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Abstract

In this paper, we propose a new kernel-based
co-occurrence measure that can be applied to
sparse linguistic expressions (e.g., sentences)
with a very short learning time, as an alter-
native to pointwise mutual information (PMI).
As well as deriving PMI from mutual infor-
mation, we derive this new measure from
the Hilbert–Schmidt independence criterion
(HSIC); thus, we call the new measure the
pointwise HSIC (PHSIC). PHSIC can be in-
terpreted as a smoothed variant of PMI that
allows various similarity metrics (e.g., sen-
tence embeddings) to be plugged in as ker-
nels. Moreover, PHSIC can be estimated by
simple and fast (linear in the size of the data)
matrix calculations regardless of whether we
use linear or nonlinear kernels. Empirically, in
a dialogue response selection task, PHSIC is
learned thousands of times faster than an RNN-
based PMI while outperforming PMI in accu-
racy. In addition, we also demonstrate that PH-
SIC is beneficial as a criterion of a data selec-
tion task for machine translation owing to its
ability to give high (low) scores to a consistent
(inconsistent) pair with other pairs.

1 Introduction

Computing the co-occurrence strength between two
linguistic expressions is a fundamental task in natu-
ral language processing (NLP). For example, in col-
location extraction (Manning and Schütze, 1999),
word bigrams are collected from corpora and then
strongly co-occurring bigrams (e.g., “New York”)
are found. In dialogue response selection (Lowe
et al., 2015), pairs comprising a context and its
response sentence are collected from dialogue cor-
pora and the goal is to rank the candidate responses
for each given context sentence. In either case, a set
of linguistic expression pairs D = {(xi, yi)}ni=1 is
first collected and then the co-occurrence strength
of a (new) pair (x, y) is computed.

Robustness Learning
to Sparsity Time

PMI

log
n · c(x, y)∑

y′c(x, y′)
∑

x′c(x′, y)
Eq. 1 XXX

log
P̂RNN(y|x)
P̂RNN(y)

Eq. 2 XXX

PHSIC

(φ(x)−φ(x))>ĈXY (ψ(y)−ψ(y)) Sec. 5.1 XXX XXX

(a−a)>ĈICD(b−b) Sec. 5.2 XXX XXX

Table 1: The proposed co-occurrence norm, PHSIC,
eliminates the trade-off between robustness to data
sparsity and learning time, which PMI has (Section 1).

Pointwise mutual information (PMI) (Church
and Hanks, 1989) is frequently used to model
the co-occurrence strength of linguistic expression
pairs. There are two typical types of PMI esti-
mation (computation) method. One is a counting-
based estimator using maximum likelihood esti-
mation, sometimes with smoothing techniques, for
example,

P̂MIMLE(x, y;D)= log
n · c(x, y)∑

y′c(x, y
′)
∑

x′c(x′, y)
,

(1)

where c(x, y) denotes the frequency of the
pair (x, y) in given dataD. This is easy to compute
and is commonly used to measure co-occurrence
between words, such as in collocation extraction1;
however, when data D is sparse, i.e., when x or
y is a phrase or sentence, this approach is unre-
alistic. The second method uses recurrent neural
networks (RNNs). Li et al. (2016) proposed to em-
1 In collocation extraction, simple counting c(x, y) ∝
P̂(x, y), rather than PMI, ranks undesirable function-word
pairs (e.g., “of the”) higher (Manning and Schütze, 1999).
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ploy PMI to suppress dull responses for utterance
generation in dialogue systems2. They estimated
P(y) and P(y|x) using RNN language models and
estimated PMI as follows:

P̂MIRNN(x, y;D) = log
P̂RNN(y|x)
P̂RNN(y)

. (2)

This way of estimating PMI is applicable to sparse
language expressions; however, learning RNN lan-
guage models is computationally costly.

To eliminate this trade-off between robustness
to data sparsity and learning time, in this study we
propose a new kernel-based co-occurrence mea-
sure, which we call the pointwise Hilbert–Schmidt
independence criterion (PHSIC) (see Table 1). Our
contributions are as follows:
• We formalize PHSIC, which is derived from

HSIC (Gretton et al., 2005), a kernel-based de-
pendence measure, in the same way that PMI is
derived from mutual information (Section 3).

• We give an intuitive explanation why PHSIC is
robust to data sparsity. PHSIC is a “smoothed
variant of PMI”, which allows various similarity
metrics to be plugged in as kernels (Section 4).

• We propose fast estimators of PHSIC, which are
reduced to a simple and fast matrix calculation
regardless of whether we use linear or nonlinear
kernels (Section 5).

• We empirically confirmed the effectiveness of
PHSIC, i.e., its robustness to data sparsity and
learning time, in two different types of experi-
ment, a dialogue response selection task and a
data selection task for machine translation (Sec-
tion 6).

2 Problem Setting

Let X and Y denote random variables on X and Y ,
respectively. In this paper, we deal with the tasks
of taking a set of linguistic expression pairs

D = {(xi, yi)}ni=1 ∼i.i.d.
PXY , (3)

which is regarded as a set of i.i.d. samples drawn
from a joint distribution PXY , and then measuring
the “co-occurrence strength” for each given pair
(x, y) ∈ X × Y . Such tasks include collocation
extraction and dialogue response selection (Sec-
tion 1).

2 In dialogue response selection or generation, a simple con-
ditional probability P̂(y|x), rather than PMI, ranks dull re-
sponses (e.g., “I don’t know.”) higher (Li et al., 2016).

3 Pointwise HSIC

In this section, we give the formal definition of
PHSIC, a new kernel-based co-occurrence measure.
We show a summary of this section in Table 2.
Intuitively, PHSIC is a “kernelized variant of PMI.”

3.1 Dependence Measure

As a preliminary step, we introduce the simple con-
cept of dependence (see Dependence Measure in
Table 2). Recall that random variables X and Y
are independent if and only if the joint probabil-
ity density PXY and the product of the marginals
PXPY are equivalent. Therefore, we can measure
the dependence between random variables X and
Y via the difference between PXY and PXPY .

Both the mutual information and the Hilbert–
Schmidt independence criterion, to be described
below, are such dependence measures.

3.2 MI and PMI

We briefly review the well-known mutual informa-
tion and PMI (see MI & PMI in Table 2).

The mutual information (MI)3 between two ran-
dom variables X and Y is defined by

MI(X,Y ) := KL[PXY ‖PXPY ] (4)

(Cover and Thomas, 2006), where KL[·‖·] de-
notes the Kullback–Leibler (KL) divergence. Thus,
MI(X,Y ) is the degree of dependence between X
and Y measured by the KL divergence between
PXY and PXPY .

Here, by definition of the KL divergence, MI can
be represented in the form of the expectation over
PXY , i.e., the summation over all possible pairs
(x, y) ∈ X×Y:

MI(X,Y ) = E
(x,y)

[
log

PXY (x, y)

PX(x)PY (y)

]
. (5)

The shaded part in Equation (5) is actually the
pointwise mutual information (PMI) (Church and
Hanks, 1989):

PMI(x, y;X,Y ) := log
PXY (x, y)

PX(x)PY (y)
. (6)

Therefore, PMI(x, y) can be thought of as the con-
tribution of (x, y) to MI(X,Y ).

3 Conventionally, mutual information is denoted by I(X;Y );
in this paper, however, for notational consistency, mutual
information is denoted by MI(X,Y ).
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Dependence Measure Co-occurrence Measure
the dependence between X and Y the contribution of (x, y)
(the difference between PXY and PXPY ) to the dependence between X and Y

MI & PMI

MI(X,Y ) = KL[PXY ‖PXPY ]

= E
(x,y)

[
log

PXY (x, y)

PX(x)PY (y)

] PMI(x, y;X,Y )

= log
PXY (x, y)

PX(x)PY (y)

HSIC & PHSIC

HSIC(X,Y ; k, `) = MMD2
k,`[PXY ,PXPY ]

= E
(x,y)

[
(φ(x)−mX)>CXY (ψ(y)−mY )

]
= E

(x,y)

[
E

(x′,y′)
[k̃(x, x′)˜̀(y, y′)] ]

PHSIC(x, y;X,Y, k, `)

= (φ(x)−mX)>CXY (ψ(y)−mY )

= E
(x′,y′)

[k̃(x, x′)˜̀(y, y′)]
Table 2: Relationship between the mutual information (MI), the pointwise mutual information (PMI), the Hilbert–
Schmidt independence criterion (HSIC), and the pointwise HSIC (PHSIC). As well as defining PMI as the contri-
bution to MI, we define PHSIC as the contribution to HSIC. In short, PHSIC is a “kernelized PMI” (Section 3).

3.3 HSIC and PHSIC
As seen in the previous section, PMI can be derived
from MI. Here, we consider replacing MI with the
Hilbert–Schmidt independence criterion (HSIC).
Then, in analogy with the relationship between
PMI and MI, we derive PHSIC from HSIC (see
HSIC & PHSIC in Table 2).

Let k : X × X → R and ` : Y × Y → R
denote positive definite kernels on X and Y , re-
spectively (intuitively, they are similarity func-
tions between linguistic expressions). The Hilbert–
Schmidt independence criterion (HSIC) (Gretton
et al., 2005), a kernel-based dependence measure,
is defined by

HSIC(X,Y; k, `) :=MMD2
k,`[PXY ,PXPY ], (7)

where MMD[·, ·] denotes the maximum mean dis-
crepancy (MMD) (Gretton et al., 2012), which
measures the difference between random vari-
ables on a kernel-induced feature space. Thus,
HSIC(X,Y ; k, `) is the degree of dependence be-
tween X and Y measured by the MMD between
PXY and PXPY , while MI is measured by the KL
divergence (Equation (4)).

Analogous to MI in Equation (5), HSIC can be
represented in the form of the expectation on PXY

by a simple deformation:

HSIC(X,Y ; k, `)

= E
(x,y)

[
(φ(x)−mX)>CXY (ψ(y)−mY )

]
(8)

= E
(x,y)

[
E

(x′,y′)
[k̃(x, x′)˜̀(y, y′)] ], (9)

where

φ(x) := k(x, ·), ψ(y) := `(y, ·), (10)

mX := Ex[φ(x)], mY := Ey[ψ(y)], (11)

CXY := E
(x,y)

[
(φ(x)−mX)(ψ(y)−mY )

>
]
, (12)

k̃(x, x′) := k(x, x′)−Ex′ [k(x, x′)]

−Ex[k(x, x
′)] +Ex,x′ [k(x, x′)]. (13)

At first glance, these equations are somewhat com-
plicated; however, the estimators of PHSIC we
actually use are reduced to a simple matrix calcula-
tion in Section 5. Unlike MI in Equation (5), HSIC
has two representations: Equation (8) is the repre-
sentation in feature space and Equation (9) is the
representation in data space.

Similar to the relationship between MI and PMI
(Section 3.2), we define the pointwise Hilbert–
Schmidt independence criterion (PHSIC) by the
shaded parts in Equations (8) and (9):

PHSIC(x, y;X,Y, k, `)

:= (φ(x)−mX)>CXY (ψ(y)−mY ) (14)

= E
(x′,y′)

[k̃(x, x′)˜̀(y, y′)] . (15)

Namely, PHSIC(x, y) is defined as the contribu-
tion of (x, y) to HSIC(X,Y ).

In summary, we define PHSIC such that
“MI:PMI = HSIC:PHSIC” holds (see Table 2).

4 PHSIC as Smoothed PMI

This section gives an intuitive explanation for the
first feature of PHSIC, i.e., the robustness to data
sparsity, using Table 3. In short, we show that
PHSIC is a “smoothed variant of PMI.”

First, the maximum likelihood estimator of PMI
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add scores deduct scores

P̂MI(x, y;D) = log
n ·

∑
i I[x=xi ∧ y=yi]∑

i I[x=xi]
∑

i I[y=yi]

( x , y )

= =

D = {. . . , ( xi , yi ), . . . }

( x , y ) ( x , y )

= 6= 6= =

{. . . , ( xi , yi ), . . . ,( xi , yi ), . . . }

P̂HSIC(x, y;D, k, `) = 1
n

∑
i

̂̃
k(x, xi)̂˜̀(y, yi) ( x , y ) ( x , y )

≈ ≈ 6≈ 6≈

{. . . , ( xi , yi ), . . . ,( xi , yi ), . . . }

( x , y ) ( x , y )

≈ 6≈ 6≈ ≈

{. . . , ( xi , yi ), . . . ,( xi , yi ), . . . }

Table 3: Comparison of estimators of PMI and PHSIC in terms of methods of matching the given (x, y) and the
observed (xi, yi) in D. PMI matches them in an exact manner, while PHSIC smooths the matching using kernels.
Therefore, PHSIC is expected to be robust to data sparsity (Section 4).

in Equation (1) can be rewritten as

P̂MI(x, y;D)= log
n ·
∑

iI[x=xi ∧ y=yi]∑
iI[x=xi]

∑
iI[y=yi]

, (16)

where I[condition] = 1 if the condition is true and
I[condition] = 0 otherwise. According to Equa-
tion (16), P̂MI(x, y) is the amount computed by
repeating the following operation (see the first row
in Table 3):

collate the given (x, y) and the observed
(xi, yi) in D in order, and add the scores if
(x, y) and (xi, yi) match exactly or deduct
the scores if either the x side or the y side
(but nor both) matches.

Moreover, an estimator of PHSIC in data space
(Equation (15)) is

P̂HSIC(x, y;D, k, `)= 1
n

∑
i
̂̃
k(x, xi)̂˜̀(y, yi) ,

(17)

where ̂̃k(·, ·) and ̂̀̃(·, ·) are similarity functions cen-
tered on the data4. According to Equation (17),
P̂HSIC(x, y) is the amount computed by repeat-
ing the following operation (see the second row in
Table 3):

collate the given (x, y) and the observed
(xi, yi) in D in order, and add the scores if
the similarities on the x and y sides are both

higher (both ̂̃k(x, xi) > 0 and ̂̀̃(y, yi) > 0
hold)5 or deduct the scores if the similarities
on either the x or y sides are similar but
those on the other side are not similar.

4 To be exact, ̂̃k(x, x′) := k(x, x′) − 1
n

∑n
j=1 k(x, xj) −

1
n

∑n
i=1 k(xi, x

′) + 1
n2

∑n
i=1

∑n
j=1 k(xi, xj), which is an

estimator of the centered kernel k̃(x, x′) in Equation (13).
5 In addition, the scores are added if the similarity on the x

side and that on the y side are both lower, that is, if ̂̃k(x, xi) <
0 and ̂̀̃(y, yi) < 0 hold.

As described above, when comparing the esti-
mators of PMI and PHSIC from the viewpoint of
“methods of matching the given (x, y) and the ob-
served (xi, yi),” it is understood that PMI matches
them in an exact manner, while PHSIC smooths
the matching using kernels (similarity functions).

With this mechanism, even for completely un-
known pairs, it is possible to estimate the co-
occurrence strength by referring to observed pairs
through the kernels. Therefore, PHSIC is expected
to be robust to data sparsity and can be applied to
phrases and sentences.

Available Kernels for PHSIC In NLP, a vari-
ety of similarity functions (i.e., positive definite
kernels) are available. We can freely utilize such
resources, such as cosine similarity between sen-
tence embeddings. For a more detailed discussion,
see Appendix A.

5 Empirical Estimators of PHSIC

Recall that we have two types of empirical esti-
mator of PMI, the maximum likelihood estimator
(Equation (1)) and the RNN-based estimator (Equa-
tion (2)). In this section, we describe how to rapidly
estimate PHSIC from data. When using the linear
kernel or cosine similarity (e.g., cosine similarity
between sentence embeddings), PHSIC can be ef-
ficiently estimated in feature space (Section 5.1).
When using a nonlinear kernel such as the Gaussian
kernel, PHSIC can also be estimated efficiently in
data space via a simple matrix decomposition (Sec-
tion 5.2).

5.1 Estimation Using Linear Kernel or Cosine
When using the linear kernel or cosine similarity,
the estimator of PHSIC in feature space (14) is as
follows:
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P̂HSICfeature(x, y;D, k, `)

= (φ(x)−φ(x))>ĈXY (ψ(y)−ψ(y)) , (18)

where

φ(x) =

{
x (k(x, x′) = x>x′)
x/‖x‖ (k(x, x′) = cos(x, x′))

, (19)

φ(x) :=
1

n

n∑
i=1

φ(xi), ψ(y) :=
1

n

n∑
i=1

ψ(yi), (20)

ĈXY :=
1

n

n∑
i=1

φ(xi)ψ(yi)
>− φ(x)ψ(y)>. (21)

Generally in kernel methods, a feature map φ(·)
induced by a kernel k(·, ·) is unknown or high-
dimensional and it is difficult to compute estimated
values in feature space6. However, when we use
the linear kernel or cosine similarity, feature maps
can be explicitly determined (Equation (19)).

Computational Cost When learning Equa-
tion (18) with feature maps φ : X → Rd and
ψ : Y → Rd, computing the vectors φ(x), ψ(y) ∈
Rd and the matrix ĈXY ∈ Rd×d takes O(nd2)
time and O(nd) space (linear in the size of the
input, n). When estimating PHSIC(x, y), com-
puting φ(x), ψ(y) ∈ Rd and Equation (18) takes
O(d2) time (constant; does not depend on the size
of the input, n).

5.2 Estimation Using Nonlinear Kernels
When using a nonlinear kernel such as the Gaussian
kernel, it is necessary to estimate PHSIC in data
space. Using a simple matrix decomposition, this
can be achieved with the same computational cost
as the estimation in feature space. See Appendix B
for a detailed derivation.

6 Experiments

In this section, we provide empirical evidence for
the greater effectiveness of PHSIC than PMI, i.e.,
a very short learning time and robustness to data
sparsity. Among the many potential applications
of PHSIC, we choose two fundamental scenarios,
(re-)ranking/classification and data selection.
• In the ranking/classification scenario (measuring

the co-occurrence strength of new data pairs with
reference to observed pairs), PHSIC is applied

6 One of the characteristics of kernel methods is that an in-
tractable estimation in feature space is replaced with an effi-
cient estimation in data space.

as a criterion for the dialogue response selection
task (Section 6.2).

• In the data selection/filtering scenario (ordering
the entire set of observed data pairs according
to the co-occurrence strength), PHSIC is also
applied as a criterion for data selection in the
context of machine translation (Section 6.3).

6.1 PHSIC Settings

To take advantage of recent developments in rep-
resentation learning, we used several pre-trained
models for encoding sentences into vectors and
several kernels between these vectors for PHSIC.

Encoders As sentence encorders, we used two
pre-trained models without fine-tuning. First, the
sum of the word vectors effectively represents a
sentence (Mikolov et al., 2013a):

x=
∑

w∈xvec(w), y=
∑

w∈yvec(w). (22)

For vec(·), we used the pre-trained fastText
model7, which is a high-accuracy and popular word
embedding model (Bojanowski et al., 2017); mod-
els in 157 languages are publicly distributed (Grave
et al., 2018). Second, we also used a DNN-based
sentence encoder, called the universal sentence en-
coder (Cer et al., 2018), which utilizes the deep
averaging network (DAN) (Iyyer et al., 2015). The
pre-trained model for English sentences we used is
publicly available8.

Kernels As kernels between these vectors, we
used cosine similarity (cos)

k(x,x′) = cos(x,x′) (23)

and the Gaussian kernel (also known as the radial
basis function kernel; RBF kernel)

k(x,x′) = exp

(
−‖x− x′‖22

2σ2

)
, (24)

and similarly for `(y,y′). The experiments are ran
with hyperparameter σ = 1.0 for the RBF kernel,
and d = 100 for incomplete Cholesky decomposi-
tion (for more detail, see Section B).

6.2 Ranking: Dialogue Response Selection

In the first experiment, we applied PHSIC as a
ranking criterion of the task of dialogue response
7 https://fasttext.cc/docs/en/english-vectors.
html, https://fasttext.cc/docs/en/crawl-vectors.
html
8 https://www.tensorflow.org/hub/modules/google/
universal-sentence-encoder/1

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://www.tensorflow.org/hub/modules/google/universal-sentence-encoder/1
https://www.tensorflow.org/hub/modules/google/universal-sentence-encoder/1
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selection (Lowe et al., 2015); in the task, pairs com-
prising a context (previous utterance sequence) and
its response are collected from dialogue corpora
and the goal is to rank the candidate responses for
each given context sentence.

The task entails sentence sequences (very sparse
linguistic expressions); moreover, Li et al. (2016)
pointed out that (RNN-based) PMI has a positive
impact on suppressing dull responses (e.g., “I don’t
know.”) in dialogue systems. Therefore, PHSIC,
another co-occurrence measure, is also expected
to be effective for this. With this setting, where
the validity of PMI is confirmed, we investigate
whether PHSIC can replace RNN-based PMI in
terms of both learning time and robustness to data
sparsity.

Experimental Settings

Dataset For the training data, we gathered ap-
proximately 5× 105 reply chains from Twitter, fol-
lowing Sordoni et al. (2015)9. In addition, we ran-
domly selected {103, 104, 105} reply chains from
that dataset. Using these small subsets, we con-
firmed the effect of the difference in the size of the
training set (data sparseness) on the learning time
and predictive performance.

For validation and test data, we used a small
(approximately 2000 pairs each) but highly reliable
dataset created by Sordoni et al. (2015)10, which
consists only of conversations given high scores
by human annotators. Therefore, this set was not
expected to include dull responses.

For each dataset, we converted each context-
message-response triple into a context-response
pair by concatenating the context and message fol-
lowing Li et al. (2016). In addition, to convert the
test set (positive examples) to ten-choice multiple-
choice questions, we shuffled the combinations of
context and response to generate pseudo-negative
examples.

Evaluation Metrics We adopted the following
evaluation metrics for the task: (i) ROC-AUC (the
area under the receiver operating characteristic
curve), (ii) MRR (the mean reciprocal rank), and
(iii) Recall@{1,2}.

9 We collected tweets after 2017 for our training set to avoid
duplication with the test set, which contains tweets from the
year 2012.
10 https://www.microsoft.com/en-us/download/
details.aspx?id=52375

Config
Size of Training Set n

103 104 105 5×105

Dim. Init.

R
N

N
-P

M
I 300 fastText

Total 20.6 99.2 634.3 4042.5
P̂(y) 8.0 23.6 294.6 1710.1
P̂(y|x) 12.6 75.6 339.7 2332.4

1200 fastText

Total 49.0 162.0 1751.3 13054.9
P̂(y) 16.3 57.2 671.0 5512.1
P̂(y|x) 32.7 104.8 1080.3 7542.8

PH
SI

C

Encoder Kernel
fastText cos 0.0 0.1 0.5 2.8

DAN cos 0.0 0.1 0.4 1.8

Table 4: Learning time [s] for each model and each
size of training set for the dialogue response task. Each
row denotes a model; each column denotes the num-
ber of training data n. The text appended to each base-
line model denotes the number of dimension of hidden
layers (Dim.) and the method of initialization the em-
bedding layer (Init.). The text appended to each pro-
posed model denotes the pre-trained models used to en-
code sentences into vectors (Encoder) and the kernel
between these vectors (Kernel). The best result (the
shortest learning time) in each column is in bold.

Experimental Procedure We used the follow-
ing procedure: (i) train the model with a set of
context-response pairs D = {(xi, yi)}ni=1; (ii) for
each context sentence x in the test data, rank the
candidate responses {yj}10j=1 by the model; and (iii)
report three evaluation metrics.

Baseline Measures As baseline measures, both
(1) an RNN language model P̂RNN(y) (Mikolov
et al., 2010) and (2) a conditional RNN language
model P̂RNN(y|x) (Sutskever et al., 2014) were
trained, and (3) PMI based on these language mod-
els, RNN-PMI, was also used for experiments (see
Equation (2)). We trained these models with all
combinations of the following settings: (a) the num-
ber of dimensions of the hidden layers being 300
or 1200 and (b) the initialization of the embed-
ding layer being random (uniform on [−0.1, 0.1])
or fastText. For more detailed settings, see Ap-
pendix C.

Experimental Results
Learning Time Table 4 shows the experimental
results of the learning time11. Regardless of the
size of the training set n, the learning time for

11 The computing environment was as follows:
(i) CPU: Xeon E5-1650-v3 (3.5 GHz, 6 Cores);
(ii) GPU: GTX 1080 (8 GB).

https://www.microsoft.com/en-us/download/details.aspx?id=52375
https://www.microsoft.com/en-us/download/details.aspx?id=52375
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PHSIC is much shorter than that of the RNN-based
method. For example, even when the size of the
training set n is 5× 105, PHSIC is approximately
1400–4000 times faster than RNN-based PMI. This
is because the estimators of PHSIC are reduced
to a deterministic and efficient matrix calculation
(Section 5), whereas neural network-based models
involve the sequential optimization of parameters
via gradient descent methods.

Robustness to Data Sparsity Table 5 shows
the experimental results of the predictive perfor-
mance. When the size of the training data is small
(n=103, 104), that is, when the data is extremely
sparse, the predictive performance of PHSIC hardly
deteriorates while that of PMI rapidly decays as the
number of data decreases. This indicates that PH-
SIC is more robust to data sparsity than RNN-based
PMI owing to the effect of kernels. Moreover, PH-
SIC with the simple cosine kernel outperforms the
RNN-based model regardless of the number of data,
while the learning time of PHSIC is thousands of
times shorter than those of the baseline methods
(Section 6.2).

Additionally we report Spearman’s rank correla-
tion coefficient between models to verify whether
PHSIC shows similar behavior to PMI. See Ap-
pendix D for more detail.

6.3 Data Selection for Machine Translation

The aim of our second experiment was to demon-
strate that PHSIC is also beneficial as a criterion
of data selection. To achieve this, we attempted
to apply PHSIC to a parallel corpus filtering task
that has been intensively discussed in recent (neu-
ral) machine translation (MT, NMT) studies. This
task was first adopted as a shared task in the third
conference on machine translation (WMT 2018)12.

Several existing parallel corpora, especially
those automatically gathered from large-scale text
data, such as the Web, contain unacceptable
amounts of noisy (low-quality) sentence pairs that
greatly affect the translation quality. Therefore,
the development of an effective method for paral-
lel corpus filtering would potentially have a large
influence on the MT community; discarding such
noisy pairs may improve the translation quality and
shorten the training time.

We expect PHSIC to give low scores to excep-
tional sentence pairs (misalignments or missing
12 http://www.statmt.org/wmt18/
parallel-corpus-filtering.html

translations) during the selection process because
PHSIC assigns low scores to pairs that are highly
inconsistent with other pairs (see Section 4). Note
that applying RNN-based PMI to a parallel corpus
selection task is unprofitable since obtaining RNN-
based PMI also has an identical computational cost
for training a sequence-to-sequence model for MT,
and thus, we cannot expect a reduction of the total
training time.

Experimental Settings

Dataset We used the ASPEC-JE corpus13, which
is an official dataset used for the MT-evaluation
shared task held in the fourth workshop on Asian
translation (WAT 2017)14 (Nakazawa et al., 2017).
ASPEC-JE consists of approximately three million
(3M) Japanese–English parallel sentences from sci-
entific paper abstracts. As discussed by Kocmi
et al. (2017), ASPEC-JE contains many low-quality
parallel sentences that have the potential to signifi-
cantly degrade the MT quality. In fact, they empir-
ically revealed that using only the reliable part of
the training parallel corpus significantly improved
the translation quality. Therefore, ASPEC-JE is
a suitable dataset for evaluating the data selection
ability.

Model For our data selection evaluation, we se-
lected the Transformer architecture (Vaswani et al.,
2017) as our baseline NMT model, which is widely-
used in the NMT community and known as one of
the current state-of-the-art architectures. We uti-
lized fairseq15, a publicly available tool for neu-
ral sequence-to-sequence models, for building our
models.

Experimental Procedure We used the follow-
ing procedure for this evaluation: (1) rank all paral-
lel sentences in a given parallel corpus according
to each criterion, (2) extract the top K ranked par-
allel sentences, (3) train the NMT model using the
extracted parallel sentences, and (4) evaluate the
translation quality of the test data using a typical
MT automatic evaluation measure, i.e., BLEU (Pa-
pineni et al., 2002)16. In our experiments we evalu-
ated PHSIC with K = 0.5M and 1M.

13 http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
14 http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/
15 https://github.com/pytorch/fairseq
16 We used multi-bleu.perl in the Moses tool (https://
github.com/moses-smt/mosesdecoder).

http://www.statmt.org/wmt18/parallel-corpus-filtering.html
http://www.statmt.org/wmt18/parallel-corpus-filtering.html
http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/
https://github.com/pytorch/fairseq
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
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Models Config
Size of Training Set n

103 104 105 5× 105

Chance Level .50; .29; .10, .20 .50; .29; .10, .20 .50; .29; .10, .20 .50; .29; .10, .20

Dim. Init.

P̂RNN(y) 1200 fastText .50; .29; .10, .21 .50; .30; .11, .21 .50; .30; .10, .21 .50; .30; .13, .25

P̂RNN(y|x) 1200 fastText .50; .29; .10, .21 .50; .30; .10, .21 .52; .31; .11, .23 .54; .32; .13, .25

RNN-PMI
300 random .51; .30; .10, .21 .51; .30; .11, .22 .58; .35; .14, .29 .69; .46; .25, .42

fastText .51; .29; .09, .20 .56; .34; .15, .25 .66; .41; .20, .36 .76; .56; .36, .54

1200 random .50; .29; .11, .20 .51; .30; .10, .19 .57; .35; .14, .29 .70; .47; .26, .44
fastText .51; .30; .11, .20 .52; .32; .13, .23 .65; .42; .21, .36 .75; .54; .34, .52

Encoder Kernel

PHSIC
fastText cos .61; .38; .17, .33 .62; .40; .19, .34 .62; .40; .19, .34 .62; .40; .19, .34

DAN cos .77; .58; .40, .56 .78; .57; .39, .56 .78; .58; .41, .57 .78; .58; .40, .57

Table 5: Predictive performance for each model and each training set size for the dialogue response selection
task: ROC-AUC; MRR; Recall@1,2. The best result in each column is in bold. The other notation is the same as in
Table 4.

Selection Criteria
# of Selected Data K
0.5M 1M 3M

(all the training set) - - 41.02

Random 34.26 39.82 -

fast align 38.63 40.56 -

Encoder Kernel
PHSIC fastText RBF 38.95 40.95 -

Table 6: BLEU scores with the Transformer for each
data selection criterion and each size of selected data
K for the parallel corpus filtering task.“Random” rep-
resents the baseline method of selecting sentences at
random.

Baseline Measure As a baseline measure, we
utilize a publicly available script17 of fast align
(Dyer et al., 2013), which is one of the state-of-the-
art word aligner. We firstly used the fast align
for the training set D = {(xi, yi)}i to obtain
the word alignment between each sentence pair
(xi, yi), i.e., a set of aligned word pairs with its
probabilities. We then computed the co-occurrence
score of (xi, yi) with sentence-length normaliza-
tion, i.e., the average log probability of aligned
word pairs.

Experimental Results
Table 6 shows the results of our data selection eval-
uation. It is common knowledge in NMT that more
data gives better performance in general. However,
we observed that PHSIC successfully extracted ben-
eficial parallel sentences from the noisy parallel
17 https://github.com/clab/fast align

corpus; the result using 1M data extracted from the
3M corpus by PHSIC was almost the same as that
using 3M data (the decrease in the BLEU score
was only 0.07), whereas that by random extraction
reduced the BLEU score by 1.20.

This was actually a surprising result because PH-
SIC utilizes only monolingual similarity measures
(kernels) without any other language resources.
This indicates that PHSIC can be applied to a lan-
guage pair poor in parallel resources. In addition,
the surface form and grammatical characteristics
between English and Japanese are extremely differ-
ent18; therefore, we expect that PHSIC will work
well regardless of the similarity of the language
pair.

7 Related Work

Dependence Measures Measuring indepen-
dence or dependence (correlation) between two
random variables, i.e., estimating dependence
from a set of paired data, is a fundamental task in
statistics and a very wide area of data science. To
measure the complex nonlinear dependence that
real data has, we have several choices.

First, information-theoretic MI (Cover and
Thomas, 2006) and its variants (Suzuki et al., 2009;
Reshef et al., 2011) are the most commonly used
dependence measures. However, to the best of our
knowledge, there is no practical method of com-
puting MIs for large-multi class high-dimensional
18 For example, word order; English is an SVO (subject-verb-
object) language and Japanese is an SOV (subject-object-verb)
language.

https://github.com/clab/fast_align
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(having a complex generative model) discrete data,
such as sparse linguistic data.

Second, several kernel-based dependence mea-
sures have been proposed for measuring nonlin-
ear dependence (Akaho, 2001; Bach and Jordan,
2002; Gretton et al., 2005). The reason why kernel-
based dependence measures work well for real
data is that they do not explicitly estimate den-
sities, which is difficult for high-dimensional data.
Among them, HSIC (Gretton et al., 2005) is pop-
ular because it has a simple estimation method,
which is used for various tasks such as feature se-
lection (Song et al., 2012), dimensionality reduc-
tion (Fukumizu et al., 2009), and unsupervised ob-
ject matching (Quadrianto et al., 2009; Jagarlamudi
et al., 2010). We follow this line.

Co-occurrence Measures First, In NLP, PMI
(Church and Hanks, 1989) and its variants (Bouma,
2009) are the de facto co-occurrence measures be-
tween dense linguistic expressions, such as words
(Bouma, 2009) and simple narrative-event expres-
sions (Chambers and Jurafsky, 2008). In recent
years, positive PMI (PPMI) has played an impor-
tant role as a component of word vectors (Levy and
Goldberg, 2014).

Second, there are several studies in which the
pairwise ranking problem has been solved by us-
ing deep neural networks (DNNs) in NLP. Li et al.
(2016) proposed a PMI estimation using RNN lan-
guage models; this was used as a baseline model
in our experiments (see Section 6.2). Several
studies have used DNN-based binary classifiers
modeling P(C = positive | (x, y)) to solve the
given ranking problem directly (Hu et al., 2014;
Yin et al., 2016; Mueller and Thyagarajan, 2016)
(these networks are sometimes called Siamese neu-
ral networks). Our study focuses on comparing
co-occurrence measures. It is unknown whether
Siamese NNs capture the co-occurrence strength;
therefore we did not deal with Siamese NNs in this
paper.

Finally, to the best of our knowledge, Yokoi et al.
(2017)’s paper is the first study that suggested con-
verting HSIC to a pointwise measure. The present
study was inspired by their suggestion; here, we
have (i) provided a formal definition (population)
of PHSIC; (ii) analyzed the relationship between
PHSIC and PMI; (iii) proposed linear-time estima-
tion methods; and (iv) experimentally verified the
computation speed and robustness to data sparsity
of PHSIC for practical applications.

8 Conclusion

The NLP community has commonly employed
PMI to estimate the co-occurrence strength be-
tween linguistic expressions; however, existing
PMI estimators have a high computational cost
when applied to sparse linguistic expressions
(Section 1). We proposed a new kernel-based
co-occurrence measure, the pointwise Hilbert–
Schmidt independent criterion (PHSIC). As well
as defining PMI as the contribution to mutual in-
formation, PHSIC is defined as the contribution to
HSIC; PHSIC is intuitively a “kernelized variant of
PMI” (Section 3). PHSIC can be applied to sparse
linguistic expressions owing to the mechanism of
smoothing by kernels. Comparing the estimators
of PMI and PHSIC, PHSIC can be interpreted as
a smoothed variant of PMI, which allows various
similarity metrics to be plugged in as kernels (Sec-
tion 4). In addition, PHSIC can be estimated in
linear time owing to the efficient matrix calculation,
regardless of whether we use linear or nonlinear
kernels (Section 5). We conducted a ranking task
for dialogue systems and a data selection task for
machine translation (Section 6). The experimen-
tal results show that (i) the learning of PHSIC was
completed thousands of times faster than that of the
RNN-based PMI while outperforming it in ranking
accuracy (Section 6.2); and (ii) even when using a
nonlinear kernel, PHSIC can be applied to a large
dataset. Moreover, PHSIC reduces the amount of
training data to one third without sacrificing the
output translation quality (Section 6.3).

Future Work Using the PHSIC estimator in fea-
ture space (Equation (18)), we can generate the
most appropriate ψ(y) for a given φ(x) (uniquely,
up to scale). That is, if a DNN-based sentence de-
coder is used, y (a sentence) can be restored from
ψ(y) (a feature vector) so that generative models
of strong co-occurring sentences can be realized.
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A Available Kernels for PHSIC

Similarity between Sentence Vectors A variety
of vector representations of phrases and sentences
based on the distributional hypothesis have recently
been proposed, including sentence encoders (Kiros
et al., 2015; Dai and Le, 2015; Iyyer et al., 2015;
Hill et al., 2016; Cer et al., 2018) and the sum of
word embeddings; it is known as additive composi-
tionality (Mitchell and Lapata, 2010; Mikolov et al.,
2013a; Wieting et al., 2015) that we can express
the meaning of phrases and sentences well with
the sum of word vectors (e.g., word2vec (Mikolov
et al., 2013b), GloVe (Pennington et al., 2014), and
fastText (Bojanowski et al., 2017)). Note that var-
ious pre-trained models of sentence encoders and
word embeddings have also been made available.

The cosine of these vectors, which is a positive
definite kernel, can be used as a convenient and
highly accurate similarity function between phrases
or sentences. Other major kernels can also be used,
such as the RBF kernel, the Laplacian kernel, and
polynomial kernels.

Structured Kernels Various structured kernels
for NLP, such as tree kernels, which capture fine
structure of sentences such as syntax, were devised
in the support vector machine era (Collins and
Duffy, 2002; Bunescu and Mooney, 2006; Mos-
chitti, 2006).

Combinations We can freely combine the previ-
ously mentioned kernels because the sum and the
product of positive definite kernels are also posi-
tive definite kernels (Shawe-Taylor and Cristianini,
2004, Proposition 3.22).

B Derivation of Fast PHSIC Estimation
in Data Space

Although estimators of HSIC and PHSIC depend
on kernels k, ` and data D, hereinafter, we use the
following notation for the sake of simplicity:

ĤSIC(X,Y ) := ĤSIC(X,Y ;D, k, `), (25)

P̂HSIC(x, y) := P̂HSIC(x, y;D, k, `). (26)

Naı̈ve Estimation Fist, an estimator of PHSIC
in the data space (15) is

P̂HSICkernel(x, y)=(k − k)>( 1nH)(`− `), (27)

where k := (k(x, x1), . . . , k(x, xn))
> ∈ Rn, so

as `; and vector k := 1
nK1 denotes empirical

mean of {ki}ni=1, so as `. This estimation has a

large computational cost. When learning, comput-
ing the vectors k, ` takes O(n2) time and O(n)
space. When estimating PHSIC, computing k, `
and multiplying the matrix 1

nH takes O(n) time.

Fast Estimation via Incomplete Cholesky De-
composition Equation (27) has a large compu-
tational cost because it is necessary to construct
the Gram matrices K and L ∈ Rn×n. In kernel
methods, several methods have been proposed for
approximating Gram matrices at low cost with-
out constructing them explicitly, such as incom-
plete Cholesky decomposition (Fine and Schein-
berg, 2001).

By incomplete Cholesky decomposition, from
data points {x1, . . . , xn} ⊆ X and a positive def-
inite kernel k : X × X → R, a matrix A =
(a1, . . . ,an)

> ∈ Rn×d (d � n) can be obtained
with O(nd2) time complexity. This makes it possi-
ble to approximate the Gram matrix K by vectors
ai ∈ Rd without configuring the entire of K:

a>i aj ≈ k(xi, xj) (28)

AA> ≈ K. (29)

Also, for HSIC, an efficient approximation
method utilizing incomplete Cholesky decompo-
sition has been proposed (Gretton et al., 2005,
Lemma 2):

ĤSICICD(X,Y ) =
1

n2
‖(HA)>B‖2F, (30)

where A = (a1, . . . ,an)
> ∈ Rn×d is a matrix

satisfying AA> ≈ K computed via incomplete
Cholesky decomposition, so as B (BB> ≈ L).
Equation (30) can be represented in the form of the
expectation on data points:

ĤSICICD(X,Y )=
1

n

n∑
i=1

[
(ai−a)>ĈICD(bi−b)

]
(31)

ĈICD :=
1

n
(HA)>B ∈ Rd×d, (32)

where vector a := 1
nA
>1 ∈ Rd denotes empirical

mean of {ai}ni=1, so as b := 1
nB
>1.

Recall that PHSIC(x, y) is the contribution of
(x, y) to HSIC(X,Y ) (see Section 3.3); PHSIC
then can be efficiently estimated by the shaded part
of Equation (31):

P̂HSICICD(x, y)= (a−a)>ĈICD(b−b) . (33)

Here, the vector a ∈ Rd corresponding to the new
x can be calculated by “performing from halfway”
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Models Config
(A) (B) (C) (D)

Dim. Init.

RNN-PMI
300 fastText (A) – .42 .12 .27

1200 fastText (B) .42 – .12 .26

Encoder Kernel

PHSIC
fastText cos (C) .12 .12 – .16

DAN cos (D) .27 .26 .16 –

Table 7: Spearman’s ρ between the co-occurrence
scores computed by the models in the dialogue re-
sponse selection task (Section 6.2). The size of training
set n is 5 × 105. The other notation is the same as in
Table 4.

on the incomplete Cholesky decomposition algo-
rithm. Let x(1), . . . , x(d) denote the dominant xis
adopted during decomposition algorithm. The jth
element of a can be computed as follows:

a[j]=
[
k(x, x(j))−

j−1∑
m=1

a[m]Ajm

]
/Ajj , (34)

so as b ∈ Rd corresponding to the new y. The
estimation via incomplete Cholesky decomposi-
tion (33) is extremely efficient compared to the
naive estimation (27); Equation (33)’s computa-
tional complexity is equivalent to the estimation in
the feature space (18).

C Detailed Settings for Learning RNNs

Detailed settings for learning RNNs used in this
research are as follows.
• Hidden layers: single layer LSTMs (Hochreiter

and Schmidhuber, 1997)
• Vocabulary: words with a frequency: 10 or more

(n = 5× 105), 2 or more (otherwise)
• Dropout rate: 0.1 (300-dim), 0.3 (1200-dim)
• Batch size: 64
• Max epoch number: 5 (n = 5× 105), 30 (other-

wise)
• Deep learning framework: Chainer (Tokui et al.,

2015)

D Correlation Between Models
in Dialogue Response Selection Task

Table D shows Spearman’s rank correlation coef-
ficient (Spearman’s ρ) between the co-occurrence
scores on the test set computed by the models in the
dialogue response selection task (Section 6.2). This
shows that the behavior of RNN-based PMI and

PHSIC are considerably different. Furthermore, in-
terestingly, the behavior of PHSICs using different
kernels is also different. Possible reasons for these
observations are as follows: (1) the difference in
the dependence measures (MI or HSIC) on which
each model is based; (2) the validity or numerical
stability of estimating PMI with RNN language
models; and (3) differences in the behavior of PH-
SIC originating from differences in the plugged in
kernels. A more detailed analysis of the compati-
bility between tasks and measures (or kernels) is
attractive future work.


