
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4610–4619
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

4610

Disfluency Detection using Auto-Correlational Neural Networks
Paria Jamshid Lou

Macquarie University
Sydney, Australia

paria.jamshid-lou@hdr.mq.edu.au

Peter Anderson
Macquarie University

Sydney, Australia
p.anderson@mq.edu.au

Mark Johnson
Macquarie University

Sydney, Australia
mark.johnson@mq.edu.au

Abstract

In recent years, the natural language process-
ing community has moved away from task-
specific feature engineering, i.e., researchers
discovering ad-hoc feature representations for
various tasks, in favor of general-purpose
methods that learn the input representation
by themselves. However, state-of-the-art ap-
proaches to disfluency detection in sponta-
neous speech transcripts currently still de-
pend on an array of hand-crafted features, and
other representations derived from the output
of pre-existing systems such as language mod-
els or dependency parsers. As an alterna-
tive, this paper proposes a simple yet effec-
tive model for automatic disfluency detection,
called an auto-correlational neural network
(ACNN). The model uses a convolutional neu-
ral network (CNN) and augments it with a new
auto-correlation operator at the lowest layer
that can capture the kinds of “rough copy”
dependencies that are characteristic of repair
disfluencies in speech. In experiments, the
ACNN model outperforms the baseline CNN
on a disfluency detection task with a 5% in-
crease in f-score, which is close to the previous
best result on this task.

1 Introduction

Disfluency informally refers to any interruptions
in the normal flow of speech, including false starts,
corrections, repetitions and filled pauses. Shriberg
(1994) defines three distinct parts of a speech dis-
fluency, referred to as the reparandum, interreg-
num and repair. As illustrated in Example 1, the
reparandum to Boston is the part of the utterance
that is replaced, the interregnum uh, I mean (which
consists of a filled pause uh and a discouse marker
I mean) is an optional part of a disfluent struc-
ture, and the repair to Denver replaces the reparan-
dum. The fluent version is obtained by removing
reparandum and interregnum words although dis-

fluency detection models mainly deal with identi-
fying and removing reparanda. The reason is that
filled pauses and discourse markers belong to a
closed set of words and phrases and are trivial to
detect (Johnson and Charniak, 2004).

I want a flight

reparandum︷ ︸︸ ︷
to Boston,

uh, I mean︸ ︷︷ ︸
interregnum

to Denver︸ ︷︷ ︸
repair

on Friday (1)

In disfluent structures, the repair (e.g., to Den-
ver) frequently seems to be a “rough copy” of
the reparandum (e.g., to Boston). In other words,
they incorporate the same or very similar words
in roughly the same word order. In the Switch-
board training set (Godfrey and Holliman, 1993),
over 60% of the words in the reparandum are exact
copies of words in the repair. Thus, this similarity
is strong evidence of a disfluency that can help the
model detect reparanda (Charniak and Johnson,
2001; Johnson and Charniak, 2004). As a result,
models which are able to detect “rough copies” are
likely to perform well on this task.

Currently, state-of-the-art approaches to disflu-
ency detection depend heavily on hand-crafted
pattern match features, specifically designed to
find such “rough copies” (Zayats et al., 2016;
Jamshid Lou and Johnson, 2017). In contrast
to many other sequence tagging tasks (Plank
et al., 2016; Yu et al., 2017), “vanilla” convo-
lutional neural networks (CNNs) and long short-
term memory (LSTM) models operating only on
words or characters are surprisingly poor at disflu-
ency detection (Zayats et al., 2016). As such, the
task of disfluency detection sits in opposition to
the ongoing trend in NLP away from task-specific
feature engineering — i.e., researchers discov-
ering ad-hoc feature representations for various
tasks — in favor of general-purpose methods that
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learn the input representation by themselves (Col-
lobert and Weston, 2008).

In this paper, we hypothesize that LSTMs and
CNNs cannot not easily learn “rough copy” depen-
dencies. We address this problem in the context
of a CNN by introducing a novel auto-correlation
operator. The resulting model, called an auto-
correlational neural network (ACNN), is a gener-
alization of a CNN with an auto-correlation oper-
ator at the lowest layer. Evaluating the ACNN in
the context of disfluency detection, we show that
introducing the auto-correlation operator increases
f-score by 5% over a baseline CNN. Furthermore,
the ACNN — operating only on word inputs —
achieves results which are competitive with much
more complex approaches relying on hand-crafted
features and outputs from pre-existing systems
such as language models or dependency parsers.
In summary, the main contributions of this paper
are:

• We introduce the auto-correlational neural
network (ACNN), a generalization of a CNN
incorporating auto-correlation operations,

• In the context of disfluency detection, we
show that the ACNN captures important
properties of speech repairs including “rough
copy” dependencies, and

• Using the ACNN, we achieve competitive re-
sults for disfluency detection without rely-
ing on any hand-crafted features or other rep-
resentations derived from the output of pre-
existing systems.

2 Related Work

Approaches to disfluency detection task fall into
three main categories: noisy channel mod-
els, parsing-based approaches and sequence
tagging approaches. Noisy channel models
(NCMs) (Johnson and Charniak, 2004; Johnson
et al., 2004) use complex tree adjoining grammar
(TAG) (Shieber and Schabes, 1990) based chan-
nel models to find the “rough copy” dependencies
between words. The channel model uses the sim-
ilarity between the reparandum and the repair to
allocate higher probabilities to exact copy reparan-
dum words. Using the probabilities of TAG chan-
nel model and a bigram language model (LM)
derived from training data, the NCM generates
n-best disfluency analyses for each sentence at

test time. The analyses are then reranked us-
ing a language model which is sensitive to the
global properties of the sentence, such as a syn-
tactic parser based LM (Johnson and Charniak,
2004; Johnson et al., 2004). Some works have
shown that rescoring the n-best analyses with ex-
ternal n-gram (Zwarts and Johnson, 2011) and
deep learning LMs (Jamshid Lou and Johnson,
2017) trained on large speech and non-speech cor-
pora, and using the LM scores along with other
features (i.e. pattern match and NCM ones) into a
MaxEnt reranker (Johnson et al., 2004) improves
the performance of the baseline NCM, although
this creates complex runtime dependencies.

Parsing-based approaches detect disfluencies
while simultaneously identifying the syntactic
structure of the sentence. Typically, this is
achieved by augmenting a transition-based de-
pendency parser with a new action to detect and
remove the disfluent parts of the sentence and
their dependencies from the stack (Rasooli and
Tetreault, 2013; Honnibal and Johnson, 2014;
Yoshikawa et al., 2016). Joint parsing and disflu-
ency detection can compare favorably to pipelined
approaches, but requires large annotated tree-
banks containing both disfluent and syntatic struc-
tures for training.

Our proposed approach, based on an auto-
correlational neural network (ACNN), belongs to
the class of sequence tagging approaches. These
approaches use classification techniques such as
conditional random fields (Liu et al., 2006; Os-
tendorf and Hahn, 2013; Zayats et al., 2014; Fer-
guson et al., 2015), hidden Markov models (Liu
et al., 2006; Schuler et al., 2010) and deep learn-
ing based models (Hough and Schlangen, 2015;
Zayats et al., 2016) to label individual words as
fluent or disfluent. In much of the previous work
on sequence tagging approaches, improved per-
formance has been gained by proposing increas-
ingly complicated labeling schemes. In this case, a
model with begin-inside-outside (BIO) style states
which labels words as being inside or outside of
edit region1 is usually used as the baseline se-
quence tagging model. Then in order to come
up with different pattern matching lexical cues
for repetition and correction disfluencies, they ex-
tend the baseline state space with new explicit re-
pair states to consider the words at repair region,
in addition to edit region (Ostendorf and Hahn,

1For state labels, edit corresponds to reparandum.
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2013; Zayats et al., 2014, 2016). A model which
uses such labeling scheme may generate illegal la-
bel sequences at test time. As a solution, integer
linear programming (ILP) constraints are applied
to the output of classifier to avoid inconsisten-
cies between neighboring labels (Georgila, 2009;
Georgila et al., 2010; Zayats et al., 2016). This
contrasts with our more straightforward approach,
which directly labels words as being fluent or dis-
fluent, and does not require any post-processing or
annotation modifications.

The most similar work to ours is recent work
by Zayats et al. (2016) that investigated the per-
formance of a bidirectional long-short term mem-
ory network (BLSTM) for disfluency detection.
Zayats et al. (2016) reported that a BLSTM op-
erating only on words underperformed the same
model augmented with hand-crafted pattern match
features and POS tags by 7% in terms of f-score.
In addition to lexically grounded features, some
works incorporate prosodic information extracted
from speech (Kahn et al., 2005; Ferguson et al.,
2015; Tran et al., 2018). In this work, our primary
motivation is to rectify the architectural limitations
that prevent deep neural networks from automat-
ically learning appropriate features from words
alone. Therefore, our proposed model eschews
manually engineered features and other represen-
tations derived from dependency parsers, language
models or tree adjoining grammar transducers that
are used to find “rough copy” dependencies. In-
stead, we aim to capture these kinds of dependen-
cies automatically.

3 Convolutional and Auto-Correlational
Networks

In this section, we introduce our proposed
auto-correlation operator and the resulting auto-
correlational neural network (ACNN) which is the
focus of this work.

A convolutional or auto-correlational network
computes a series of h feature representations
X(0), X(1), . . . , X(h), where X(0) is the input
data, X(h) is the final (output) representation, and
each non-input representation X(k) for k > 0,
is computed from the preceding representation
X(k−1) using a convolution or auto-correlation op-
eration followed by an element-wise non-linear
function.

Restricting our focus to convolutions in one
dimension, as used in the context of language

processing, each representation X(k) is a ma-
trix of size (n,mk), where n is the number of
words in the input and mk is the feature dimen-
sion of representation k, or equivalently it can be
viewed as a sequence of n row vectors X(k) =

(x
(k)
1 , . . . ,x

(k)
n ), where x

(k)
t is the row vector of

length mk that represents the tth word at level k.
Consistent with the second interpretation, the

input representation X(0) = (x
(0)
1 , . . . ,x

(0)
n ) is a

sequence of word embeddings, where m0 is the
length of the embedding vector and x

(0)
t is the

word embedding for the tth word.
Each non-input representation X(k), k > 0 is

formed by column-wise stacking the output of
one or more convolution or auto-correlation oper-
ations applied to the preceding representation, and
then applying an element-wise non-linear func-
tion. Formally, we define:

Y (k) =
(
F (k,1)(X(k−1)); . . . ;F (k,mk)(X(k−1))

)
X(k) =N (k)(Y (k)) (2)

where F (k,u) is the uth operator applied at layer
k, and N (k) is the non-linear operation applied at
layer k. Each operator F (k,u) (either convolution
or auto-correlation) is a function from X(k−1),
which is a matrix of size (n,mk−1), to a vector
of length n. A network that employs only con-
volution operators is a convolutional neural net-
work (CNN). We call a network that utilizes a mix-
ture of convolution and auto-correlation operators
an auto-correlational neural network (ACNN). In
our networks, the non-linear operation N (k) is
always element-wise ReLU , except for the last
layer, which uses a softmax non-linearity.

3.1 Convolution Operator

A one-dimensional convolution operation maps an
input matrix X = (x1, . . . ,xn), where each xt is
a row vector of length m, to an output vector y
of length n. The convolution operation is defined
by a convolutional kernel A, which is applied to
a window of words to produce a new output rep-
resentation, and kernel width parameters ` and r,
which define the number of words to the left and
right of the target word included in the convolu-
tional window. For example, assuming appropri-
ate input padding where necessary, element yt in
the output vector y is computed as:

yt = A ·Xi:j + b (3)
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Figure 1: Cosine similarity between word embedding
vectors learned by the ACNN model for the sentence “I
know they use that I mean they sell those” (with disflu-
ent words highlighted). In the figure, darker shades de-
note higher cosine values. “Rough copies” are clearly
indicated by darkly shaded diagonals, which can be de-
tected by our proposed auto-correlation operator.

where

A is a learned convolutional kernel of dimension
(`+ r,m),

Xi:j is the sub-matrix formed by selecting rows i
to j from matrix X ,

· is the dot product (a sum over elementwise mul-
tiplications),

i, j are given by i = t − ` and j = t + r, in-
dicating the left and right extremities of the
convolutional window effecting element yt,

` > 0 is the left kernel width, and

r > 0 is right kernel width.

b is a learned bias vector of dimension n,

3.2 Auto-Correlation Operator

The auto-correlational operator is a generalisation
of the convolution operator:

yt = A ·Xi:j +B · X̂i:j,i:j + b (4)

where yt, A, X , b, i and j are as in the convolution
operator, and

X̂ is a tensor of size (n, n,m) such that each vec-
tor X̂i,j,: is given by f(xi,xj),

f(u,v) is a binary operation on vectors, such as
the Hadamard or element-wise product (i.e.,
f(u,v) = u ◦ v), and

X̂i:j,i:j is the sub-tensor formed by selecting in-
dices i to j from the first two dimensions of
tensor X̂ ,

B is a learned convolutional kernel of dimension
(`+ r, `+ r,m).

Unlike convolution operations, which are linear,
the auto-correlation operator introduces second-
order interaction terms through the tensor X̂
(since it multiplies the vector representations for
each pair of input words). This naturally encodes
the similarity between input words when applied
at level k = 1 (or the co-activations of multiple
CNN features, if applied at higher levels). As il-
lustrated in Figure 1, blocks of similar words are
indicative of “rough copies”. We provide an il-
lustration of the auto-correlation operation in Fig-
ure 2.

4 Experiments

4.1 Switchboard Dataset
We evaluate the proposed ACNN model for disflu-
ency detection on the Switchboard corpus of con-
versational speech (Godfrey and Holliman, 1993).
Switchboard is the largest available corpus (1.2×
106 tokens) where disfluencies are annotated ac-
cording to Shriberg’s (1994) scheme:

[ reparandum + {interregnum} repair ]

where (+) is the interruption point marking the end
of reparandum and {} indicate optional interreg-
num. We collapse this annotation to a binary clas-
sification scheme in which reparanda are labeled
as disfluent and all other words as fluent. We dis-
regard interregnum words as they are trivial to de-
tect as discussed in Section 1.

Following Charniak and Johnson (2001), we
split the Switchboard corpus into training, dev
and test set as follows: training data consists of
all sw[23]∗.dff files, dev training consists of all
sw4[5-9]∗.dff files and test data consists of all
sw4[0-1]∗.dff files. We lower-case all text and re-
move all partial words and punctuations from the
training data to make our evaluation both harder
and more realistic (Johnson and Charniak, 2004).
Partial words are strong indicators of disfluency;
however, speech recognition models never gener-
ate them in their outputs.
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Figure 2: ACNN overview for labeling the target word “boston”. A patch of words is fed into an auto-correlational
layer. At inset bottom, the given patch of words is convolved with 2D kernels A of different sizes. At inset top,
an auto-correlated tensor of size (n, n,m0) is constructed by comparing each input vector u = xt with the input
vector v = xt′ using a binary function f(u,v). The auto-correlated tensor is convolved with 3D kernels B of
different sizes. Each kernel group A and B outputs a matrix of size (n,m1) (here, we depict only the row vector
relating to the target word “boston”). These outputs are added element-wise to produce the feature representation
that is passed to further convolutional layers, followed by a softmax layer. “E” = disfluent, “ ” = fluent and m0 =
embedding size.

4.2 ACNN and CNN Baseline Models

We investigate two neural network models for dis-
fluency detection; our proposed auto-correlational
neural network (ACNN) and a convolutional neu-
ral network (CNN) baseline. The CNN base-
line contains three convolutional operators (lay-
ers), followed by a width-1 convolution and a soft-
max output layer (to label each input word as ei-
ther fluent or disfluent). The ACNN has the same
general architecture as the baseline, except that we
have replaced the first convolutional operator with
an auto-correlation operator, as illustrated in Fig-
ure 2.

To ensure that equal effort was applied to
the hyperparameter optimization of both models,
we use randomized search (Bergstra and Ben-
gio, 2012) to tune the optimization and architec-
ture parameters separately for each model on the
dev set, and to find an optimal stopping point for
training. This results in different dimensions for
each model. As indicated by Table 1, the result-
ing ACNN configuration has far fewer kernels at
each layer than the CNN. However, as the auto-
correlation kernels contain an additional dimen-
sion, both models have a similar number of param-
eters overall. Therefore, both models should have
similar learning capacity except for their architec-
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tural differences (which is what we wish to investi-
gate). Finally, we note that the resulting maximum
right kernel width r1 in the auto-correlational layer
is 6. As illustrated in Figure 3, this is sufficient
to capture almost all the “rough copies” in the
Switchboard dataset (but could be increased for
other datasets).

Configuration CNN ACNN
embedding dim 290 290

dropout rate 0.51 0.53

L2 regularizer weight 0.13 0.23

#kernels at each layer 570 120

#kernel sizes at each layer 3 2

#words at left context `1 [0,1,4] [5,3]
#words at left context `2 [1,2,3] [4,2]
#words at left context `3 [0,1,2] [3,2]
#words at right context r1 [1,1,4] [6,3]
#words at right context r2 [1,2,4] [5,3]
#words at right context r3 [1,2,3] [4,2]
#parameters 4.9M 4.9M

Table 1: Configuration of the CNN and ACNN mod-
els, where `k refers to the left kernel width at layer k,
and rk refers to the right kernel width at layer k. Both
models have a similar total number of parameters.

For the ACNN, we considered a range of possi-
ble binary functions f(u,v) to compare the input
vector u = xt with the input vector v = xt′ in the
auto-correlational layer. However, in initial exper-
iments we found that the Hadamard or element-
wise product (i.e. f(u,v) = u ◦ v) achieved
the best results. We also considered concatenat-
ing the outputs of kernels A and B in Equation 4,
but we found that element-wise addition produced
slightly better results on the dev set.

4.2.1 Implementation Details

In both models, we use ReLU for the non-linear
operation, all stride sizes are one word and there
are no pooling operations. We randomly initial-
ize the word embeddings and all weights of the
model from a uniform distribution. The bias terms
are initialized to be 1. To reduce overfitting, we
apply dropout (Srivastava et al., 2014) to the in-
put word embeddings and L2 regularization to the
weights of the width-1 convolutional layer. For
parameter optimization, we use the Adam opti-
mizer (Kingma and Ba, 2014) with a mini-batch
size of 25 and an initial learning rate of 0.001.

Figure 3: Distribution over the number of words in
between the reparandum and the interregnum in the
Switchboard training set (indicating the distance be-
tween “rough copies”).

5 Results

As in previous work (Johnson and Charniak,
2004), we evaluate our model using precision, re-
call and f-score, where true positives are the words
in the edit region (i.e., the reparandum words).
As Charniak and Johnson (2001) observed, only
6% of words in the Switchboard corpus are disflu-
ent, so accuracy is not a good measure of system
performance. F-score, on the other hand, focuses
more on detecting “edited” words, so it is more
appropriate for highly skewed data.

Table 2 compares the dev set performance of
the ACNN model against our baseline CNN, as
well as the LSTM and BLSTM models proposed
by Zayats et al. (2016) operating only on word
inputs (i.e., without any disfluency pattern-match
features). Our baseline CNN outperforms both the
LSTM and the BLSTM, while the ACNN model
clearly outperforms the baseline CNN, with a fur-
ther 5% increase in f-score. In particular, the
ACNN noticably improves recall without degrad-
ing precision.

model P R F
BLSTM (words)∗ 87.8 71.1 78.6

LSTM (words)∗ 87.6 71.4 78.7

CNN 89.4 74.6 81.3

ACNN 90.0 82.8 86.2

Table 2: Precision (P), recall (R) and f-score (F) on the
dev set for the BLSTM and LSTM models using words
alone from ∗Zayats et al. (2016), as well as our baseline
CNN and ACNN model.
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To further investigate the differences between
the two CNN-based models, we randomly select
100 sentences containing disfluencies from the
Switchboard dev set and categorize them accord-
ing to Shriberg’s (1994) typology of speech re-
pair disfluencies. Repetitions are repairs where
the reparandum and repair portions of the disflu-
ency are identical, while corrections are where the
reparandum and repairs differ (so corrections are
much harder to detect). Restarts are where the
speaker abandons a sentence prefix, and starts a
fresh sentence. As Table 3 shows, the ACNN
model is better at detecting repetition and cor-
rection disfluencies than the CNN, especially for
the more challenging correction disfluencies. On
the other hand, the ACNN is no better than the
baseline at detecting restarts, probably because the
restart typically does not involve a rough copy de-
pendency. Luckily restarts are much rarer than
repetition and correction disfluencies.

model Rep. Cor. Res. All
CNN 93.3 66.0 57.1 80.4

ACNN 97.5 80.0 57.1 88.9

Table 3: F-scores for different types of disfluencies on
a subset of the Switchboard dev set containing 140 dis-
fluent structures — including 85 repetitions (Rep.), 51
corrections (Cor.) and 4 restarts (Res.).

We also repeated the analysis of (Zayats et al.,
2014) on the dev data, so we can compare our
models to their extended BLSTM model with a
17-state CRF output and hand-crafted features, in-
cluding partial-word and POS tag features that en-
able it to capture some “rough copy” dependen-
cies. As expected, the ACNN outperforms both
the CNN and the extended BLSTM model, espe-
cially in the “Other” category that involve the non-
repetition dependencies.

model Rep. Other Either
CNN 92.2 66.7 81.3

BLSTM (17 states)∗ 94.1 66.7 85.8

ACNN 96.6 73.3 86.2

Table 4: F-scores for different types of disfluencies
for the CNN, ACNN and BLSTM (17 states) ∗(Zayats
et al., 2016) using the Switchboard dev set.

Finally, we compare the ACNN model to state-
of-the-art methods from the literature, evaluated
on the Switchboard test set. Table 5 shows that the

ACNN model is competitive with recent models
from the literature. The three models that score
more highly than the ACNN all rely on hand-
crafted features, additional information sources
such as partial-word features (which would not be
available in a realistic ASR application), or ex-
ternal resources such as dependency parsers and
language models. The ACNN, on the other hand,
only uses whole-word inputs and learns the “rough
copy” dependencies between words without re-
quiring any manual feature engineering.

model P R F
Yoshikawa et al.(2016) � 67.9 57.9 62.5
Georgila et al. (2010) † 77.4 64.6 70.4
Tran et al. (2018) ⊗ ? - - 77.5
Kahn et al. (2005) ? - - 78.2
Johnson et al. (2004) o 82.0 77.8 79.7
Georgila (2009) † - - 80.1
Johnson et al. (2004) †o - - 81.0
Rasooli et al. (2013) � 85.1 77.9 81.4
Zwarts et al. (2011) 1 o - - 83.8
Qian et al. (2013) 1 - - 84.1
Honnibal et al. (2014) � - - 84.1

ACNN 89.5 80.0 84.5

Ferguson et al. (2015) ? 90.0 81.2 85.4
Zayats et al. (2016) ⊗† 91.8 80.6 85.9
Jamshid Lou et al. (2017) 1 o - - 86.8

Table 5: Comparison of the ACNN model to the state-
of-the-art methods on the Switchboard test set. The
other models listed have used richer inputs and/or
rely on the output of other systems, as well as pat-
tern match features, as indicated by the following
symbols: � dependency parser, † hand-crafted con-
straints/rules, ? prosodic cues, o tree adjoining gram-
mar transducer, 1 refined/external language models
and ⊗ partial words. P = precision, R = recall and F
= f-score.

5.1 Qualitative Analysis

We conduct an error analysis on the Switchboard
dev set to characterize the disfluencies that the
ACNN model can capture and those which are dif-
ficult for the model to detect. In the following
examples, the highlighted words indicate ground
truth disfluency labels and the underlined ones are
the ACNN predictions.

1. But if you let them yeah if you let them in a
million at a time it wouldn’t make that you
know it wouldn’t make that big a bulge in the
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population

2. They’re handy uh they they come in handy at
the most unusual times

3. My mechanics loved it because it was an old
it was a sixty-five buick

4. Well I I I think we did I think we did learn
some lessons that we weren’t uh we weren’t
prepared for

5. Uh I have never even I have never even
looked at one closely

6. But uh when I was when my kids were
young I was teaching at a university

7. She said she’ll never put her child
in a in a in a in a in a preschool

8. Well I think they’re at they’re they’ve come a
long way

9. I I like a I saw the the the the tapes that were
that were run of marion berry’s drug bust

10. But I know that in some I know in a lot of
rural areas they’re not that good

According to examples 1-10, the ACNN detects
repetition (e.g. 1, 5) and correction disfluencies
(e.g. 3, 6, 10). It also captures complex struc-
tures where there are multiple or nested disfluen-
cies (e.g. 2, 8) or stutter-like repetitions (e.g. 4, 7,
9).

11. My point was that there is for people who
don’t want to do the military service it would
be neat if there were an alternative . . .

12. I believe from what I remember of the
literature they gave uh if you fail I believe
they give you one more chance

13. Kind of a coarse kind of test

14. So we could pour concrete and support it
with a a nice firm four by four posts

15. But uh I’m afraid I’m I’m probably in the
minority

16. Same thing same thing that the her kids had

17. Did you you framed it in uh on on you
framed in new square footage

18. And and and there needs to be a line drawn
somewhere at reasonable and proper

19. . . . I think there’s a couple of levels of tests
in terms of of drugs

20. See they have uh we have two the both c
spans here

In some cases where repetitions are fluent, the
model has incorrectly detected the first occurence
of the word as disfluency (e.g. 13, 14, 15, 19).
Moreover, when there is a long distance between
reparandum and repair words (e.g. 11, 12), the
model usually fails to detect the reparanda. In
some sentences, the model is also unable to detect
the disfluent words which result in ungrammatical
sentences (e.g. 16, 17, 18, 20). In these exam-
ples, the undetected disfluencies “the”, “did”, “at”
and “two the” cause the residual sentence to be un-
grammatical.

We also discuss the types of disfluency captured
by the ACNN model, but not by the baseline CNN.
In the following examples, the ACNN predictions
(underlined words) are the same as the ground
truth disfluency labels (highlighted words). The
bolded words indicate the CNN prediction of dis-
fluencies.

21. Uh well I actually my dad’s my dad’s almost
ninety

22. Not a man not a repair man but just a friend

23. we’re from a county we’re from the county
they marched in

24. Now let’s now we’re done

25. And they’ve most of them have been pretty
good

26. I do as far as uh as far as uh as far as immi-
gration as a whole goes

27. No need to use this to play around with this
space stuff anymore

28. We couldn’t survive in a in a juror in a trial
system without a jury

29. You stay within your uh within your means

30. So we’re we’re part we’re actually part of
MIT
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The ACNN model has a generally better perfor-
mance in detecting “rough copies” which are im-
portant indicator of repetition (e.g. 21, 29), cor-
rection (e.g. 22, 23, 24, 25, 27), and stutter-like
(e.g. 26, 28, 30) disfluencies.

6 Conclusion

This paper presents a simple new model for disflu-
ency detection in spontaneous speech transcripts.
It relies on a new auto-correlational kernel that is
designed to detect the “rough copy” dependencies
that are characteristic of speech disfluencies, and
combines it with conventional convolutional ker-
nels to form an auto-correlational neural network
(ACNN). We show experimentally that using the
ACNN model improves over a CNN baseline on
disfluency detection task, indicating that the auto-
correlational kernel can in fact detect the rough
copy dependencies between words in disfluencies.
The addition of the auto-correlational kernel per-
mits a fairly conventional architecture to achieve
near state-of-the-art results without complex hand-
crafted features or external information sources.

We expect that the performance of the ACNN
model can be further improved in future by us-
ing more complex similarity functions and by in-
corporating similar kinds of external information
(e.g. prosody) used in other disfluency models.
In future work, we also intend to investigate other
applications of the auto-correlational kernel. The
auto-correlational layer is a generic neural net-
work layer, so it can be used as a component of
other architectures, such as RNNs. It might also
be useful in very different applications such as im-
age processing.
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