
organization of ever-growing biomedical literature
etc. Entity extraction is crucial step for solving

several pipelined applications such as information
extraction, automatic summarization, question-
answering, word sense disambiguation etc. Bio-
medical entities mostly refer to the biological se-
quences of protein & gene such as DNA, RNA,
cell type, cell line etc. (Kim et al., 2004). The
way of extracting these information from biomed-
ical and clinical texts refers to as entity extraction.
An automatic system which can extract biomed-
ical names such as gene, protein or any disease
name from text can substantially reduce the human
efforts. However, extracting these entities from
text poses several challenges which are presented
as follows:

1. Named entities are very generative in nature,
i.e. many new names are continuously being
generated. Any dictionary can not capture all
the various forms of a given name.

2. Similar words convey different meanings,
and therefore, a word can have multiple NE
types. For example, gene names often con-
tain alphabets, digits, hyphens, and other
characters, thus having many variants (e.g.,
“HIV-1 enhancer” versus “HIV 1 enhancer”).
Moreover, many abbreviations (e.g., “IL2”
for “Interleukin 2”) constitute integral parts
of biomedical named entities (NEs).

3. Biomedical names are usually of long length,
and contains different types of symbols, and
hence boundary detection becomes problem-
atic.

4. Ambiguity: Same name could be used to rep-
resent variety of biological entities which fur-
ther worsen the problem.

The challenges as of these kinds are the pri-
mary causes behind the low accuracies of the sys-
tems developed for entity extraction in biomedi-
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cal text. The research challenges have been ad-
dressed in the literature including in some shared-
task challenges, such as JNLPBA (Joint Workshop
on Natural Language Processing in Biomedicine
and its Applications) in 2004 (Kim et al., 2004)
and BioCreative (Critical Assessment for Informa-
tion Extraction in Biology Challenge) II GM (gene
mention) subtask in 2007 (Smith et al., 2008).
Over the years several benchmark corpora have
been created that do not conform to the uniform
annotation guidelines. Therefore the system, de-
veloped by targeting a specific domain, often fails
to show reasonable accuracy when it is evaluated
for some other domains. In our work we attempt to
build a system for entity extraction that performs
well across various biomedical corpora.
Popular existing system mostly rely on rule-based
system or supervised machine learning technique
to automatically extract entities. They looked
upon this problem as in terms of sequence label-
ing and used algorithm such as hidden markov
models (HMM) (Zhao, 2004), support vector ma-
chines (SVM) (Kazama et al., 2002; GuoDong
and Jian, 2004), maximum entropy Markov model
(MEMM) (Finkel et al., 2005) and conditional
random fields (CRF) (Ekbal et al., 2013; Settles,
2004; Kim et al., 2005). These supervised learn-
ing models is fully dependent on the features that
we use for training. Some of the popular fea-
tures used in the existing studies include linguistic
features such as morphological, syntactic and se-
mantic information of words and domain-specific
features from biomedical ontologies such as Bio-
Thesaurus (Liu et al., 2006) and UMLS (Unified
Medical Language System) (Bodenreider, 2004).
However, these features heavenly account to the
problem of data sparsity.
In the recent past, there has been huge interest
in using large unlabeled corpus to generate word
representation feature using deep neural network
technique. We are motivated by the strength of
deep learning concepts to build our model. We
use the well-known word embedding model that
is a robust framework to incorporate word repre-
sentation features (Mikolov et al., 2013b). Word
representation feature is a mathematical descrip-
tion of the word in vector form. Each position
of vector corresponds to a feature with some se-
mantic or grammatical inference which leads to
the term word feature. Word representation fea-
tures contains latent syntactic/semantic informa-

tion of a word. The main objective to use word
embedding is to provide more useful information
to the model being trained. Vector based word
representation has powerful capability that cap-
tures the phenomenon that words having the sim-
ilar meanings should appear together (Mikolov et
al., 2013b). In traditional machine learning, data
sparsity is a problem that often causes the degra-
dation in performance. This drawback could be
overcome by the incorporation of word embed-
ding with the presumption that similar type of
word (as to semantics) appear in the similar con-
text (Mikolov et al., 2013b).

The aim is to exploit the usefulness of neural
network based word embedding (Bengio et al.,
2003) as a feature for entity extraction in biomed-
ical text. In addition we also make use of a very
diverse feature set that exploits the properties of
data and problem specific knowledge. We restrict
ourselves from using much domain-specific in-
formation for feature extraction, keeping in view
easy adaptability of the system to more than one
biomedical corpora.

However, the huge dimensionality of the word
representation vector often contributes to the com-
plexity of the system. This motivated us to ap-
ply feature selection technique to reduce the di-
mensionality contributed by word embedding as
well as to improve the system performance. Our
algorithm for feature selection is based on wrap-
per based approach, which is formulated as an
optimization problem. We use Particle Swarm
Optimization(PSO) (Kennedy and Eberhart, 1997)
as the underlying optimization strategy. Particle
Swarm Optimization is an evolutionary technique,
inspired by the social behavior of birds. Some
recent studies show that PSO converges faster
compared to some other widely used optimization
techniques (Bansal et al., 2011). Inspired by this
observation we use PSO in our current study.
To analyze the effect of pruned word embedding,
we have carried out an experiment with all the
handcrafted features and the reduced features as
determined by PSO. We perform experiments on
three standard datasets, namely GENIA, GENE-
TAG and AiMed. Evaluation results show that we
achieve significant performance gains with the use
of pruned word embedding feature set. The best
performance of the system was obtained when we
apply PSO based feature selection technique on
combination of handcrafted features set and word
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embedding features. The key contribution of this
paper are, (i) proposal of PSO based feature se-
lection technique in bio-medical entity extraction.
(ii) analysis of feature selection on only word rep-
resentation features. (iii) impact of feature selec-
tion on word representation features with hand-
craft features.

2 Related Works

There has been quite a significant number of ex-
isting works available for biomedical named en-
tity recognition (BNER). These approaches can
be divided into three major categories: (1) dictio-
nary based, (2) rule based and (3) machine learn-
ing based techniques. Among these existing ap-
proaches, machine learning based techniques have
gained a lot more attention due to the availabil-
ity of sufficiently good amount of annotated cor-
pus. For example, majority of the systems sub-
mitted to the JNLPBA challenge made use of ma-
chine learning algorithms which have been ob-
served to significantly outperform the dictionary
based methods.
Some of the recent works in BNER includes the
unsupervised model as proposed in (Zhang and
Elhadad, 2013), and the system based on CRF
(Li et al., 2015a). A two-phase approach based
on semi-Markov CRF is proposed in (Yang and
Zhou, 2014). In the first phase boundaries of
entities are identified while in the second phase
semantic labeling is performed to label the de-
tected entities. A CRF based system has been
proposed by (Tang et al., 2015), where in the
first step boundaries of NEs are identified and in
the second step appropriate labels are assigned.
(Grouin, 2014) performed experiments on the
i2b2/VA-2010 challenge dataset to detect bacte-
ria and biotopes names. They developed a model
based on CRFs. An unsupervised approach is
proposed in (Han et al., 2016) that made use of
clustering based active learning. They have used
Shared Nearest Neighbor (SNN) clustering tech-
nique. The work reported in (Li et al., 2015a),
authors have proposed a parallel CRF algorithm
(MapReduce CRF) which provides a mechanism
to minimise the time taken for CRF learning. They
showed that the proposed approach outperforms
other traditional models in terms of time and ef-
ficiency. While, most of the proposed system used
CRF, recently (Patra and Saha, 2013) proposed a
an entity extraction system based on SVM. Par-

ticularly, they have introduced a tree kernel based
function that can efficiently solve the full NER
task. The work proposed in (Tohidi et al., 2014)
aims to improve the performance of entity extrac-
tion using statistical character-based syntax simi-
larity (SCSS) algorithm. This algorithm computes
the similarity between the identified candidate en-
tities and a known set of well-known NEs. This set
of NEs is created by extracting the most frequently
occurring NEs in the GENIA V3.0 corpus. In re-
cent times deep learning based approaches such
as Recurrent Neural Network and Bi-directional
LSTM have also used for entity extraction(Li et
al., 2015b; Limsopatham and Collier, 2016). It is
well known that relevant features play an impor-
tant role for building a high accurate system. In
our work, in addition to the standard features we
also use the features extracted from the word em-
bedding model.
Bengio et al.(Bengio et al., 2003) have proposed
a neural network based model for vector represen-
tation of words. Distributed representation (also
known as word embedding) of a word has been
used to improve the performance of various NLP
tasks like Part-of-Speech (POS) tagging, NER in
news-wire domain (Collobert et al., 2011), parsing
(Socher et al., 2013; Turian et al., 2010) etc. Word
cluster has been used used by Miller et al.(Miller
et al., 2004) to boost the performance of a NER
system. Tang et al. (Tang et al., 2012; Tang et al.,
2013) have reported that performance of biomed-
ical entity extraction can be improved when word
representation is used as a feature to CRF and
SVM classifiers.
Here we propose a PSO based feature selection
technique that determines the most relevant fea-
tures from a full word embedding set, and use
this subset as feature for classifier’s training. Fea-
ture selection has been widely used for many tasks
such as gene expression (Ding and Peng, 2005),
face recognition (Seal et al., 2015) and signal pro-
cessing (Alamedine et al., 2013). Dealing with
biomedical text is, however, more difficult and
challenging as the features have non-numeric val-
ues and the texts are heavily unstructured. Ex-
cept the few works such as NER (Ekbal and Saha,
2016), co-reference resolution (Sikdar et al., 2015)
and sentiment analysis (Gupta et al., 2015), sys-
tematic methods of feature selection using meta-
heuristics algorithms are very rare. Nevertheless,
the importance of using pruned neural language
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model based word representation features with ef-
fective feature selection have not been exploited
so far in the literature.
2.1 A Brief Introduction to Particle Swarm

Optimization (PSO)

Particle Swarm Optimization (PSO) is a meta-
heuristic intelligent technique inspired by social
behavior of the swarm for its survival (Eberhart
and Shi, 1998; Kennedy and Eberhart, 1997). This
is a population based technique which is perceived
in birds and fishes for the search of the best path.
In general, PSO consists of the swarm of the par-
ticle where each particle has its particular position
in the search space with which it moves around
the search space by some velocity. The parti-
cle selects the best path on each iteration by us-
ing its memory and by learning the effective path
that was followed previously by the swarm. The
new position is chosen on the basis of the knowl-
edge gained previously by its self-best position
and the best position of the swarm. PSO, being
a meta-heuristic model, makes few or no assump-
tion about the problem being optimized and can
search very large spaces of candidate solutions.
This makes PSO highly efficient for the optimiza-
tion purpose (Yan et al., 2013). The algorithm it-
erates by keeping track of two variables:
Global best position represents the most promis-
ing vector found so far, and Personal best position
denotes the particle’s own personal best solution.

2.1.1 Algorithm: PSO based Feature
Selection

1. Initially, we randomly set the swarm popu-
lation. Each particle of the swarm is repre-
sented by binary-valued features of length n
(total no. of feature) and has its position and
velocity with which it moves in search space.
Mathematically, particle position and particle
velocity are represented as:

−→
P (i) and

−→
V (i)

respectively:

−→
P (i) = (p(i, 1), p(i, 2), ....., p(i, n))

−→
V (i) = (v(i, 1), v(i, 2), ....., v(i, n))

where p(i, j) ∈ {0, 1}, i = 1, 2, ..., N and
j = 1, 2, ..., n where N is no. of particle.
Particle maintains its best position (

−→
B (i))

that they have achieved so far and also the
global best position (

−→
G)i.e., the best position

of the particle having the best solution.

2. Particle’s position
−→
P (i) value is set either

{0, 1} on the basis of following expression:

p(i,j) =
{

1 if random ≥ 0.5
0 otherwise

3. Each particle is evaluated on the basis of
fitness function (F-measure value) f(

−→
P (i)).

The memory is updated by keeping track of
the best position and global best position.

4. Initially, the value of best position (
−→
B (i)) of

every particle is set to 0. At every epoch(ep)
the value of the best position is updated as
follows:

f(−→B (i))ep = max(f(−→P (i))ep, f(−→B (i)ep−1)

5. Update in the global best position value is
done when the fitness function f(

−→
B (i)) in

the swarm is superior than the existing f(
−→
G).

6. Originally, the velocity vector is generated
randomly. At each iteration, velocity of a
particle is updated according to the following
equation:
v(i,j) = ω∗v(i,j)+φ1(b(i,j)−p(i,j))+φ2(g(j)−p(i,j))

(1)

where ω(0 < ω < 1), φ1 and φ2 are known
as inertia weights. These parameters are ini-
tialized with an uniformly generated random
numbers in the range (0,1). The b(i,j), p(i,j),

and g(j) denote the jth components of
−→
B (i),−→

P (i) and
−→
G , respectively.

7. The position of a particle is updated by the
following mathematical expression:

p(i,j) =
{

1 if(random < S(v(i,j)))
0 otherwise

where 0≤ random ≤ 1 is an uniform random
number.

S(v(i,j)) = 1
1+exp(−−→v (i,j))

This represents the sigmoid function. Thus,
we update the particle position value of 0 or
1 on the basis of the value of velocity.

8. Repeat steps 4-7 until convergence.
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2.2 Learning Word Representations
Word embedding (also known as distributed word
representations) persuade a real-valued latent se-
mantic or syntactic vector for each word from a
large unlabeled corpus by using continuous space
language models (Tang et al., 2014). Better
word representation can be obtained if we have a
large amount of training data as the obtained real-
valued vectors of words become more representa-
tive. We use the popular word2vec1 tool proposed
by Mikolov et al. (Mikolov et al., 2013a) to ex-
tract the vector representations of words. Owing
to its simpler architecture which reduces the com-
putational complexity, this technique can be used
for large corpus. Two models have been proposed
in (Mikolov et al., 2013a) to learn vector represen-
tation known as Continuous Bag-of-Words Model
(CBOW) and Skip-gram model. Since skip-gram
model is able to capture the semantic informa-
tion of a word, we adapt this to train the model
for vector representation. The Skip-gram archi-
tecture tries to maximize the classification of a
word based on the other words in the same sen-
tence. More formally, given a sequence of training
words w1,w2,......, wT , the objective of the Skip-
gram model is to maximize the average log proba-
bility

1
T

T∑
t=1

∑
−c≤j≤c

j=0

log p(wt+j |wt) (2)

where c is the window size. Here, we show
few words that are more nearby to any biomed-
ical entity: ‘antigen’, ‘lymphocytes’ and ‘inhib-
ited’. If we look at the most similar words
for the word ‘lymphocytes’, we observe that
apart from syntactically similar words like ‘T-
lymphocytes’, ‘B-lymphocytes’, it is also able to
capture the words which are semantically similar
like ‘CD3+’, ‘PBLs’ and ‘T-cells’.

3 Features for Entity Extraction

The features being extracted are described as fol-
lows:

1. Contextual feature: It is the local contextual
feature which refers to the tokens which ap-
pear within the window size of 10 words, i.e
5 to the left and 5 to the right w.r.t current
token.

1https://code.google.com/p/word2vec/

2. Word prefixes and suffixes: These features
refer to the fixed length character sequences
stripped either from the left or rightmost po-
sitions of the words.

3. Word length: It is observed that short words
are rarely the NEs. We define a binary-valued
feature that triggers the value 1 if the length
of current word is greater than the threshold
value specified. The threshold value is set as
5 in this case.

4. Part-of-Speech (PoS) information: PoS pro-
vides useful syntactic evidence for detecting
named entities (NEs).We use PoS informa-
tion of the current and/or the surrounding
token(s) as the feature. The PoS informa-
tion was extracted from the GENIA tagger2

V2.0.2.

5. Chunk information: We use GENIA tagger
V2.0.2 corpus to extract the chunk informa-
tion. We employ the chunk information of
the present and neighboring tokens as the fea-
tures.

6. Word shape: Word shape is defined as the
mapping of each word to its equivalent class.
In order to implement this feature we nor-
malize the words by converting every capital
character by ‘A’, small character to ‘a’ and
digit to ‘0’. After this conversion, we squeeze
the consecutive characters into a single char-
acter. For example, if we consider the token
‘Ly-49’, the normalized word for this token
would be ‘Aa-00’.

7. Word class feature : This feature is based on
the concept that entities present in the same
class are mostly similar. Here, all the cap-
ital letters are converted to ‘A’, small let-
ters to ‘a’, numbers to ‘O’ and non-English
characters to ‘-’. After this conversion, we
squeeze the consecutive characters into a sin-
gle character. For example, the word class
feature for the token ‘IL-2-mediated’ is ‘AA-
O-aaaaaaaa’, which is further reduced to ‘A-
O-a’.

8. Orthographic features: We use several ortho-
graphic features that consider capitalization
and digit information. These features are:

2http://www.nactem.ac.uk/GENIA/tagger/
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initial capital, all capital, capital in inner,
initial capital then mix, only digits, digit with
special character, initial digit then alphabet,
digit in inner. It is observed that some sym-
bols like (‘,’, ‘-’, ‘.’, ‘ ’) are very common in
the biomedical text. Some symbols like ‘,’
are also very helpful for the identification of
NE boundaries.

4 Methodology

We propose a PSO based feature selection tech-
nique that determines the most relevant features
from a set of features, containing both hand-
crafted as well as word embedding based features.
We use Conditional Random Field (CRF) (Laf-
ferty et al., 2001) as a base learning algorithm. For
each token, a feature vector is generated from the
training and test dataset using the features as de-
scribed in the previous section. Basic steps of our
algorithm are as follows:

1. Initially, we design 32 features (listed in
Section-3) for three datasets, namely GE-
NIA, GENETAG and AiMed. These fea-
tures are used for the classifier’s training. The
models built using these features are termed
as the baseline models.

2. We generate the word embedding feature
vector of 200 dimensions based on the model
trained on a large corpus like Wikipedia and
the biomedical corpora such as PubMed 3 and
PubMed Central Open Access (PMC OA)4.

3. A new feature set is generated by combin-
ing both word embedding based features and
handcrafted features.

4. PSO based feature selection is performed to
determine the most relevant feature set.

5. CRF classifier is trained with the features se-
lected by PSO. The model, thus generated, is
evaluated on all the three datasets.

Figure-1 depicts the various steps of our proposed
approach.
5 Datasets and Experiments

3http://www.ncbi.nlm.nih.gov/pubmed
4http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist

5.1 Dataset

Our system is evaluated on three distinguished
biomedical datasets, namely GENIA5, AiMed6

and GENETAG7. The GENIA corpus is derived
from the MEDLINE corpus. It comprises of
500,000 and 100,000 words in training and test
dataset, respectively. These datasets are manu-
ally annotated with five NE tags, namely Protein,
DNA, RNA, Cell line & Cell type.
AiMed corpus was created using 20,000 sen-
tences having gene/protein names extracted from
the Database of Interacting Protein (DIP). We use
7,500 labeled sentences for training and 2,500 sen-
tences for validation. For evaluation we use a test
set consisting of 5,000 sentences.

GENETAG dataset is derived from the ‘Med-
Tag’ dataset. Training and test datasets comprise
of 118K and 142K words, respectively. In order to
properly denote the boundaries of NE, we use the
IOB28 encoding scheme. We evaluate our system
in terms of recall, precision and F-measure values.
For evaluation we use the script, which was made
available with the JNLPBA 2004 shared task 9.

5.2 Baseline Models and Analysis

We start experiments with the first baseline (i.e.
Baseline-1) by developing the model trained with
all the features as discussed in Section-3. We
evaluate the presence of word embedding features
trained on various unlabeled data sets obtained
from the different text sources. In order to real-
ize the effect of each trained word representation
model, we augment the word vector obtained from
the respective model one by one to the baseline
feature set. In order to obtain word embedding, we
use four different models trained on the unlabeled
data extracted from PubMed 10, PubMed Central
Open Access (PMC OA)11 and the latest English
Wikipedia dump12. Corpus statistics of PubMed
and PMC OA are provided in Table-1.
The extracted text upon which four different mod-
els are trained are as follows:

5http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-
shared-task-2004

6ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
7ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENETAG.tar.gz
8I, O and B represent the intermediate, outside and begin-

ning token of a NE
9http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html

10http://www.ncbi.nlm.nih.gov/pubmed
11http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist
12http://en.wikipedia.org/wiki/Main Page
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Figure 1: Proposed model architecture for biomedical entity extraction

1. Model developed using extracted data from
PubMed biomedical literature: denoted as
WE(1).

2. Model built on the extracted text from PMC
biomedical literature: denoted as WE(2).

3. Model developed using the combination
of extracted text from PubMed and PMC
biomedical texts: denoted as WE(3).

4. Model trained using the extracted text from
PubMed, PMC and Wikipedia: denoted as
WE(4).

We develop the second baseline (i.e. Baseline-2)
by executing the best word embedding model in
combination with the hand-crafted feature set. We
further develop the third baseline, i.e. Baseline-
3 by merging word embedding feature set as de-
termined by PSO along with the full handcrafted
feature set. We observe that selection of relevant
word embedding features helps in improving per-
formance over the whole word embedding feature
set.
We generate 200-dimensional word vectors using
the parameters 13 as follows: skip-gram model
with a window size of 5, hierarchical soft-max
training, and a frequent word sub-sampling thresh-
old of 0.001. In order to make our proposed sys-
tem generic, i.e. not biased to any particular do-
main of data, we use the same parameters of PSO
in all our settings. We fine-tune the parameters
ω, φ1 and φ2 by performing 3-fold cross valida-
tion experiments. We keep the number of particles

13We use same parameters for training of all the four mod-
els

Corpus Documents Sentences Tokens
PubMed 22,120,269 124,615,674 2,896,348,481

PMC 672,589 105,194,341 2,591,137,744
PubMed+PMC 22,792,858 229,810,015 5,487,486,225

Table 1: Corpus statistics (Pyysalo et al., 2013) of
PubMed and PMC OA openly available biomed-
ical literature; PubMed abstracts for articles that
are also present in PMC OA were discarded while
creating the data

and the number of iterations as 10 and 100, respec-
tively throughout all the experiments.

Effectiveness of PSO based feature selection is
evident with performance improvement as shown
in Table-5.

5.3 Comparison with Existing Feature
Selection Techniques

Here we compare our PSO based feature selec-
tion technique with other existing feature selection
techniques. We perform experiments with both fil-
ter and wrapper based models. For filter based
model, we use univariate feature selection based
on information theoretical concept like Informa-
tion Gain. While for multivariate filter model we
use correlation based feature selection. Our results
indicate that PSO performs better than univariate
by 3.03 % and multivariate by 2.60 % F-measure
points for the GENIA dataset. We also observe
quite similar behaviors for the other two datasets.

In addition, we also explore two popular wrap-
per based feature selection techniques, Genetic Al-
gorithm (GA) (Holland, 1975) based feature selec-
tion (Ekbal et al., 2010) technique and Recursive
Feature Elimination (RFE) (Guyon et al., 2002)

1165



Feature Selection GENIA GENETAG AiMed
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Filter (Information Gain) 69.02 71.28 70.13 88.25 94.47 91.25 87.46 90.47 88.93
Filter (Correlation) 70.19 70.95 70.56 88.89 93.68 91.22 87.18 89.85 88.49
Wrapper (GA) 72.48 71.98 72.22 89.19 95.04 92.02 89.07 91.11 90.07
Wrapper (RFE) 71.28 71.54 71.40 89.25 94.81 91.94 88.67 91.66 90.14
CRF[PSO] 72.48 73.87 73.16 89.33 96.42 92.74 89.77 92.09 90.92

Table 2: Comparison of PSO with other filter (Information Gain & Correlation) and wrapper (G.A &
RFE) based feature selection technique

based approach. Genetic algorithm belongs to the
class of randomized wrapper model where feature
selection is always classifier dependent and is less
prone to stuck at local optima. The RFE is catego-
rized under the deterministic type wrapper model
which is computationally less complex than ran-
domized type but has the disadvantage to stuck at
local optima.
Results show that PSO performs better than RFE
for all the datasets and GA for two datasets (GE-
NIA & GENETAG) in terms of F-measure and the
number of features selected. Results are depicted
in Table-2. On AiMed dataset, GA and RFE based
feature selection techniques perform quite compa-
rable to our PSO based method. It is to be noted
that PSO based feature selection yields better per-
formance even with a smaller set of features. The
pruned and compact feature set incurs less less
computational complexity.

6 Result and Discussion

Table-3 shows the extensive results of our
proposed system on all three datasets, namely
GENIA, AiMed and GENETAG by augmenting
word embedding features. It seems that word
embedding features generated from the model
which is trained on the combined datasets of
PubMed, PMC and Wikipedia [WE(4)] perform
better than the other models. The unsupervised
word representation features help in detecting
unseen entities, i.e. those not appearing in the
training data set.
We augment word embedding WE(4) features
to the hand-crafted features, and then apply
feature selection using PSO on this combined
set. Feature selection through PSO not only
helps in improving the performance, but at the
same time it reduces the feature dimensionality.
Evaluation results as reported in Table-4 reveal
this fact. Table-3 clearly depicts the effectiveness

of word embedding features in BNER (biomed-
ical NER) system. We observe improvements
of 7.86%, 5.27% and 7.25% F-measures over
the first baseline (i.e. Baseline-1) for GENIA,
AiMed and GENETAG data sets, respectively by
using PSO based feature selection on PubMed-
PMC-wikipedia trained word embedding and
handcrafted features. Evaluation also suggests
that performance does not degrade significantly,
even when we use word embedding features
obtained only from Pubmed & PMC OA. It seems
that word embedding features obtained from
the combination of Pubmed and PMC are more
representatives compared to the individual one.
We also show evaluation of some of the existing
approaches that attempt to make use of word
representation features. A F-measure of 71.39%
is reported in the work (Tang et al., 2014). Word
representation feature was also used in (Chang
et al., 2015) that reported to have achieved
F-measure value of 71.77%.

We perform statistical significance (t-test) test
on the results obtained by our proposed model.
For different datasets, experiments are executed
for 10 independent runs and the t-statistic is
adopted to analyze the obtained experimental re-
sults. Using the known distribution of the test
statistic, p-value is calculated. It is observed that p
values are less than 0.04 for all the three data sets,
which signify that our obtained results are statisti-
cally significant.

6.1 Error Analysis
Here, we analyze the outputs obtained for each
dataset in order to identify the possible errors.We
categorize the errors in three ways as follows:

1. Wrong boundary: This error occurs due
to the incorrect boundary identification of
entities.These types of cases are observed
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System GENIA AiMed GENETAG
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Baseline-1: Handcraft feature 66.78 63.89 65.30 84.11 87.25 85.65 83.88 87.17 85.49
WE1(Handcraft feature + PubMed) 70.72 72.29 71.50 88.42 89.21 88.81 81.92 95.82 88.33
WE2(Handcraft feature + PMC OA) 70.72 72.29 71.50 88.56 89.02 88.78 82.01 95.62 88.29

WE3(Handcraft feature + PubMed + PMC) 70.79 72.47 71.62 89.48 89.01 89.24 82.41 95.89 88.64
WE4(Handcraft feature + PubMed + PMC + Wikipedia) 70.88 72.64 71.75 89.07 90.11 89.59 82.78 95.70 88.77

Baseline-2: Best of WE model 70.88 72.64 71.75 89.07 90.11 89.59 82.78 95.70 88.77
Baseline-3: (PSO with only WE(4)) + Handcraft feature 71.92 72.62 72.26 89.63 90.34 89.98 83.46 95.69 89.15

Proposed: PSO with (handcrafted features + WE) 72.48 73.87 73.16 89.77 92.09 90.92 89.33 96.42 92.74
WE model by Tang et al.(Tang et al., 2014)) 70.78 72.00 71.39 - - - - - -

WE model by Chang et al.(Chang et al., 2015)) 71.36 72.18 71.77 - - - - - -

Table 3: Performance evaluation on GENIA, AiMed and GENETAG data sets using various word em-
bedding (WE) features trained on different unlabeled data.

Approach
Dataset

GENIA GENETAG AiMed
Handcraft Features + W.E Features 232 230 232

PSO based feature selection 129 136 121

Table 4: Comparison of no. of features being used
to train the model: Before feature selection and after
feature selection

Approach
Dataset

GENIA GENETAG AiMed
Only W.E features 57.78 55.63 41.22

PSO selected W.E features 58.96 57.41 42.74

Table 5: Comparisons (in terms of F-score)
between whole word embedding features using
WE(4) and the PSO selected word embedding fea-
tures excluding handcrafted features. Here, W.E:
Word embedding

mostly with the entities having long and
compounded wordforms such as ‘T cell
activation-specific enchance’. We also ob-
serve that our system lacks in correctly clas-
sifying the instances which includes brackets.

2. Incorrect entity type: This error is obtained
when the entity is properly identified but it
belongs to some other entity class. This er-
ror is more prominent in case of GENIA and
GENETAG datasets. For GENIA dataset,
classifier is mostly confused with ‘Protein’
vs. ‘Cell line’ or ‘Cell type’. In total 126
Protein words are wrongly classified either as
the ‘Cell line’ or ‘Cell type’. While with the
use of PSO, the rate of mis-classification was
reduced to 97. In GENETAG, majority of
classes are predicted as ‘I-NEWGENE’. This
may be due to the fact that majority of the
instances belongs to the ‘I-NEWGENE’ cat-

egory. While after applying PSO, we observe
that mis-classification of ‘I-NEWGENE’ is
significantly reduced from 325 to just 129.

3. Missed entity: Our system misses significant
number of NE instances.It is found that num-
ber of false negatives count to 1357, 155 and
40 for GENTIA, AiMed and GENETAG, re-
spectively. All these NEs are mis-classfied to
belong to the other-than-NE category.

7 Conclusions & Future work

In this paper we have investigated the effect of
word embedding features in addition to the hand-
crafted features for entity extraction from three
benchmark biomedical data sets, namely GENIA,
AiMed & GENETAG. We have evaluated the
system using four different word representation
schemes trained on extracted texts from PubMed,
PMC OA biomedical literature and Wikipedia
dump datasets. In addition to this we have per-
formed PSO based feature selection on the whole
feature set for the different data sets. We can con-
clude that instead of using a full word representa-
tion feature, if only prominent features are used,
it could help in improving the performance of the
system. In future work, we would like to perform
additional experiments to fine-tune the dimensions
of vectors and the parameters of CRF through
cross-validation on the training set. The applica-
bility of feature selection on word embedding fea-
tures need to be explored in other domain also. In
addition we want to compare the performance of
representation obtained through word2vec to the
others such as GloVe. We would also like to ex-
plore deep learning techniques replacing CRF.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Olivier Bodenreider. 2004. The unified medical lan-
guage system (umls): integrating biomedical termi-
nology. Nucleic acids research, 32(suppl 1):D267–
D270.

F.X. Chang, J. Guo, W.R. Xu, and S. Relly Chung.
2015. Application of word embeddings in biomedi-
cal named entity recognition tasks. Journal of Digi-
tal Information Management, 13(5).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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