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Abstract

Reinforcement learning (RL) is an attractive
solution for task-oriented dialog systems.
However, extending RL-based systems to
handle new intents and slots requires a
system redesign. The high maintenance cost
makes it difficult to apply RL methods to
practical systems on a large scale. To address
this issue, we propose a practical teacher-
student framework to extend RL-based dialog
systems without retraining from scratch.
Specifically, the “student” is an extended
dialog manager based on a new ontology, and
the “teacher” is existing resources used for
guiding the learning process of the “student”.
By specifying constraints held in the new
dialog manager, we transfer knowledge
of the “teacher” to the “student” without
additional resources. Experiments show that
the performance of the extended system is
comparable to the system trained from scratch.
More importantly, the proposed framework
makes no assumption about the unsupported
intents and slots, which makes it possible to
improve RL-based systems incrementally.

1 Introduction

With the flourish development of virtual personal
assistants (e.g., Amazon Alexa and Google Assis-
tant), task-oriented dialog systems, which can help
users accomplish tasks naturally, have been a focal
point in both academic and industry research. In
the early work, the task-oriented dialog system is
merely a set of hand-crafted mapping rules defined
by experts. This is referred to as a rule-based
system. Although rule-based systems often have
acceptable performance, they are inconvenient and
difficult to be optimized. Recently, reinforcement
learning approaches have been applied to optimize
dialog systems through interaction with a user
simulator or employed real users online (Gašić
et al., 2011; Su et al., 2016a; Li et al., 2016,

U:  I'm looking for a Sichuan restaurant.

S:  "Spicy Little Girl" is a nice Sichuan restaurant.

U:  Oh!!!  Where is it?

S:  It is located in Zhongguancun. 

S:  Hello, what can  I do for you?

S:  "Spicy Little Girl" is a nice Sichuan restaurant.

U:  Is this restaurant located in Zhongguancun?

U:  Thanks.

S:  You are welcome.

Goal: Find a Sichuan restaurant in Zhongguancun.

S: System
U: User

Evaluation: The system completes the task but confuses the user.
User Feedback: I hope the system can deal with my confirmation.
Dialog Rule: If user Confirm, then system Inform.

Figure 1: An example of a task-oriented dialog after
the system comes online. The user is confused because
the “confirm” intent has not been considered in the
deployed system. Dialog rules should be embedded in
a new system to handle such situations.

2017b). It has been proven that RL-based dialog
systems can abandon hand-crafted dialog manager
and achieve more robust performance than rule-
based systems (Young et al., 2013).

Typically, the first step of building RL-based
dialog systems is defining a user model1 and
necessary system actions to complete a specific
task (e.g., seek restaurants information or book
hotels). Based on such ontology, developers can
extract dialog features and train the dialog man-
ager model in an interaction environment. Such
systems work well if real users are consistent with
the predefined user model. However, as shown in
Fig. 1, the unanticipated actions2 of real users will
lead to a poor user experience.

In this situation, the original system should be
extended to support new user actions based on
user feedback. However, adding new intents or
slots will change the predefined ontology. As a
consequence, developers need to extract additional

1The user model defines what users can do in a dialog
system, including domain specific intents and slots.

2User actions consist of intents and slots.
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dialog features based on new ontology. Besides,
new system actions may be added to deal with new
user actions. The network architecture of the new
system and the original one will be different. The
new system can not inherit the parameters from the
old one directly. It will make the original dialog
manager model invalid. Therefore, developers
have to retrain the new system by interacting
with users from scratch. Though there are many
methods to train a RL-based dialog manager ef-
ficiently (Su et al., 2016a, 2017; Lipton et al.,
2017; Chang et al., 2017; Chen et al., 2017), the
unmaintainable RL-based dialog systems will still
be put on the shelf in real-world applications (Paek
and Pieraccini, 2008; Paek, 2006).

To alleviate this problem, we propose a teacher-
student framework to maintain the RL-based dia-
log manager without training from scratch. The
idea is to transfer the knowledge of existing re-
sources to a new dialog manager.

Specifically, after the system is deployed, if
developers find some intents and slots missing
before, they can define a few simple dialog rules
to handle such situations. For example, under
the condition shown in Fig. 1, a reasonable s-
trategy is to inform the user of the location of
this restaurant. Then we encode information of
such hand-crafted logic rules into the new dialog
manager model. Meanwhile, user logs and dialog
policy of the original system can guide the new
system to complete tasks like the original one.
Under the guidance of the “teacher” (logic rules,
user logs, and original policy), we can reforge an
extended dialog manager (the “student”) without a
new interaction environment.

We conduct a series of experiments with simu-
lated and real users on restaurant domain. The ex-
tensive experiments demonstrate that our method
can overcome the problem brought by the unpre-
dictable user behavior after deployment. Owing to
reuse of existing resources, our framework saves
time in designing new interaction environments
and retraining RL-based systems from scratch.
More importantly, our method does not make any
assumptions about the unsupported intents and
slots. So the system can be incrementally extended
once developers find new intents and slots that are
not taken into account before. As far as we know,
we are the first to discuss the maintainability of
deep reinforcement learning based dialog systems
systematically.

2 Related Work

Dialog Manager The dialog manager of task-
oriented dialog systems, which consists of a s-
tate tracker and a dialog policy module, controls
the dialog flow. Recently, deep reinforcement
learning (Mnih et al., 2013, 2015) has been ap-
plied to optimize the dialog manager in an “end-
to-end” way, including deep Q-Network (Lipton
et al., 2017; Li et al., 2017b; Peng et al., 2017;
Zhao and Eskenazi, 2016) and policy gradient
methods (Williams et al., 2017; Su et al., 2016b;
Dhingra et al., 2017). RL methods have shown
great potential in building a robust dialog system
automatically. However, RL-based approaches are
rarely used in real-world applications because of
the maintainability problem (Paek and Pieracci-
ni, 2008; Paek, 2006). To extend the domain
of dialog systems, Gašic et al. (2014) explicitly
defined kernel functions between the belief states
that come from different domains. However,
defining an appropriate kernel function is non-
trivial when the ontology has changed drastically.
Shah et al. (2016) proposed to integrate turn-
level feedback with a task-level reward signal
to learn how to handle new user intents. This
approach alleviates the problem that arises from
the difference between training and deployment
phases. But it still fails when the developers have
not considered all user actions in advance. Lipton
et al. (2017) proposed to use BBQ-Networks to
extend the domain. However, similar to Shah
et al. (2016), the BBQ-Networks have reserved
a few bits in the feature vector for new intents
and slots. And system actions for handling new
user actions have been considered in the original
system design. This assumption is not practical
enough. Compared to the existing domain exten-
sion methods, our work addresses a more practical
problem: new intents and slots are unknown to
the original system. If we need to extend the
dialog system, we should design a new network
architecture to represent new user actions and take
new system actions into account.
Knowledge Distillation Our proposed framework
is inspired by recent work in knowledge distilla-
tion (Bucilu et al., 2006; Ba and Caruana, 2014;
Li et al., 2014). Knowledge distillation means
training a compact model to mimic a larger teach-
er model by approximating the function learned
by the teacher. Hinton et al. (2015) introduced
knowledge distillation to transfer knowledge from
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Figure 2: An overview of the RL-based dialog manager
used in our work3. In the last turn, the system inquires
“Where do you want to go?”. In current turn, the user
input is “Find a restaurant in Beihai.”.

a large highly regularized model into a smaller
model. The knowledge which can be transferred
has not been restricted to models. Stewart and
Ermon (2017) proposed to distill the physics and
domain knowledge to train neural networks with-
out labeled data. Hu et al. (2016) enabled a neural
network to learn simultaneously from labeled in-
stances as well as logic rules. Zhang et al. (2017)
integrated multiple prior knowledge sources into
neural machine translation using posterior regu-
larization. Our experiments are based on such
insights. Through defining appropriate regular-
ization terms, we can distill different knowledge
(e.g., trained model or prior knowledge) to a new
designed model, alleviating the need for new la-
beled data or expensive interaction environments.

3 RL-based Dialog Manager

Before going to the details of our method, we
provide some background on the RL-based dialog
manager in this section. Fig. 2 shows an overview
of such dialog manager. We describe each of the
parts briefly below.
Feature Extraction At the t-th turn of a dialog,
the user input ut is parsed into domain specific
intents and slots to form a semantic frame aut
by a language understanding (LU) module. out
and ost−1 are the one-hot representations of such
semantic frames for the current user input and the
last system output respectively. Alternatively, out
can be a simple n-grams representation of ut. But

3Similar dialog model architectures can be found in recent
work (Liu and Lane, 2017; Williams et al., 2017; Su et al.,
2016b). But designing a dialog model architecture is not
our main purpose. We focus on endowing RL-based dialog
systems with maintainability and scalability. The dialog
model used in our work can be replaced with the similar
architectures in the related work.

the vocabulary size is relatively large in real-world
applications. It will yield slow convergence in the
absence of a LU module. Based on the slot-value
pair output with the highest probability, a query
is sent to a database to retrieve user requested
information. odbt is the one-hot representation of
the database result. As a result, the observable
information xt is the concatenation of out , ost−1 and
odbt .
State Representation Based on the extracted fea-
ture vector xt and previous internal state st−1,
recurrent neural networks (RNNs) are used to infer
the latent representation of dialog state st at step t.
Current state st can be interpreted as the summary
of dialog history ht up to current step.
Dialog Policy Next, the dialog state representation
st is fed into a policy network. The output
π(a|ht; θ) of the policy network is a probability
distribution over a predefined system action set
As. Lastly, the system samples an action ast ∈ As

based on π(a|ht; θ) and receives a new observa-
tion xt+1 with an assigned reward rt. The policy
parameters θ can be learned by maximizing the
expected discounted cumulative rewards:

J (θ) = E

(
T−t∑
k=0

γkrt+k

)
(1)

where T is the maximal step, and γ is the discount
factor. Usually the parameters θ can be iteratively
updated by policy gradient (Williams, 1992) ap-
proach. The policy gradient can be empirically
estimated as:

∇θJ (θ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log π(asi,t|hi,t; θ)(Gi,t−b) (2)

where N is the number of sampled episodes in
a batch, Gi,t =

∑T−t
k=0 γ

kri,t+k is the sum of
discounted reward at step t in the episode i, and
b is a baseline to estimate the average reward of
current policy.

4 Notations and Problem Definition

Let Au and As denote the supported user and
system action sets in the original system design
respectively. ut denotes the user input in the t-th
turn. The LU module converts ut into a domain
specific intent and associated slots to form a user
action aut ∈ Au. The system will return an
action ast ∈ As according to the dialog manager
π(θ). Note that not all user actions are taken
into account at the beginning of system design.
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(a) Retraining a new system from scratch. (b) An overview of our proposed teacher-student framework.

Distill Knowledge

Distill Knowledge

Training

New System
Logic 
Rules

Old System

Model Architecture

Training

Interaction

New 
Environment

Model Architecture

New System

Figure 3: Two kinds of strategies to extend the original system. (a) means redesigning and retraining a new system
in an expensive interaction environment from scratch and (b) means transferring knowledge from existing resources
to a new system. The network in red indicates the old system based on the original ontology. The networks in gray
and purple represent the initialized and trained dialog manager models based on a new ontology respectively. On
account of the change in ontology, the extended system has a different network architecture. The dash lines in (a)
and (b) show the ability of a new model derives from various sources.

After deployment, the developers can find that
some user actions Au new cannot be handled by
the original system based on the human-machine
interaction logs D. Generally speaking, Au new

consists of new intents and slots. Our goal is to
extend the original system to support the new user
action setA′u = Au∪Au new. The extended dialog
manager and new system action set are denoted
as π(θ′) and A′s respectively. To handle new user
actions, more system actions may be added to the
new system. It means that As is a subset of A′s.

5 Approach

Fig. 3 shows two kinds of strategies to extend
the original system. The first strategy requires a
new interaction environment. However, building a
user simulator or hiring real users once the system
needs to be extended is costly and impractical in
real-world applications. By contrast, our method
enhances the reuse of existing resources. The
basic idea is to use the existing user logs, original
dialog policy model and logic rules (“teacher”)
to guide the learning process of a new dialog
manager (“student”). Without an expensive in-
teraction environment, the developers can main-
tain RL-based dialog systems as efficiently and
straightforwardly as in rule-based systems.

5.1 Distill Knowledge from the Original
System

Although the ontology of the new system is dif-
ferent from the original one, the extended dialog
manager can still reuse dialog policy of the ill-
considered system circuitously. Given user logsD

and the original dialog manager π(θ), we define
a loss L(θ′;D, θ) to minimize the difference be-
tween new dialog manager π(θ′) and the old one:

L(θ′;D, θ) =
∑
d∈D

|d|∑
t=1

KL(π(a|ht; θ) ||π(a|ht; θ′) ) (3)

where π(a|ht; θ) and π(a|ht; θ′) are the policy
distributions overAs andA′s given the same dialog
history ht. |d| means turns of a specific dialog
d ∈ D. To deal with unsupported user actions,
As will be a subset ofA′s. As a result, the KL term
in equation (3) can be defined as follows:

KL(π(a|ht; θ) ||π(a|ht; θ′) )

=

|As|∑
k=1

π(ak|ht; θ)
(
logπ(ak|ht; θ)− logπ(ak|ht; θ′)

)
(4)

As the original policy parameters θ are fixed, the
loss function in equation (3) can be rewritten as:

L(θ′;D, θ) = −
∑
d∈D

|d|∑
t=1

|As|∑
k=1

π(ak|ht; θ)logπ(ak|ht; θ′)

(5)

This objective will transfer knowledge of the origi-
nal system to the “student” at the turn level. Under
the guidance of the original system, the extended
system will be equipped with the primary strategy
to complete a task.

5.2 Distill Knowledge from Logic Rules

It’s easy for the developers to give logic rules on
the system responses to handle new user actions.



3807

For example, if users ask to confirm a slot, the
system should inform the value of that slot im-
mediately. Note that these system actions which
handle new user actions may not exist in the old
model. It means the architecture of the new system
is different from the old one.

We define a set of logic constraints
R = {(hl, al)}Ll=1, where hl ∈ HR indicates
the dialog context condition in the l-th rule, and
al ∈ A′s is the corresponding system action. The
number of logic rules L is equal to the number
of new user actions. These rules can be seen as
triggers: if dialog context ht in current turn t
meets the context condition hl defined in logic
rules, then the system should execute al. In
our work, we use the output of the LU module
to judge whether the current dialog context
meets the condition defined by logic rules. An
alternative method is simple rules matching. To
distill the knowledge of rules to a new system, we
define a loss function L(θ′;D,R) to embed such
constraints in the new system:

L(θ′;D,R) =−
∑
d∈D

|d|∑
t=1

∑
hl∈HR

1{ht = hl}×

|A′
s|∑

k=1

1{ak = al} log π(ak|ht; θ′)

(6)

Where 1{·} is the indicate function. Equation (6)
suggests the new dialog manager π(θ′) will be
penalized if it violates the instructions defined
by the dialog rules. Note that, for simplicity,
we assume these rules are absolutely correct and
mutually exclusive. Although this hypothesis may
lead to a non-optimal dialog system, these rules
define reasonable system actions to corresponding
dialog contexts. It implies that the new system can
be further refined by reinforcement learning once
a new interaction environment is available.

5.3 Extension of Dialog Manager
In the absence of a new training environment,
learning is made possible by exploiting structure
that holds in the new dialog manager. On one
hand, we expect the new system can complete
tasks like the original one. On the other hand,
it should satisfy the constraints defined by dialog
rules. So, the learning objective of new dialog
manager π(θ′) can be defined as follows:

L(θ′;D, θ,R) =

{
L(θ′;D,R) if ht ∈ HR ;

L(θ′;D, θ) else
(7)

When the dialog context ht in the t-th turn satis-
fies a condition defined in HR, we distill knowl-
edge of rules into the new system. Otherwise, we
distill knowledge of the original system into the
new one. Instead of retraining from scratch, de-
velopers can extend RL-based systems by reusing
existing resources.

6 Experiments

To evaluate our method, we conduct experiments
on a dialog system extension task of restaurant
domain.

6.1 Domain

The dialog system provides restaurant information
in Beijing. The database we use includes 2988
restaurants. This domain consists of 8 slots (name,
area, price range, cuisine, rating, number of
comments, address and phone number) in which
the first four slots (inform slots) can be used for
searching the desirable restaurant and all of these
slots (request slots) can be asked by users. In
each dialog, the user has a goal containing a set
of slots, indicating the constraints and requests
from users. For example, an inform slot, such as
“inform(cuisine=Sichuan cuisine)”, indicates the
user finding a Sichuan restaurant, and a request
slot, such as “request(area)”, indicates the user
asking for information from the system (Li et al.,
2016, 2017b; Peng et al., 2017).

6.2 Measurements

A main advantage of our approach is that the
unconsidered user actions can be handled in the
extended system. In addition to traditional mea-
surements (e.g., success rate, average turns and
average reward), we define an objective measure-
ment called “Satis.” (user satisfaction) to verify
this feature in the simulated evaluation. “Satis.”
indicates the rate at which the system takes rea-
sonable actions in unsupported dialog situations.
It can be calculated as follows:

Satis. =

∑
d∈D

∑|d|
t=1

∑L
l=1 1{ht = hl}1{ast = al}∑

d∈D
∑|d|
t=1

∑L
l=1 1{ht = hl}

(8)

where ht and ast are the dialog history and system
action in the t-th turn, hl and al are dialog
context condition and corresponding system ac-
tion defined in the l-th rules. Intuitively, an
unreasonable system reply will frustrate users and
low “Satis.” indicates a poor user experience.
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Sim1 Sim2
LU Error Rate Succ. Turn Reward Satis. Succ. Turn Reward Satis.

0.00 0.962 13.6 3.94 - 0.901 13.2 2.95 0.57
0.05 0.937 13.7 3.41 - 0.877 14.4 2.41 0.48
0.10 0.910 14.3 2.65 - 0.841 13.9 1.41 0.47
0.20 0.845 15.2 0.58 - 0.784 14.7 0.01 0.47

Table 1: Performance of the original system when interacting with different user simulators. LU error means
simulating slot errors and intent errors in different rates. Succ.: success rate, Turn: average turns, Reward: average
reward.

LU Error Rate 0.00 0.05 0.10 0.20

Total 25857 26166 27077 28385
New User Actions 1853 1859 1998 1912

Table 2: Statistics of turns when S1 interacts with Sim2.

Although “Satis.” is obtained based on our hand-
crafted dialog rules, it approximately measures the
subjective experience of real users after system
deployment.

6.3 User Simulator
Training RL-based dialog systems requires a large
number of interactions with users. It’s common
to use a user simulator to train RL-based dialog
systems in an online fashion (Pietquin and Dutoit,
2006; Scheffler and Young, 2002; Li et al., 2016).
As a consequence, we construct an agenda-based
user simulator, which we refer to as Sim1, to train
the original RL-based system. The user action set
of Sim1 is denoted as Au, which includes such in-
tents4: “hello”, “bye”, “inform”, “deny”, “negate”,
“affirm”, “request”, “reqalts” and “null”. The slots
of Sim1 are shown in section 6.1. In each turn,
the user action consists of a intent and slots and
we append the value of slots according to the user
goal.

6.4 Implementation of the Original System
For the original RL-based dialog system, a feature
vector xt of size 191 is extracted. This vector
is the concatenation of encodings of LU results,
the previous system reply, database results and the
current turn number. The LU module is imple-
mented with an SVM5 for intent detection and a
CRF6 for slot filling. The language generation
module is implemented by a rule-based method.
The hidden dialog state representation is inferred

4A detail explanation of these intents is in DSTC2 (Hen-
derson et al., 2013).

5We use the publicly available SVM tool at http://scikit-
learn.org.

6We use the publicly available CRF tool at
https://pypi.python.org/pypi/sklearn-crfsuite.

by a GRU (Chung et al., 2014). We set the hidden
states of the GRU to be 120. The policy network
is implemented as a Multilayer Perceptron (MLP)
with one hidden layer. The size of the hidden layer
is 80. The output dimension of policy network is
15, which corresponds to the number of system
actions. To encourage shorter interaction, we set
a small per-turn negative reward Rturn = −1.
The maximal turn is set to be 40. If the user
goal is satisfied, the policy will be encouraged by
a large positive reward Rsucc = 10; otherwise
the policy will be penalized by a negative reward
Rfail = −10. Discounted factor γ = 0.9.
The baseline b of current policy is estimated on
sampled episodes in a batch. The batch size N is
set to be 32. Adadelta (Zeiler, 2012) method is
used to update model parameters. The original
system S1 is trained by interacting with Sim1.
After about 2400 interactions, the performance of
S1 starts to converge.

6.5 Simulated Evaluation

To evaluate our approach, we design another user
simulator, which we denote as Sim2, to simulate
the unpredictable real customers. The user action
set of Sim2 is denoted as A′u. The difference
between Au and A′u is reflected on the domain
specific intents7. Specifically, in addition to the
intents of Sim1, A′u includes the “confirm” intent.
The difference in user action sets will result in
different interaction strategies between Sim1 and
Sim2. To verify whether a recommended restau-
rant meets his (her) constraints, Sim1 can only
request what the value of a specific slot is, but
Sim2 can request or confirm.

After obtaining the original system S1, we de-
ploy it to interact with Sim1 and Sim2 respectively,
under different LU error rates (Li et al., 2017a).
In each condition, we simulate 3200 episodes
to obtain the performance. Table 1 shows the

7A more complex situation is shown in the human
evaluation.
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Figure 4: Performance of different systems under simulation. The original, extended and contrast systems are
shown in red, blue and purple bars. We test these systems by interacting with Sim2.

details of the test performance. Table 2 shows the
statistics of turns when S1 interacts with Sim2.

As shown in Table 1, S1 achieves higher dialog
success rate and rewards when testing with Sim1.
When interacting with Sim2, nearly half of the
responses to unsupported user actions are not
reasonable. Notice even though Sim2 contains
new user actions, some of the new actions might
be appropriately handled by S1. It may be due
to the robustness of our RL-based system. But
it’s far from being desired. The unpredictable real
user behavior in the deployment stage will lead to
a poor user experience in real-world applications.
It proves the importance of a maintainable system.

To maintain the original system, we define a
few simple logic rules to handle unsupported user
actions: if users confirm the value of a slot in
current turn, the system should inform users of that
value. These rules8 are intuitive and reasonable to
handle queries such as “Is this restaurant located in
Zhongguancun?”. There are four slots9 that can be
used for confirmation, so we define four logic rules
in all. Due to the change in ontology, we add a new
status in dialog features to represent the “confirm”
intent of users. It leads to a change in the model
architecture of extended dialog manager. Then we
distill knowledge of the S1 and logic rules into the
extended system. No additional data is used to
obtain the extended system.

For comparison, we retrain another new sys-
tem (contrast system) from scratch by interacting

8In the practical dialog system, we can inject more
complex logic rules and take dialog history into account.
These rules are not limited to question/answer mapping.

9They are “name”, “area”, “price range” and “cuisine”.

with Sim2. After about 2600 interactions with
Sim2, the performance of contrast system starts to
converge. Note that in order to build the contrast
system, the developers need to redesign a new user
simulator or hire real users. It’s expensive and
impractical in industrial applications. Then we
simulate 3200 interactions with Sim2 to obtain its
performance. Fig. 4 illustrates the performance of
different systems.

As can be seen, the extended system performs
better than the original system in terms of dialog
success rate and “Satis.”. This is to a large degree
attributed to the consideration of new user actions.
Fig. 4(a) shows that the contrast system achieves
higher dialog success rate than the extended sys-
tem. But the gap is negligible. However, the
contrast system is trained from scratch under a
new interaction environment and the extended
system is trained by transferring knowledge of
the original system and logic rules. To train the
contrast system, about 2600 episodes are sampled
by interacting with a new interaction environment.
But no additional data is used to train the extended
system.

In Fig. 4(b), the “Satis.” of the extended
system is slightly higher than the contrast system.
This is due to the fact that the extended system
learns how to deal with new user actions from
logic rules but the contrast system obtains dialog
policy by exploring the environment. As a result,
the contrast system learns a more flexible dialog
policy than the extended system10. However,
the “Satis.” has a bias to the suboptimal rules,

10Table 6 in the Appendix shows sample dialogs from the
extended system and contrast system.
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Average Rating 2.35

Average Turns 12.1

Unseen Intents takeTaxi, bookTable

Unseen Inform Slots
withoutWaiting, carryoutService,
goodforDating, privateRoom,
hasInternet

Unseen Request Slots waitingLine, discount,
businessHours

Unseen Confirm Slots carryoutService, goodforDating,
privateRoom, hasInternet

Table 3: Details of the real user logs. Users are
encouraged to interact with the original system by
unsupported intents and slots. We find there are 14 user
actions unseen before.

Dialog Condition System Action

takeTaxi API call
bookTable API call
inform unseen slots recommend a restaurant
request unseen slots offer information of slots
confirm unseen slots offer information of slots

Table 4: Different types of rules for new user actions.
Left column shows the dialog context condition; Right
column shows the corresponding system action. We
define 14 rules in all to handle newfound intents and
slots shown in Table 3.

rather than the optimal policy gained from the
environment. It suggests the extended system can
be further refined by reinforcement learning once
a new interaction environment is available.

6.6 Human Evaluation
In any case, the developers can’t guarantee all user
actions are considered. Fortunately, our method
makes no assumptions about the new user actions
and new dialog model architecture. As a result, the
system can be extended over multiple iterations.

To evaluate this characteristic, we deploy the
extended system11 in section 6.5 to interact with
real human users. Users are given a goal sam-
pled from our corpus for reference. To elicit
more complex situations, they are encouraged to
interact with our system by new intents and slots
related to the restaurant domain. At the end of
each dialog, they are asked to give a subjective
rating on the scale from 1 to 5 based on the
naturalness of the system (1 is the worst, 5 is the
best.). After filtering dialog sessions unrelated to
our task, we collect 315 episodes in total. Table 3
shows the details of the user logs. As shown in
Table 3, after deployment, there are a few slots

11The extended system in the simulated evaluation will be
the original system in our human evaluation.
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Figure 5: Distribution of user ratings.

and intents unseen before. For example, users may
ask for the discount information or take a taxi to
the restaurant. To represent the new intents and
slots, the dimension of extracted dialog features
is extended to 236. Meanwhile, the number of
system actions is extended to 29 to handle new
user actions. To deal with the newfound user
actions, we define 14 rules in total. Table 4 shows
the details of new defined logic rules. Then we
distill the knowledge of the original system and
logic rules into a new system. Fig. 5 shows the
comparison in user ratings. The extended system
significantly gets a higher subjective rating than
the original one. It proves that the extended system
can give reasonable responses in unseen dialog
situations.

Table 5 shows sample dialogs from the original
system and extended system with real users. We
can see that the extended system is much more
coherent since it takes new user actions into ac-
count. It inspires us that a complicated RL-based
dialog system can start from a simple one and be
improved incrementally based on our framework.
This design pattern will be much more efficient if
the interaction environment is hard to access.

7 Conclusion

In this paper, we present a practical solution to
maintain RL-based dialog systems without retrain-
ing from scratch. By reusing existing resources,
developers can extend the RL-based dialog man-
ager to deal with unpredictable user actions after
deployment. Furthermore, our method holds no
constraints on the architecture of the new system
and retains the key benefit of data-driven methods.
It means the new system can be maintained it-
eratively and further refined by RL once a new
interaction environment is available. The sim-
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Original System Extended System
User: I want to find a Sichuan restaurant. User: I want to find a Sichuan restaurant in
System: Where do you want to go? Zhongguancun area.
User: Zhongguancun area. System: “Hot Charge” is a nice Sichuan restaurant in
System: “Hot Charge” is a nice Sichuan restaurant in in Zhongguancun area.
Zhongguancun area. User: What’s the discount of this restaurant?
User: Can you tell me the discount? System: This restaurant is offering 10% off.
System: The average cost is 42 CNY. User: Is there a waiting line?
User: Tell me the discount! System: Currently there are 5 parties waiting in line.
System: “Hot Charge” is a nice Sichuan restaurant in User: Can you book a table for me?
Zhongguancun area. System: Ok.
User: Bye. User: Thanks.
System: Bye. System: You are welcome.

Subjective Rating = 2 Subjective Rating = 5

Table 5: Sample dialogs of the original and extended systems in the human evaluation. The 
original system will collapse when encountering unseen slots and intents. After extension, the 
new system can handle more user actions.

ulation and human experiments show our pro-
posed framework guarantees the maintainability
and scalability in RL-based systems, which are
necessary for any industrial application.
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Jason D Williams. 2013. Pomdp-based statistical
spoken dialog systems: A review. Proceedings of
the IEEE, 101(5):1160–1179.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang
Xu, and Maosong Sun. 2017. Prior knowledge
integration for neural machine translation using
posterior regularization. In Proceedings of the 55th
Annual Meeting of the Association for Computation-
al Linguistics (Volume 1: Long Papers), volume 1,
pages 1514–1523.

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards
end-to-end learning for dialog state tracking and
management using deep reinforcement learning. In
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, page 1.


