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Abstract

Multi-hop textual question answering requires
combining information from multiple sen-
tences. We focus on a natural setting where,
unlike typical reading comprehension, only
partial information is provided with each
question. The model must retrieve and use
additional knowledge to correctly answer the
question. To tackle this challenge, we de-
velop a novel approach that explicitly identi-
fies the knowledge gap between a key span
in the provided knowledge and the answer
choices. The model, GapQA, learns to fill this
gap by determining the relationship between
the span and an answer choice, based on re-
trieved knowledge targeting this gap. We pro-
pose jointly training a model to simultaneously
fill this knowledge gap and compose it with
the provided partial knowledge. On the Open-
BookQA dataset, given partial knowledge, ex-
plicitly identifying what’s missing substan-
tially outperforms previous approaches.

1 Introduction

Reading Comprehension datasets (Richardson
et al., 2013; Rajpurkar et al., 2016; Joshi et al.,
2017) have gained interest as benchmarks to eval-
uate a system’s ability to understand a document
via question answering (QA). Since many of these
early datasets only required a system to understand
a single sentence, new datasets were specifically
designed to focus on the problem of multi-hop
QA, i.e., reasoning across sentences (Khashabi
et al., 2018; Welbl et al., 2018; Yang et al., 2018).

While this led to improved language under-
standing, the tasks still assume that a system is
provided with all knowledge necessary to answer
the question. In practice, however, we often only
have access to partial knowledge when dealing
with such multi-hop questions, and must retrieve
additional facts (the knowledge “gaps”) based on

Question:
Which of these would let the most heat travel through?
A) a new pair of jeans.
B) a steel spoon in a cafeteria.
C) a cotton candy at a store.
D) a calvin klein cotton hat.
Core Fact:
Metal lets heat travel through.

Knowledge Gap (similar gaps for other choices):
steel spoon in a cafeteria metal.

Filled Gap (relation identified using KB):
steel spoon in a cafeteria is made of metal.

Figure 1: A sample OpenBookQA question, the identi-
fied knowledge gap based on partial information in the
core fact, and relation (is made of ) identified from a
KB to fill that gap.

the question and the provided knowledge. Our
goal is to identify such gaps and fill them using
an external knowledge source.

The recently introduced challenge of open book
question answering (Mihaylov et al., 2018) high-
lights this phenomenon. The questions in the
corresponding dataset, OpenBookQA, are derived
from a science fact in an “open book” of about
1300 facts. To answer these questions, a system
must not only identify a relevant “core” science
fact from this small book, but then also retrieve
additional common knowledge from large exter-
nal sources in order to successfully apply this core
fact to the question. Consider the example in Fig-
ure 1. The core science fact metal lets heat to
travel through points to metal as the correct an-
swer, but it is not one of the 4 answer choices.
Given this core fact (the “partial knowledge”), a
system must still use broad external knowledge to
fill the remaining gap, that is, identify which an-
swer choice contains or is made of metal.

This work focuses on QA under partial knowl-
edge. This turns out to be a surprisingly chal-
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lenging task in itself; indeed, the partial knowl-
edge models of Mihaylov et al. (2018) achieve a
score of only 55% on OpenBookQA, far from hu-
man performance of 91%. Since this and several
recent multi-hop datasets use the multiple-choice
setting (Welbl et al., 2018; Khashabi et al., 2018;
Lai et al., 2017), we assume access to potential
answers to a question. While our current model
relies on this for a direct application to span-
prediction based RC datasets, the idea of identi-
fying knowledge gaps can be used to create novel
RC specific models.

We demonstrate that an intuitive approach leads
to a strong model: first identify the knowledge
gap and then fill this gap, i.e., identify the miss-
ing relation using external knowledge. We pri-
marily focus on the OpenBookQA dataset since
it is the only dataset currently available that pro-
vides partial context. However, we believe such an
approach is also applicable to the broader setting
of multi-hop RC datasets, where the system could
start reasoning with one sentence and fill remain-
ing gap(s) using sentences from other passages.

Our model operates in two steps. First, it pre-
dicts a key span in the core fact (“metal” in the
above example). Second, it answers the question
by identifying the relationship between the key
span and answer choices, i.e., by filling the knowl-
edge gap. This second step can be broken down
further: (a) retrieve relevant knowledge from re-
sources such as ConceptNet (Speer et al., 2017)
and large-scale text corpora (Clark et al., 2018);
(c) based on this, predict potential relations be-
tween the key span and an answer choice; and (d)
compose the core fact with this filled gap.

We collect labels for knowledge gaps on ∼30%
of the training questions, and train two modules
capturing the two main steps above. The first
exploits an existing RC model and large-scale
dataset to train a span-prediction model. The sec-
ond uses multi-task learning to train a separate QA
model to jointly predict the relation representing
the gap, as well as the final answer. For questions
without labelled knowledge gaps, the QA model is
trained based solely on the predicted answer.

Our model outperforms the previous state-of-
the-art partial knowledge models by 6.5% (64.41
vs 57.93) on a targeted subset of OpenBookQA
amenable to gap-based reasoning. Even without
missing fact annotations, our model with a simple
heuristic to identify missing gaps still outperforms

previous models by 3.4% (61.38 vs. 57.93). It also
generalizes to questions that were not its target,
with 3.6% improvement (59.40 vs. 55.84) on the
full OpenBookQA set.

Overall, the contributions of this work are: (1)
an analysis and dataset1 of knowledge gaps for QA
under partial knowledge; (2) a novel two-step ap-
proach of first identifying and then filling knowl-
edge gaps for multi-hop QA; (3) a model1 that si-
multaneously learns to fill a knowledge gap using
retrieved external knowledge and compose it with
partial knowledge; and (4) new state-of-the-art re-
sults on QA with partial knowledge (+6.5% using
annotations on only 30% of the questions).

2 Related Work

Text-Based QA. Reading Comprehension (RC)
datasets probe language understanding via ques-
tion answering. While several RC datasets (Ra-
jpurkar et al., 2016; Trischler et al., 2017; Joshi
et al., 2017) can be addressed with single sentence
understanding, newer datasets (Weston et al.,
2015; Welbl et al., 2018; Khashabi et al., 2018;
Yang et al., 2018) specifically target multi-hop rea-
soning. In both cases, all relevant information,
barring some linguistic knowledge, is provided or
the questions are unanswerable (Rajpurkar et al.,
2018). This allows using an attention-based ap-
proach of indirectly combining information (Dhin-
gra et al., 2018; Cao et al., 2019; Song et al., 2018).

On the other hand, open domain question an-
swering datasets (Clark et al., 2016, 2018) come
with no context, and require first retrieving rel-
evant knowledge before reasoning with it. Re-
trieving this knowledge from noisy textual cor-
pora, while simultaneously solving the reason-
ing problem, can be challenging, especially when
questions require multiple facts. This results in
simple approaches (e.g. word-overlap/PMI-based
approaches), that do not heavily rely on the re-
trieval quality, being competitive with other com-
plex reasoning methods that assume clean knowl-
edge (Clark et al., 2016; Jansen et al., 2017; An-
geli et al., 2016). To mitigate this issue, semi-
structured tables (Khashabi et al., 2016; Jansen
et al., 2018) have been manually authored target-
ing a subset of these questions. However, these
tables are expensive to create and these ques-
tions often need multiple hops (sometimes up to

1The code and associated dataset are available at
https://github.com/allenai/missing-fact.
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16 (Jansen et al., 2018)), making reasoning much
more complex.

OpenBookQA dataset (Mihaylov et al., 2018)
was proposed to limit the retrieval problem by pro-
viding a set of ∼1300 facts as an ‘open book‘ for
the system to use. Every question is based on one
of the core facts, and in addition requires basic ex-
ternal knowledge such as hypernymy, definition,
and causality. We focus on the task of question an-
swering under partial context, where the core fact
for each question is available to the system.

Knowledge-Based QA. Another line of re-
search is answering questions (Bordes et al., 2015;
Pasupat and Liang, 2015; Berant et al., 2013)
over a structured knowledge base (KB) such as
Freebase (Bollacker et al., 2008). Depending on
the task, systems map questions to a KB query
with varying complexity: from complex semantic
parses (Krishnamurthy et al., 2017) to simple rela-
tional lookup (Petrochuk and Zettlemoyer, 2018).
Our sub-task of filling the knowledge gap can be
viewed as KB QA task with knowledge present in
a KB or expected to be inferred from text.

Some RC systems (Mihaylov and Frank, 2018;
Kadlec et al., 2016) and Textual Entailment (TE)
models (Weissenborn et al., 2017; Inkpen et al.,
2018) incorporate external KBs to provide addi-
tional context to the model for better language
understanding. However, we take a different ap-
proach of using this background knowledge in an
explicit inference step (i.e. hop) as part of a multi-
hop QA model.

3 Knowledge Gaps

We now take a deeper look at categorizing knowl-
edge gaps into various classes. While grounded in
OpenBookQA, this categorization is relevant for
other multi-hop question sets as well.2 We will
then discuss how to effectively annotate such gaps.

3.1 Understanding Gaps: Categorization
We analyzed the additional facts needed for an-
swering 75 OpenBookQA questions. These facts
naturally fall into three classes, based on the
knowledge gap they are trying to fill: (1) Question-
to-Fact, (2) Fact-to-Answer, and (3) Question-
to-Answer(Fact). Figure 2 shows a high-level
overview, with simplified examples of each class
of knowledge gap in Figures 3, 4, and 5.

2As mentioned earlier, in the RC setting, the first relevant
sentence read by the system can be viewed as the core fact.

Question-to-Fact Gap. This gap exists between
concepts in the question and the core fact. For ex-
ample, in Figure 3, the knowledge that “Kool-aid”
is a liquid is needed to even recognize that the fact
is relevant.

Fact-to-Answer Gap. This gap captures the re-
lationship between concepts in the core fact and
the answer choices. For example, in Figure 4, the
knowledge “Heat causes evaporation” is needed to
relate “evaporated” in the fact to the correct an-
swer “heat”. Note that it is often possible to find
relations connecting the fact to even incorrect an-
swer choices. For example, “rainfall” could be
connected to the fact using “evaporation leads to
rainfall”. Thus, identifying the correct relation and
knowing if it can be composed with the core fact
is critical, i.e., “evaporation causes liquid to dis-
appear” and “evaporation leads to rainfall” do not
imply that “rainfall causes liquid to disappear”.

Question-to-Answer(Fact) Gap. Finally, some
questions need additional knowledge to connect
concepts in the question to the answer, based on
the core fact. For example, composition questions
(Figure 5) use the provided fact to replace parts of
the original question with words from the fact.

Notably Question-to-Fact and Fact-to-Answer
gaps are more common in OpenBookQA (44%
and 86% respectively3), while the Question-to-
Answer(Fact) gap is very rare (<20%). While all
three gap classes pose important problems, we fo-
cus on Fact-to-Answer gap and assume that the
core fact is provided. This is still a challenging
problem as one must not only identify and fill the
gap, but also learn to compose this filled gap with
the input fact.

3.2 Annotating Gaps: Data Collection

Due to space constraints, details of our crowd-
sourcing process for annotating knowledge gaps,
including the motivation behind various design
choices as well as several examples, are deferred
to the Appendix (Section A). Here we briefly sum-
marize the final crowdsourcing design.

Our early pilots revealed that straightforward
approaches to annotate knowledge gaps for all
OpenBookQA questions lead to noisy labels. To
address this, we (a) identified a subset of ques-
tions suitable for this annotation task and (b) split

3Some questions have both of these classes of gaps.
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Fact 

Question Answer

Question-to-Fact Gap Fact-to-Answer Gap

Question-to-Answer(Fact) Gap

Figure 2: High-level overview of the kinds of knowl-
edge gaps, assuming partial knowledge from the fact.
In subsequent figures, the knowledge gap is indicated
using highlighted text.

Question: What can cause Kool-aid to disappear ?
Fact: If a liquid disappears then that liquid probably evaporated

Gap: Kool-aid is a liquid
Answer: Evaporation

Figure 3: Knowledge gap between the question (Kool-
aid) and the fact (liquid). To apply the fact about liq-
uids to the question, we need to know “Kool-aid is a
liquid”.

Question: What can cause liquid to disappear ?
Fact: If a liquid disappears then that liquid probably evaporated

Gap: Heat causes evaporation
Answer: Heat

Figure 4: Knowledge gap between the fact (evapo-
rated) and the answer (Heat). While it is clear how
to apply the knowledge, we need to know that “Heat
causes evaporation” to identify the right answer.

Fact: The blue planet refers to planet Earth
Question: What is the satellite of the blue planet ?

Gap: Moon is the satellite of Earth
Answer: Moon

Figure 5: Knowledge gap between the question and
the answer using the fact. For some complex ques-
tions, the fact clarifies certain concepts in the question,
(e.g., “blue planet”), leading to a reformulation of the
question based on the fact (e.g., “What is the satellite
of Earth?”) which is captured by this gap.

Question Fact Span Relation Gap
Q: A light bulb turns on when it
receives energy from A: gasoline

a light bulb converts electri-
cal energy into light energy
when it is turned on

electrical
energy

provides−1,
enables−1

(gasoline, provides,
electrical energy)

Q: What makes the best wiring?
A: Tungsten

wiring requires an electri-
cal conductor

electrical
conductor

isa−1,
madeof

(Tungsten, is an, elec-
trical conductor)

Table 1: Examples from KGD dataset. Note that the knowledge gap is captured in the form of (Span, Relation,
Answer) but not explicitly annotated. −1 is used to indicate that the argument order should be flipped.

Fact-to-Answer gap annotation into two steps:
key term identification and relation identification.

Question Subset. First, we identified valid
question-fact pairs where the fact supports the cor-
rect answer (verified via crowdsourcing) but does
not trivially lead to the answer (fact only over-
laps with the correct answer). Second, we noticed
that the Fact-to-Answer gaps were much nois-
ier for longer answer options, where you could
write multiple knowledge gaps or a single com-
plex knowledge gap. So we created OBQA-Short,
the subset of OpenBookQA where answer choices
have at most two non-stopword tokens. This con-
tains over 50% of the original questions and is also
the target set of our approach.

Two-step Gap Identification. Starting with the
above pairs of questions with valid partial knowl-
edge, the second task is to author facts that close
the Fact-to-Answer knowledge gap. Again, ini-
tial iterations of the task resulted in poor qual-
ity, with workers often writing noisy facts that re-
stated part of the provided fact or directly connect
the question to the answer (skipping over the pro-

vided fact4). We noticed that the core fact often
contains a key span that hints at the final answer.
So we broke the task into two steps: (1) identify
key terms (preferably a span) in the core fact that
could answer the question, and (2) identify one or
more relations5 that hold between the key terms
and the correct answer choice but not the incorrect
choices. Table 1 shows example annotations of the
gaps obtained through this process.

Knowledge Gap Dataset: KGD
Our Knowledge Gap Dataset (KGD) contains

key span and relation label annotations to capture
knowledge gaps. To reduce noise, we only use
knowledge gap annotations where at least two of
three workers found a contiguous span from the
core fact and a relation from our list. The final

4This was also noticed by the original authors of Open-
BookQA dataset (Mihaylov et al., 2018).

5Workers preferably chose from a selected list of nine
most common relations: {causes, definedAs, enables, isa, lo-
cated in, made of, part of, provides, synonym of} and their
inverses (except synonymy). These relations have also been
found to be useful by prior approaches for science QA (Clark
et al., 2014; Khashabi et al., 2016; Jansen et al., 2016, 2018).
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Train Dev Test

Total #questions 1151 117 121
Total #question-facts 1531 157 165
Avg. # spans 1.43 1.46 1.45
Avg. # relations 3.31 2.45 2.45

Table 2: Statistics of the train/dev/test split of the KGD
dataset. The #question-fact pairs is higher than #ques-
tions as some questions may be supported by multiple
facts. The average statistic computes the average num-
ber of unique spans and relations per question-fact pair.

dataset contains examples of the form {question,
fact, spans, relations}, where each span is a sub-
string of the input fact, and relations are the set
of valid relations between the span and the correct
answer (examples in Table 1 and stats in Table 2).

4 Knowledge-Gap Guided QA: GapQA

We first introduce the notation used to describe our
QA system. For each question q and fact f , the
selected span is given by s and the set of valid re-
lations between this span and the correct choice
is given by r. Borrowing notation from Open-
BookQA, we refer to the question without the an-
swer choices c as the stem qs, i.e., q = qs c. We use
ŝ to indicate the predicted span and r̂ for the pre-
dicted relations. We use qm and fm to represent
the tokens in the question stem and fact respec-
tively. Following the Turk task, our model first
identifies the key span from the fact and then iden-
tifies the relation using retrieved knowledge.

4.1 Key Span Identification Model
Since the span selected from the fact often tends
to be the answer to the question (c.f. Table 1), we
can use a reading comprehension model to iden-
tify this span. The fact serves as the input passage
and the question stem as the input question to the
reading comprehension model. We used the Bi-
Directional Attention Flow (BiDAF) model (Seo
et al., 2017), an attention-based span prediction
model designed for the SQuAD RC dataset (Ra-
jpurkar et al., 2016). We refer the reader to the
original paper for details about the model.

4.2 Knowledge Retrieval Module
Given the predicted span, we retrieve knowl-
edge from two sources: triples from Concept-
Net (Speer et al., 2017) and sentences from ARC
corpus (Clark et al., 2018). ConceptNet con-
tain (subject, relation, object) triples with relations
such as /r/IsA, /r/PartOf that closely align with the

relations in our gaps. Since ConceptNet can be in-
complete or vague (e.g. /r/RelatedTo relation), we
also use the ARC corpus of 14M science-relevant
sentences to improve our recall.

Tuple Search. To find relevant tuples connect-
ing the predicted span ŝ to the answer choice ci,
we select tuples where at least one token6 in the
subject matches ŝ and at least one token in the ob-
ject matches ci (or vice versa). We then score each
tuple t using the Jaccard score7 and pick the top k
tuples for each ci (k = 5 in our experiments).

Text Search. To find the relevant sentences for
ŝ and ci, we used ElasticSearch8 with the query:
ŝ + ci (refer to Appendix D for more details).
Similar to ConceptNet, we pick top 5 sentences
for each answer choice. To ensure a consistent
formatting of all knowledge sources, we convert
the tuples into sentences using few hand-defined
rules(described in Appendix C). Finally all the re-
trieved sentences are combined to produce the in-
put KB for the model, K.

4.3 Question Answering Model

The question answering model takes as input the
question qs, answer choices c, fact f , predicted
span, ŝ and retrieved knowledge K. We use 300-
dimensional 840B GloVe embeddings (Penning-
ton et al., 2014) to embed each word in the in-
puts. We use a Bi-LSTM with 100-dimensional
hidden states to compute the contextual encodings
for each string, e.g., Ef ∈ Rfm×h. The question
answering model selects the right answer using
two components: (1) Fact Relevance module (2)
Relation Prediction module.

Fact Relevance. This module is motivated by
the intuition that a relevant fact will often capture a
relation between concepts that align with the ques-
tion and the correct answer (the cyan and magenta
regions in Figure 2). To deal with the gaps be-
tween these concepts, this module relies purely on
word embeddings while the next module will fo-
cus on using external knowledge.

We compute a question-weighted and answer-
weighted representation of the fact to capture the
part of the fact that links to the question and an-
swer respectively. We compose these fact-based

6We use lower-cased, stemmed, non-stopword tokens.
7score(t) = jacc(tokens(t), tokens(ŝ + ci)) where jacc(w1,

w2) = w1∩w2
w1∪w2

8https://www.elastic.co/products/elasticsearch
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representations to then identify how well the an-
swer choice is supported by the fact.

To calculate the question-weighted fact repre-
sentation, we first identify facts words with a high
similarity to some question word (Vqs(f)) using
the attention weights: Aqs,f = Eqs · Ef ∈ Rqm×fm

Vqs(f) = softmaxfm

(
max
qm
Aqs,f

)
∈ R1×fm

The final attention weights are similar to the
Query-to-Context attention weights in BiDAF.
The final question-weighted representation is:

Sqs(f) = Vqs(f) · Ef ∈ R1×h (1)

We similarly compute the choice-weighted repre-
sentation of fact as Sci(f). We compose these
two representations by averaging9 these two vec-
tors Sqsci(f) = (Sqs(f) + Sci(f))/2. We finally
score the answer choice by comparing this rep-
resentation with the aggregate fact representation,
obtained by averaging too, as:

scoref (ci) = FF
(⊗

(Sqsci(f), avg(Ef )
)

where
⊗

(x, y) = [x−y;x∗y] ∈ R1×2h and FF is
a feedforward neural network that outputs a scalar
score for each answer choice.

Filling the Gap: Relation Prediction. The re-
lation prediction module uses the retrieved knowl-
edge to focus on the Fact-to-Answer gap by first
predicting the relation between ŝ and ci and then
compose it with the fact to score the choice.
We first compute the span and choice weighted
representation(R1×h) for each sentence kj in K
using the same operations as above:

Sŝ(kj) = Vŝ(kj) · Ekj ; Sci(kj) = Vci(kj) · Ekj

These representations capture the contextual em-
beddings of the words in the kj that most closely
resemble words in ŝ and ci respectively. We pre-
dict the kb-based relation between them based on
the composition of these representations :

Rj(ŝ, ci) = FF
(⊗

(Sŝ(kj),Sci(kj))
)
∈ R1×h

We pool the relation representations from all the
KB facts into a single prediction by averaging, i.e.
R(ŝ, ci) = avgj Rj(ŝ, ci).

9We found this simple composition function performed
better than other composition operations.

Relation Prediction Score. We first identify the
potential relations that can be composed with the
fact, given the question, e.g., in Figure 1, we
can compose the fact with (steel spoon; made of ;
metal) relation but not (metal; made of ; ions). We
compose an aggregate representation of the ques-
tion and fact encoding to capture this information:

D(qs, f) =
⊗

(max
qm
Eqs ,max

fm
Ef ) ∈ R1×2h

We finally score the answer choice based on this
representation and the relation representation:

scorer(ci) = FF ([D(qs, f);R(ŝ, ci)])

The final score for each answer choice is com-
puted by summing the fact relevance and rela-
tion prediction based scores i.e. score(ci) =
scoref (ci) + scorer(ci). The final architecture of
our QA model is shown in Figure 6.

4.4 Model Training
We use cross-entropy loss between the predicted
answer scores ĉ and the gold answer choice c̄.
Since we also have labels on the true relations be-
tween the gold span and the correct answer choice,
we introduce an auxiliary loss to ensure the pre-
dicted relation R corresponds to the true relation
between s and ci. We use a single-layer feed-
forward network to project R(s, ci) into a vector
r̂i ∈ R1×l where l is the number of relations.
Since multiple relations can be valid, we create
an n-hot vector representation r̄ ∈ R1×l where
r̄[k] = 1 if rk is a valid relation.

We use binary cross-entropy loss between the
r̂i and r for the correct answer choice. For the
incorrect answer choice, we do not know if any
of the unselected relations(i.e. where r[k] = 0)
hold. But we do know that the relations selected
by Turkers for the correct answer choice should
not hold for the incorrect answer choice. To cap-
ture this, we compute the binary cross entropy loss
between r̂i and 1 − r for the incorrect answer
choices but ignore the unselected relations.

Finally, the loss for each example, assuming ci
is the correct answer, is given as loss = ce(ĉ, c̄) +
λ·
(
bce(r̂i, r̄)+

∑
j 6=imbce(r̂j , 1−r̄, r̄)

)
, where ce

is cross-entropy loss, bce is binary cross-entropy
loss, and mbce is masked binary cross entropy
loss, where unselected relations are masked.

We further augment the training data with ques-
tions in the OBQA-Short dataset using the pre-
dicted spans and ignoring the relation loss. Also,
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Figure 6: Overall architecture of the KGG question-
answering model for each answer choice. The green
nodes are the input to the model and the blue nodes are
the model outputs that the losses are computed against.
The model uses BiDAF to predict the key spans and re-
trieves KB facts based on the span and the input choice.

we assume the labelled core fact in the Open-
BookQA dataset provides the partial knowledge
needed to answer these questions.

Implementation details and parameter settings
are deferred to Appendix B. A sample visualiza-
tion of the attentions and knowledge used in the
model are provided in Figure 10 in the Appendix.

5 Experimental Results

We present results of our proposed model,
GapQA, on two question sets: (a) those with short
answers,10 OBQA-Short (290 test questions), and
(b) the complete set, OBQA-Full (500 test ques-
tions). As we mentioned before, OBQA-Short
subset is likely to have Fact-to-Answer gaps that
can be targeted by our approach and we therefore
expect larger and more meaningful gains on this
subset.

5.1 Key Span Identification

We begin by evaluating three training strategies for
the key span identification model, using the anno-
tated spans in KGD for training. As seen in Ta-
ble 3, the BiDAF model trained on the SQuAD
dataset (Rajpurkar et al., 2016) performs poorly on
our task, likely due to the different question style
in OpenBookQA. While training on KGD (from
scratch) substantially improves accuracy, we ob-
serve that using KGD to fine-tune BiDAF pre-
trained on SQuAD results in the best F1 (78.55)
and EM (63.99) scores on the Dev set. All subse-
quent experiments use this fine-tuned model.

10Answers with at most two non-stopword tokens.

Training Data Dev F1 Dev EM

SQuAD 54.67 41.40
KGD 72.99 58.60
SQuAD + KGD (tuning) 78.55 63.69

Table 3: BiDAF model performance on the span pre-
diction task, under different choices of training data

5.2 OpenBookQA Results

We compare with three previous state-of-the-art
models reported by Mihaylov et al. (2018). Two
of these are Knowledge-free models (also re-
ferred to as No Context Baselines (Chen and Dur-
rett, 2019)): (a) Question-to-Choice (Q2Choice)
computes attention between the question and
the answer choice, (b) ESIM + ELMo, uses
ESIM (Chen et al., 2017) with ELMo (Peters
et al., 2018) embeddings to compute question-
choice entailment. The third is Knowledge En-
hanced Reader (KER), which uses the core fact
(f) and knowledge retrieved from ConceptNet to
compute cross-attentions between the question,
knowledge, and answer choices.

For knowledge, we consider four sources: (1)
ConceptNet (CN), the English subset of Con-
ceptNet v5.6.0 tuples;11 (2) WordNet, the Word-
Net subset of ConceptNet used by Mihaylov et al.
(2018); (3) OMCS, the Open Mind Common
Sense subset of ConceptNet used by Mihaylov
et al. (2018); and (4) ARC, with 14M science-
relevant sentences from the AI2 Reasoning Chal-
lenge dataset (Clark et al., 2018).

Following OpenBookQA, we train each model
five times using different random seeds, and report
the average score and standard deviation (without
Bessel’s correction) on the test set. For simplic-
ity and consistency with prior work, we report one
std. dev. from the mean using the µ± σ notation.

We train our model on the combined KGD and
OBQA-Short question set with full supervision on
examples in KGD and only QA supervision (with
predicted spans) on questions in OBQA-Short. We
train the baseline approaches on the entire ques-
tion set as they have worse accuracies on both the
sets when trained on the OBQA-Short subset. We
do not use our annotations for any of the test eval-
uations. We use the core fact provided by the orig-
inal dataset and use the predicted spans from the
fine-tuned BiDAF model.

We present the test accuracies on the two ques-

11https://github.com/commonsense/conceptnet5/wiki
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Model OBQA-Short OBQA-Full
Q2Choice 47.10 ± 1.5 49.64 ± 1.3
ESIM + ELMo 45.93 ± 2.6 49.96 ± 2.5
KER (only f) 57.93 ± 1.4 55.80 ± 1.8
KER (f + WordNet) 54.83 ± 2.5 55.84 ± 1.7
KER (f + OMCS) 49.65 ± 2.0 52.50 ± 0.8
GapQA (f + KB) [Ours] 64.41 ± 1.8* 59.40 ± 1.3*

Table 4: Test accuracy on the the OBQA-Short subset
and OBQA-Full dataset assuming core fact is given. ∗
denotes the results are statistically significantly better
than all the baselines (p≤0.05, based on Wilson score
intervals (Wilson, 1927)).

tion sets in Table 4. On the targeted OBQA-
Short subset, our proposed GapQA improves sta-
tistically significantly over the partial knowledge
baselines by 6.5% to 14.4%. Even though the full
OpenBookQA dataset contains a wider variety of
questions not targeted by GapQA, we still see an
improvement of 3+% relative to prior approaches.

It is worth noting that recent large-scale lan-
guage models (LMs) (Devlin et al., 2019; Radford
et al., 2018) have now been applied on this task,
leading to improved state-of-the-art results (Sun
et al., 2018; Banerjee et al., 2019; Pan et al., 2019).
However, our knowledge-gap guided approach to
QA is orthogonal to the underlying model. Com-
bining these new LMs with our approach is left to
future work.

Effect of input knowledge. Since the baseline
models use different knowledge sources as input,
we evaluate the performance of our model us-
ing the same knowledge as the baselines.12 Even
when our model is given the same knowledge, we
see an improvement by 5.9% and 11.3% given
only WordNet and OMCS knowledge respectively.
This shows that we can use the available knowl-
edge, even if limited, more effectively than previ-
ous methods. When provided with the full Con-
ceptNet knowledge and large-scale text corpora,
our model is able to exploit this additional knowl-
edge and improve further by 4%.

5.3 Ablations
We next evaluate key aspects of our model in an
ablation study, with average accuracies in Table 6.

No Annotations (No Anns): We ignore all col-
lected annotations (span, relation, and fact) for
training the model. We use the BiDAF(SQuAD)
model for span prediction, and only the question

12The baselines do not scale to large scale corpora and so
can not be evaluated against our knowledge sources.

Knowledge Source Model OBQA-Short

f + WordNet KER 54.83 ± 2.5
GapQA 60.69 ± 1.1*

f + OMCS KER 49.65 ± 2.0
GapQA 60.90 ± 2.4*

f + CN + ARC GapQA 64.41 ± 1.8

Table 5: Test accuracy on the OBQA-Short subset with
different sources of knowledge. ∗ denotes the results
are statistically significantly better than the correspond-
ing KER result (p≤0.05, based on Wilson score inter-
vals (Wilson, 1927)).

Model OBQA-Short ∆

GapQA 64.41 ± 1.8 —
No Annotations 58.90 ± 1.9 5.51
Heuristic Span Anns. 61.38 ± 1.5 3.03
No Relation Score 60.48 ± 1.1 3.93
No Spans (Model) 62.14 ± 2.1 2.27
No Spans (IR) 61.79 ± 1.0 2.62

Table 6: Average accuracy of various ablations, show-
ing that each component of GapQA has an important
role. No Annotations = Ignore Span & Relation An-
notations, Heuristic Span Anns = Heuristically predict
span annotations (no human annotations), No Relation
Score = Ignore the relation-based score (scorer), No
Spans (Model) = Ignore the span (use entire fact) to
compute span-weighted representations, No Spans (IR)
= Ignore the span (use entire fact) for retrieval.

answering loss for the QA model trained on the
OBQA-Short subset.13 Due to the noisy spans
produced by the out-of-domain BiDAF model, this
model performs worse that the full GapQA model
by 5.5% (comparable performance to the KER
models). This shows that our model does utilize
the human annotations to improve on this task.

Heuristic Span Annotations: We next ask
whether some of the above loss in accuracy can
be recovered by heuristically producing the spans
for training—a cost-effective alternative to human
annotations. We find the longest subsequence of
tokens (ignoring stop words) in f that is not men-
tioned in q and assume this span (including the
intermediate stop words) to be the key term. To
prevent noisy key terms, we only consider a sub-
set of questions where 60% of the non-stopword
stemmed tokens in f are covered by q. We fine-
tune the BiDAF(SQuAD) model on this subset and
then use it to predict the spans on the full set.14

13Model still predicts the latent relation representation.
14We use the questions from the KGD + OBQA-Short set.

Note we are only evaluating the impact of heuristic spans
compared to human-authored spans, but assume that we have
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Question Fact Predicted
Answer Reason

What vehicle would you use to travel on
the majority of the surface of the planet
on which we live? (A) Bike (B) Boat
(C) Train (D) Car

oceans cover 70% of the
surface of the earth

Bike Predicted the wrong span “70%”.

What contains moons? (A) ships
(B)space mass (C) people (D) plants

the solar system contains
the moon

ships Scores the relation for the incorrect
answer higher because of the facts
connecting “systems” and “ships”.

Cocoon creation occurs (A) after the
caterpillar stage (B) after the chrysalis
stage (C) after the eggs are laid (D) after
the cocoon emerging stage

the cocoons being cre-
ated occurs during the
pupa stage in a life cycle

after the
chrysalis
stage

Does not model the complex relation
(temporal ordering) between the key
span: “pupa stage” and “caterpillar
stage”. Instead it predicts “chrysalis”
due to the synonymy with “pupa”.

Table 7: Sample errors made by the GapQA on questions from the OBQA-Short dataset. The correct answers are
marked in bold within the question.

We train GapQA model on this dataset without
any relation labels (and associated loss). This sim-
ple heuristic leads to a 3% drop compared to hu-
man annotations, but still out-performs previous
approaches on this dataset, showing the value of
the gap-based QA approach.

No Relation Score: We ignore the entire
relation-based score (scorer) in the model and
only rely on the fact-relevance score. The drop
in score by 3.9% shows that the fact alone is not
sufficient to answer the question using our model.

No Spans (Model): We ignore the spans in the
model, i.e., we use the entire fact to compute the
span-based representation Sŝ(kj). In effect, the
model is predicting the gap between the entire fact
and answer choice.15 We see a drop of ∼2%,
showing the value of spans for gap prediction.

No Spans (IR): Ignoring the span for retrieval,
the knowledge is retrieved based on the entire fact
(full GapQA model is used). The drop in accuracy
by 2.6% shows the value of targeted knowledge-
gap based retrieval.

5.4 Error Analysis
We further analyzed the performance of GapQA
on 40 incorrectly answered questions from the dev
set in the OBQA-Short dataset. Table 7 shows a
few error examples. There were three main classes
of errors:
Incorrect predicted spans (25%) often due to
complex language in the fact or the Question-to-
Fact gap needed to accurately identify the span.
Incorrect relation scores (55%) due to distract-
ing facts for the incorrect answer or not finding

good quality partial context as provided in KGD.
15Retrieval is still based on the span and we ignore the re-

lation prediction loss.

relevant facts for the correct answer, leading to an
incorrect answer scoring higher.

Out-of-scope gap relations (20%) where the
knowledge gap relations are not handled by our
model such as temporal relations or negations
(e.g., is not made of).

Future work in expanding the dataset, incor-
porating additional relations, and better retrieval
could mitigate these errors.

6 Conclusion

We focus on the task of question answering un-
der partial knowledge: a novel task that lies in-
between open-domain QA and reading compre-
hension. We identify classes of knowledge gaps
when reasoning under partial knowledge and col-
lect a dataset targeting one common class of
knowledge gaps. We demonstrate that identify-
ing the knowledge gap first and then reasoning by
filling this gap outperforms previous approaches
on the OpenBookQA task, with and even with-
out additional missing fact annotation. This work
opens up the possibility of focusing on other kinds
of knowledge gaps and extending this approach to
other datasets and tasks (e.g., span prediction).
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A Annotating Gaps: Data Collection

We first identify relevant facts for questions and
then collect annotations for fact-answer gap, given
the relevant fact. However, straightforward ap-
proaches to annotate all questions led to noisy la-
bels. To improve annotation quality, we identified
question subsets most suitable for this task and
split the fact-answer gap annotation into two steps.

Fact Relevance. The OpenBookQA dataset pro-
vides the core science fact used to create the ques-
tion. However, in 20% of the cases, while the core
science fact inspired the question, it is not needed
to answer the question (Mihaylov et al., 2018). We
also noticed that often multiple facts from the open
book can be relevant for a question. So we first
create an annotation task to identify the relevant
facts from a set of retrieved facts. Also to ensure
that there is a gap between the fact and the correct
answer, we select facts that have no word over-
lap with the correct choice or have overlap with
multiple answer choices. This ensures that the fact
alone can not be trivially used to answer the ques-
tion.

We ask Turkers to annotate these retrieved facts
as (1) are they relevant to the question and (2) if
relevant, do they point to a unique answer. We
introduced the second category after noticing that
some generic facts can be relevant but not point to
a specific answer making identifying the knowl-
edge gap impossible. E.g. The fact: “evaporation
is a stage in the water cycle process” only elim-
inates one answer option from “The only stage
of the water cycle process that is nonexistent is
(A) evaporation (B) evaluation (C) precipitation
(D) condensation”. For each question, we selected
facts that were marked as relevant and unique by
at least two out of three turkers.

Knowledge Gap. In the second round of data
collection, we asked Turkers to write the facts
connecting the relevant fact to the correct answer
choice. We restricted this task to Masters level
Turkers with 95% approval rating and 5000 ap-
proved hits. However, we noticed that crowd-
source workers would often re-state part of the
knowledge mentioned in the original fact or di-
rectly connect the question to the answer. This
issue was also mentioned by the authors of Open-
BookQA who also noticed that the additional facts
were ”noisy (incomplete, over-complete, or only
distantly related)” (Mihaylov et al., 2018). E.g.

for the question: “In the desert, a hawk may en-
joy an occasional (A) coyote (B) reptile (C) bat
(D) scorpion“ and core fact: “hawks eat lizards”,
one of the turk-authored additional fact: “Hawks
hunt reptiles which live in the desert” is sufficient
to answer the question on its own.

We also noticed that questions with long answer
choices often have multiple fact-answer gaps lead-
ing to complex annotations, e.g. “tracking time”
helps with “measuring how many marshmallows I
can eat in 10 minutes”. Collecting knowledge gaps
for such questions and common-sense knowledge
to capture these gaps are interesting directions of
future research. We instead focus on questions
where the answer choices have at most two non-
stopword tokens. We refer to this subset of ques-
tions in OpenBookQA as OBQA-Short, which still
forms more than 50% of the OpenBookQA set.
This subset also forms the target question set of
our approach.

Further to simplify this task, we broke the task
of identifying the required knowledge into two
steps (shown in Figure 7 in Appendix): (1) iden-
tify key terms in the core fact that could answer the
question, and (2) identify the relationship between
these terms and the correct answer choice. For key
terms, we asked the Turkers to select spans from
the core fact itself, to the extent possible. For the
relation identification, we provided a list of rela-
tions and asked them to select all the relations that
hold between the key term and the correct choice
but do not hold for the incorrect answer choices.
Based on our analysis, we picked nine most com-
mon relations: {causes, definedAs, enables, isa,
located in, made of, part of, provides, synonym
of} and their inverses (except synonymy).16 If
none of these relations were valid, they were al-
lowed to enter the relation in a text box.

We note that the goal of this effort was to collect
supervision for a subset of questions to guide the
model and show the value of minimal annotation
on this task. We believe our approach can be use-
ful to collect annotations on other question sets as
well, or can be used to create a challenge dataset
for this sub-task. Moreover, the process of col-
lecting this data revealed potential issues with col-
lecting annotations for knowledge gaps and also
inspired the design of our two-step QA model.

16These relations were also found to be important by prior
approaches (Clark et al., 2014; Khashabi et al., 2016; Jansen
et al., 2016, 2018) in the science domain.
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Figure 7: Interface provided to Turkers to annotate the missing fact. Entering the answer span from the fact,
metal, in this example, automatically populates the interface with appropriate statements. The valid statements are
selected by Turkers and capture the knowledge gap.

Figure 8: Basic Instructions for the task
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Figure 9: Instructions for complex examples
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Question: 

What boils at the boiling point? 
(A) Kool-Aid (B) Cotton (C) Paper towel (D) Hair

Fact:

boiling point means temperature above which a liquid boils

Figure 10: Visualization of the models behavior with the predicted span, top predicted relation, and the top fact
used by model. The heat map shows the confidence of the model for all the relations for each input sentence (first
five) and ConceptNet sentencized tuple (last but one) and the back-off tuple (last one) to capture the knowledge in
the embeddings.

B Implementation Details

We implement all our models in Pytorch (Paszke
et al., 2017) using the AllenNLP (Gardner et al.,
2017) toolkit. We also used the AllenNLP im-
plementation of the BiDAF model for span pre-
diction. We use 300D 840B Glove (Pennington
et al., 2014) embeddings and use 200 dimensional
hidden representations for the BiLSTM shared be-
tween all inputs (each direction uses 100 dimen-
sional hidden vectors). We use 100 dimensional
representations for the relation prediction, Rj .
Each feedforward network, FF is a 2-layer net-
work with relu activation, 0.5 dropout (Srivastava
et al., 2014), 200 hidden dimensions on the first
layer and no dropout on the output layer with lin-
ear activation. We use a variational dropout (Gal
and Ghahramani, 2016) of 0.2 in all the BiL-
STMs. The relation prediction loss is scaled by
λ = 1. We used the Adam (Kingma and Ba,
2015) optimization with initial lr = 0.001 and
a learning rate scheduler that halves the learn-
ing rate after 5 epochs of no change in QA ac-
curacy. We tuned the hyper-parameters and per-
formed early stopping based on question answer-
ing accuracy on the validation set. Specifically,
we considered {50, 100, 200} dimensional repre-
sentations, λ ∈ {0.1, 1, 10}, retrieving {10, 20}
knowledge tuples and {[x - y; x*y], [x, y]} com-
bination functions for

⊗
during the development

of the model. The baseline models were devel-
oped for this dataset using hyper-parameter tun-

ing; we do not perform any additional tuning. Our
model code and pre-trained models are available
at https://github.com/allenai/missing-fact.

C ConceptNet sentences

Given a tuple t = (s, v, o), the sentence form is
generated as “s is split(v) o” where split(v) splits
the ConceptNet relation v into a phrase based on
its camel-case notation. For example, (belt buckle,
/r/MadeOf, metal) would be converted into “belt
buckle is made of metal”.

D Text retrieval

For each span ŝ and answer choice ci, we query
an ElasticSearch 17 index on the input text corpus
with the “ŝ + ci” as the query. We also require
the matched sentence must contain both the span
and the answer choice. We filter long sentences
(>300 characters), sentences with negation and
noisy sentences18 from the retrieved sentences.

17https://www.elastic.co/
18Sentences are considered clean if they contain alpha-

numeric characters with standard punctuation, start with an
alphabet or a number, are single sentence and only uses hy-
phens in hyphenated word pairs


