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Abstract

Recently, Reinforcement Learning (RL) ap-
proaches have demonstrated advanced perfor-
mance in image captioning by directly op-
timizing the metric used for testing. How-
ever, this shaped reward introduces learning
biases, which reduces the readability of gen-
erated text. In addition, the large sample space
makes training unstable and slow. To allevi-
ate these issues, we propose a simple coher-
ent solution that constrains the action space
using an n-gram language prior. Quantita-
tive and qualitative evaluations on benchmarks
show that RL with the simple add-on module
performs favorably against its counterpart in
terms of both readability and speed of con-
vergence. Human evaluation results show that
our model is more human readable and grace-
ful. The implementation will become publicly
available upon the acceptance of the paper1.

1 Introduction

Image captioning (Farhadi et al., 2010; Kulkarni
et al., 2011; Yao et al., 2017; Lu et al., 2016; Dai
et al., 2017; Li et al., 2017) aims at generating nat-
ural language descriptions of images. Advanced
by recent developments of deep learning, many
captioning models rely on an encoder-decoder
based paradigm (Vinyals et al., 2015), where the
input image is encoded into hidden representations
using a Convolutional Neural Network (CNN) fol-
lowed by a Recurrent Neural Network (RNN) de-
coder to generate a word sequence as the caption.
Further, the decoder RNN can be equipped with
spatial attention mechanisms (Xu et al., 2015) to
incorporate precise visual contexts, which often
yields performance improvements empirically.

Although the encoder-decoder framework can
be effectively trained with maximum likelihood
estimation (MLE) (Salakhutdinov, 2010), recent

1https://github.com/tgGuo15/PriorImageCaption

research (Ranzato et al., 2015) have pointed out
that the MLE based approaches suffer from the
so-called exposure bias problem. To address this
problem, (Ranzato et al., 2015) proposed a Re-
inforcement Learning (RL) based training frame-
work. The method, developed on top of the RE-
INFORCE algorithm (Williams, 1992), directly
optimizes the non-differentiable test metric (e.g.
BLEU (Papineni et al., 2002), CIDEr (Vedan-
tam et al., 2015), METEOR (Banerjee and Lavie,
2005) etc.), and achieves promising improve-
ments. However, learning with RL is a notoriously
difficult task due to the high-variance of gradient
estimation. Actor-critic (Sutton and Barto, 1998)
methods are often adopted, which involves train-
ing an additional value network to predict the ex-
pected reward. On the other hand, (Rennie et al.,
2017) designed a self-critical method that utilizes
the output of its own test-time inference algorithm
as the baseline to normalize the rewards, which
leads to further performance gains.

Beside to the high-variance problem, we notice
that there are two other drawbacks of RL-based
captioning methods that are often overlooked in
the literature. First, while these methods can di-
rectly optimize the non-differentiable rewards and
achieve high test scores, the generated captions
contain many repeated trivial patterns, especially
at the end of the sequence. Table 1 shows ex-
amples of bad-endings generated by a self-critical
based RL algorithm (model details refer to Sec-
tion 4). Specifically, 46.44% generated captions
end with phrases as “with a”, “on a”, “of a”, etc.
(for detailed statistics see Appendix A), on the
MSCOCO (Chen et al., 2015) validation set with
the standard data splitting by (Karpathy and Li,
2015). The reason is that the shaped reward func-
tion biases the learning. In Figure 1, we see these
additive patterns at the end of captions, although
make no sense to humans, yield to a higher re-
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Image ID Generated sentence CIDEr
262262 a tall building with a clock tower with a 160.1
262148 a man doing a trick on a skateboard on a 146.5
52413 a person holding a cell phone in a 132.4
393225 a bow of soup with carrots and a 118.5

Table 1: Examples of bad sequences generated by a
self-critical based RL baseline. Blue color indicates
the bad ending. Sequences with bad endings have high
CIDEr scores.

ward. Empirically, removing these endings re-
sults in a huge performance drop of around 6%.
(Paulus et al., 2017) has also reported that in ab-
stractive summarization, using RL only achieves
high ROUGE (Lin, 2004) score, yet the human-
readability is very poor. The second drawback is
that RL-based text generation is sample-inefficient
due to the large action space. Specifically, the
search space is of size O(|V|T ), where V is a set
of words, T is the sentence length, and | · | denotes
the cardinality of a set. This often makes training
unstable and converge slowly.

In this work, to tackle these two issues, we pro-
pose a simple yet effective solution by introducing
coherent language constraints on local action se-
lections in RL. Specifically, we first obtain word-
level n-gram (Kneser and Ney, 1995) model from
the training set and then use it as an effective prior.
During the action sampling step in RL, we reduce
the search space of actions based on the constitu-
tion of the previous word contexts as well as our
n-gram model. To further promote samples with
high rewards, we sample multiple sentences dur-
ing the training and update the policy based on
the best-rewarded one. Such simple treatments
prevent the appearance of bad endings and expe-
dite the convergence while maintaining compara-
ble performance to the pure RL counterpart. In ad-
dition, the proposed framework is generic, which
can be applied to many different kinds of neural
structures and applications.

2 Model Architecture

Encoder-Decoder Model: We adopt a similar
structure as GNIC (Vinyals et al., 2015), which
first encodes an image I to a dense vector hI
by CNN. The vector hI is then fed as the input
to an LSTM-based (Hochreiter and Schmidhuber,
1997) language model decoder. At each step t, the
LSTM receives the previous outputwt−1 as the in-
put; computes the hidden state ht; and predicts the

Figure 1: A demonstration of the sequence with bad
ending has higher BLEU and CIDEr scores compared
to the one without.

next word wt as below:

ht = LSTM(ht−1, wt−1), lt = Wlht

wt ∼ softmax(lt),
(1)

where w0 = hI and h0 and c0 are initialized to
zero. The generation ends if a special token *end*
is predicted.

Attention Model: Instead of utilizing a static
representation of the image, attention mechanism
dynamically reweights the spatial features from
CNN to focus on the different region of the im-
age at each word generation. We specifically con-
sider the standard architecture used in (Xu et al.,
2015), where A = {a1, a2, ..., aL} is the spatial
feature set and each ai ∈ RD corresponds to fea-
tures extracted at different image locations. Then
the hidden states of the LSTM is computed as

eti = fatt(ai, ht−1), βti =
exp(eti)∑L
k=1 exp(etk)

,

zt =

L∑
k=1

βtkak, ht = LSTM([ht−1, zt], wt−1),

(2)
where fatt is an attention model, which we use
a single fully connected layer conditioned on the
previous hidden state. Once ht is obtained, the
word generation is same as equation (1).

Sequence Generation with RL: We follow the
training procedure of (Rennie et al., 2017). The
decoder LSTM can be viewed as a “policy” de-
noted by pθ, where θ is the set of parameters of the
network. At each time step t, the policy chooses
an action by generating a word wt and obtains a
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new “state” (i.e. hidden states of LSTM, attention
weights, etc.). Once the end token is generated, a
“reward” r is given based on the score (e.g. CIDEr
or BLEU) of the predicted sentence. The goal is to
maximize the expected reward as

L(θ) = Ews∼pθ [r(w
s)], (3)

where ws = {ws1, ws2, ..., wsT } are sampled words
at every time step. The REINFORCE algorithm
(Williams, 1992) provides unbiased gradient esti-
mation of θ as

∇θL(θ) ≈ r(ws)∇θlog pθ(w
s), (4)

using a single sequence.

Variance Reduction with Self-Critical: We re-
duce the variance of the gradient estimator by us-
ing the self-critical approach as

∇θL(θ) ≈ (r(ws)− r(w̄))∇θlog pθ(w
s), (5)

where w̄t is the baseline reward calculated by the
current model under the inference algorithm used
at test time defined as

w̄t = arg max
wt

pθ(wt|ht). (6)

Then, sequences have rewards higher than w̄ will
be increased in probability, while samples result in
lower reward will be suppressed.

3 Prior Language Constraint with
N -Gram Model

Method: We collect all n-grams (n=3 or 4 in our
experiments) from a corpus of captions. We use
the training set from MSCOCO to avoid the usage
of the additional resource. Thus, a fair comparison
to previous methods is guaranteed. Then, we fil-
ter the n-grams with frequencies lower than five.
The set of remaining ones is denoted as F . Dur-
ing training, given the previous tokens predicted
by the decoder, we constraint the sample space the
current prediction by

wt ∼ softmax(pθ(w
s
t ) ·αt), (7)

where αi is an indicator vector whose length is the
vocabulary size |V| and its elements are non-zero
only if the corresponding word and the previous
(n− 1)-gram constitute a valid n-gram in F as

αt[k] =

{
1 if {wst−n+1, · · · , wst−1, k} ∈ F
0 otherwise

. (8)

Figure 2: Training time of models with (right) and
without (left) spatial attention.

Discussion: The key motivation for applying the
above constraint is two-fold: (1) this ensures gen-
erated captions always formed by valid n-grams,
which provides us a direct way of eliminating the
repeated common phrases and bad-endings like
the ones in Table 1; and (2) this shrinks the size
of action space, which makes the training con-
verges much faster. For MSCOCO, action space is
changed from more than 9,000 to 56 on average.

4 Experiments

Dataset: We perform both quantitative and qual-
itative evaluations on MSCOCO dataset. The
dataset contains 123,287 images and each image
has at least five human captions. To seek fair com-
parison to others, we use the publicly available
splits, which contains 82,783 training, 5,000 vali-
dation and 5,000 testing images.

Implementation Details: Our implementations
are based on the publicly project.2 We use an Ima-
geNet pre-trained 101-layered ResNet3 (He et al.,
2016) to extract visual features. We consider
two types (see Section 2) of architectural train-
ing with RL: (1) the plain encoder-decoder, and
(2) the encoder-decoder with attention. For the
former one, we represent each image by a 2,048-
dimension vector by extracting the features from
the last convolutional layer with average pooling.
For the attention model, we apply spatial adaptive
max pooling and the output feature map has the
size of 14 × 14 × 2, 048. At each time step, the
attention model produces weights over 196 spatial
locations. The size of word embeddings and the
hidden dimension of the LSTM are set to 512 for
all experiments. More details are in Appendix B.

Compared Methods: We report our results in
four different settings, which include the combina-
tions of with/without attention and using tri-/four-

2https://github.com/ruotianluo/self-critical.pytorch
3https://github.com/KaimingHe/deep-residual-networks



754

Methods CIDEr BLEU4 ROUGE-L METEOR BadEnd-Rate

Pu
bl

is
he

d (Karpathy and Li, 2015) 66.0 23.0 - - 19.5 0.0
(Xu et al., 2015) - - 25.0 - - 23.0 0.0

MIXER (Ranzato et al., 2015) - - 29.1 - - - - - -
(Ren et al., 2017) 93.7 30.4 52.5 25.1 - -

Im
pl

em
en

te
d

ED-XE 89.8 28.0 51.7 24.2 0.0
Att-XE 95.1 29.2 52.8 24.8 0.0

ED-SC (Rennie et al., 2017) 101.8 / 96.1 31.2 / 30.3 53.1 / 52.9 24.6 / 23.9 46.4% / 0.0
Att-SC (Rennie et al., 2017) 105.7 / 100.8 32.3 / 30.8 53.8 / 53.1 25.2 / 24.1 43.7% / 0.0

Ours-ED-4-gram 96.7 29.1 51.4 23.9 0.0
Ours-Att-4-gram 102.0 30.2 53.6 25.6 0.0
Ours-ED-tri-gram 95.1 29.8 52.4 24.1 0.0
Ours-Att-tri-gram 100.4 28.7 51.8 25.0 0.0

Table 2: Quantitative evaluation of our method compared to baselines on MSCOCO. Blue text indicates the per-
formance after adjustments and red text indicates the best performance.

gram. We directly compare with our counterparts
that have the same structures but no n-gram mod-
ules. Specifically, they are encoder-decoder based
self-critical (ED-SC), and the one with attention
(Att-SC). In addition, since our experimental setup
is almost identical to many existing works, we
also include their reported results, which include
(Karpathy and Li, 2015; Xu et al., 2015; Ranzato
et al., 2015; Ren et al., 2017). At last, we also in-
clude the performance of our warm-start models -
the models trained by MLE (Vinyals et al., 2015)
using cross entropy (ED-XE and Att-XE) - as a
reference.

Evaluation Metric and Performance Adjust-
ment: We report performance on FIVE metrics:
BLEU4, METEOR, ROUGE-L,CIDEr and Bad
Ending Rate. For the self-critical baselines, we
report two sets of performances: 1) the captions
directly generated by the model; and 2) the se-
quences of removing bad endings of the generated
captions, based on the distribution in Appendix A.

Results: Table 2 summarizes the performances
of our models compared with other baselines.
We see that without performance adjustments, the
self-critical RL with attention performs the best.
However, since it contains many bad endings, our
method achieves supreme results after these re-
peated patterns are removed. We also provide
some qualitative comparison between our atten-
tion model and self-critical in Appendix C.

Efficient Training: We show that constraining
the action space leads to a more efficient RL train-
ing in Figure 2. CIDEr score is calculated after
removing bad endings. We plot three curves using
architectures with/without attentions. The Green
curve is the self-critical, the blue one is with prior-
itized sampling, and the red one is our final model

with 4-gram constraint. We observe that we can
speed up almost twice than its counterpart.

Online Evaluation: We also evaluate our atten-
tion model on COCO online server4 and results
are reported in Table 3. Att-SC gets a higher score
than ours in the online test, however, with a lot of
bad endings where the bad ending ratio is 72.7%.

Human Evaluation: We also implement human
evaluation on the results generated by our Att-4-
gram compared with Att-SC. We randomly select
200 images from the test set. Each time, one image
with two captions generated by two different mod-
els are shown to the volunteer and three choices
are provided: (1) the first one is better; (2) both
are the same level; (3) the second one is better.
See more details in Appendix D. In Table 5, our
model wins 400 times and performs more closely
to human than Att-SC.

Evaluating Captions Diversity: To further
evaluate the quality of the caption model, we fol-
low (Shetty et al., 2017) to measure the diversity
of the generated captions. We compute the nov-
elty score of our 4-gram model, which is defined
as whether a particular caption has been observed
in the training set. When two models have the
same level predictive performances (e.g. CIDEr),
a higher novelty score usually indicates more di-
verse generations. We conduct the experiment five
times and report the averaged novelty score of our
4-gram model and the Att-SC, which are 77.83%
and 59.28% respectively. As the reference, the
METEOR and novelty scores reported in (Shetty
et al., 2017) are 23.6, and 79.84%, respectively.

4https://competitions.codalab.org/competitions/3221
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Methods CIDEr BLEU4 METEOR ROUGE-L BadEnd-Rate
Att-SC 109.3 61.9 32.9 67.7 72.7%

Att-4-gram 104.7 59.8 33.0 66.2 0
Att-LSTM-LM 104.3 61.0 33.9 68.5 0

Table 3: Quantitative results on online server (C40 test).Red text indicates the best performance.

Methods CIDEr BLEU4 ROUGE-L METEOR BadEnd-Rate
Att-SC (Rennie et al., 2017) 105.7 / 100.8 32.3 / 30.8 53.8 / 53.1 25.2 / 24.1 43.7% / 0.0

Ours-ED-4-gram 96.7 29.1 51.4 23.9 0.0
Ours-Att-4-gram 102.0 30.2 53.6 25.6 0.0
ED-LSTM-LM 99.4 30.9 52.7 24.6 0.0
Att-LSTM-LM 105.9 32.8 54.1 25.4 0.0

Table 4: Quantitative evaluation with our extension methods on MSCOCO. Blue text indicates the performance
after adjustments and red text indicates the best performance.

Methods 4-gram win Same level 4-gram lose
4-gram VS SC 400 349 251

Table 5: Human evaluation results for attention models

5 Neural Language Models Extension

Inspired by the paper reviews, we extend our
model by adopting another language prior to eval-
uating the effectiveness of constraining action
space during REINFORCE training. We train our
neural language model based on the MSCOCO
caption corpus with an LSTM unit.

LSTM Language Model: Given a word series
{w0, w1, ..., wT }, the target of a neural language
model is to maximize the log-likelihood as:

max
θ

log pθ(w0, w1, ..., wT ). (9)

We model pθ(w0, w1, ..., wT ) by an LSTM unit:

log pθ(w0, ..., wT ) =
T∑
t=1

log pθLM (wt|ht−1)

ht = LSTMLM (ht−1, wt−1),
(10)

where w0 is set to a *start* token for all sentences.
h0 and c0 are initialized to zero. After obtain-
ing the optimized θ∗LM , we can use it to constrain
the action space similar to the N-gram language
model. Specifically, given previous t− 1 sampled
words from current caption model, we compute
pθ∗LM (wt|w0, w1, ..., wt−1), which is the probabil-
ity of the next word over the entire vocabulary. We
then apply a simple thresholding rule to form a
subset of valid words for the captioning model.

αt[k] =

{
1 if {k} ∈ F
0 otherwise

,where

F ={wt|pθ∗LM (wt|w0, w1, ..., wt−1) ≥ η}.
(11)

η is a hyperparameter.

Additional Experiments The word embedding
size and hidden dimension of θLM are set to 256
for this experiment. We use Adam optimizer for
training language model and the learning rate is
set to 0.001. The batch size of language model
training and REINFORCE training are both set to
20 in the experiments. η is set to 0.00005 for the
first word and increases by a factor of two for ev-
ery timestep. We report our results in two settings,
which include the combination of with/without at-
tention for the caption model (termed ED-LSTM-
LM and Att-LSTM-LM). We use the same warm-
start models as in the N-gram experiments. The
performances are summarized in Table 4 and Ta-
ble 3. We see that the neural language model
provides further performance gains compared to
the N-gram model without introducing any bad-
endings. This is because that the LSTM language
model covers a larger context than N-gram, which
helps to generate more accurate captions.

6 Conclusion

In this paper, we present a simple but efficient ap-
proach to RL-based image caption by consider-
ing n-gram language prior to constrain the action
space. Our method converges faster and achieves
better results than self-critical setting after remov-
ing bad endings in the generated captions. In ad-
dition, captions generated by our models are more
human readable and graceful. We further extend
our ideas using neural language model. The re-
sults demonstrate that the captioning models are
more beneficial from the neural language model
than the N-gram model.
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