
Proceedings of the 2017 EMNLP System Demonstrations, pages 85–90
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

HeidelPlace: An Extensible Framework for Geoparsing

Ludwig Richter and Johanna Geiß and Andreas Spitz and Michael Gertz
Institute of Computer Science, Heidelberg University

Im Neuenheimer Feld 205, 69120 Heidelberg
ludwig.richter@posteo.de

{geiss,spitz,gertz}@informatik.uni-heidelberg.de

Abstract

Geographic information extraction from
textual data sources, called geoparsing, is
a key task in text processing and central
to subsequent spatial analysis approaches.
Several geoparsers are available that sup-
port this task, each with its own (often lim-
ited or specialized) gazetteer and its own
approaches to toponym detection and res-
olution. In this demonstration paper, we
present HeidelPlace, an extensible frame-
work in support of geoparsing. Key fea-
tures of HeidelPlace include a generic
gazetteer model that supports the integra-
tion of place information from different
knowledge bases, and a pipeline approach
that enables an effective combination of
diverse modules tailored to specific geop-
arsing tasks. This makes HeidelPlace a
valuable tool for testing and evaluating
different gazetteer sources and geoparsing
methods. In the demonstration, we show
how to set up a geoparsing workflow with
HeidelPlace and how it can be used to
compare and consolidate the output of dif-
ferent geoparsing approaches.

1 Introduction

The ever-growing amount of available text data
raises the need for automated Information Extrac-
tion (IE) to obtain structured information from
text. A central step in such an extraction proce-
dure is the semantic annotation of the contained
information (Zhang and Rettinger, 2014). For
tasks such as event detection or content analysis,
temporal and spatial information play a crucial
role. In particular, the linking of place mentions
to geographic databases, so-called geoparsing, is
an integral element of textual analyses (Andogah

et al., 2012). Geoparsing describes the process of
identifying place mentions in text (so called to-
ponyms) and linking them to unambiguous spa-
tial references. Consider the example text “Hei-
delberg was founded in 1196 AD”, which con-
tains the place mention “Heidelberg”. Typically,
geoparsing involves three components: gazetteers,
toponym recognition and toponym resolution. A
Gazetteer is a dictionary of geographic features
that serves as a knowledge repository for places
of interest. Toponym recognition deals with the
detection of place names in documents. For in-
stance, “Heidelberg” can be detected by match-
ing candidate strings to a gazetteer of city names.
With the help of toponym resolution (also called
toponym linking), each identified toponym is then
matched to an unambiguous spatial reference (e.g.,
latitude and longitude coordinates). In our ex-
ample above, the spatial reference may be taken
from the matched gazetteer entry. Due to ambigu-
ous names of mentioned places, this task often
requires toponym disambiguation. For instance,
“Heidelberg” refers to several places world-wide.
If the gazetteer contains founding dates, we can
infer that the text refers to Heidelberg in Germany.

Linguistic peculiarities, as well as the relevance
of different places and place features, greatly vary
with the application domain. Hence, geopars-
ing is a non-trivial process that requires fine tun-
ing according to the respective use-case. As a
result, a variety of geoparsing approaches have
been proposed (Hoffart, 2015; Leidner, 2007;
Lieberman and Samet, 2011, 2012), many of
which are domain-specific. There exist sev-
eral specialized gazetteers, such as GeoNames1,
a large gazetteer for a broad spectrum of place
types, OpenStreetMap2, a community-built geo-

1http://geonames.org
2http://openstreetmap.org

85



graphic knowledge-base, and Pleiades3, a historic
gazetteer. However, reusing and comparing exist-
ing geoparsers is often difficult, since they gen-
erally come with their own gazetteer and pro-
cessing pipeline. Configurability and extensibil-
ity are rarely considered. As a result, it is of-
ten problematic to adjust a geoparser to other ap-
plication domains or to include other algorithms.
Especially the adjustment to a different gazetteer
source tends to be troublesome. Each gazetteer
uses its own data model and most geoparsers use
the data model of their primary gazetteer resource.
If the underlying gazetteer data model is not de-
signed to be flexible, or if the geoparser is too
tightly coupled with a specific gazetteer source, a
reuse may not be possible.

CLAVIN4, an open-source geoparsing frame-
work, strives to overcome these issues by pro-
viding an extensible toolbox of geoparsing meth-
ods. However, the framework strongly relies on
GeoNames as gazetteer, which is often not an ideal
choice. Switching to another data source would
entail a significant rewrite of the code base.

Thus, a generalized gazetteer data model is re-
quired that is compatible with different gazetteer
sources. Only then can significant software mod-
ifications due to gazetteer specific data modeling
be avoided, and the adaptation work be reduced to
the transformation of data sources to the generic
data model. While CLAVIN’s modular design al-
lows to add new modules, its processing pipeline
is too restrictive to enable complex geoparsing ap-
proaches that rely on information exchange be-
tween different modules.

Contributions. In this work, we present Hei-
delPlace, a geoparsing framework that includes a
generic gazetteer model and an implementation
of the entire geoparsing process. The generic
gazetteer model supports the integration and man-
agement of heterogeneous, large-scale gazetteer
sources, and is flexible enough to integrate con-
cepts from different gazetteers. A variety of
concepts proposed in gazetteer research are in-
cluded (Hill, 2000; Keler et al., 2009; Moura
and Davis, 2014), which allow the description of
places in a comprehensive and yet flexible manner.

The extensibility of HeidelPlace is realized in
two ways. First, modularization is a central design
aspect, with different geoparsing approaches be-

3http://pleiades.stoa.org
4https://clavin.bericotechnologies.com

ing represented as modules. They can be used and
combined in a plug-in like manner, allowing the
integration of newly developed modules. Second,
interactions between the different components are
handled transparently by the framework, using an
annotation-based processing pipeline. Therefore,
the user can focus on obtaining appropriate con-
figurations through experimentation. To further
increase the efficiency of developing new geop-
arsing methods, we include user-friendly GUIs
that make the geoparsing process transparent. The
open-source project HeidelPlace and the data used
for this demonstration are available for download
from the EventAE project website5.

2 Framework and System Overview

HeidelPlace includes a geoparsing framework for
developing new geoparsers as well as GUIs to
make the geoparsing process transparent to the
user. The architecture of our proposed geoparsing
framework is visualized in Figure 1, which high-
lights the three major components that we describe
in the following. The GUIs are introduced towards
the end of this section and in Section 3.

Annotation Pipeline: In order to execute
the geoparsing process (either entirely or par-
tially) on input documents, we utilize the
annotation pipeline of the Stanford CoreNLP
toolkit (Manning et al., 2014), which is built
atop three key interdependent concepts, namely
Annotation objects, Annotators, and
AnnotationPipelines. An Annotation
object stores key-value information about a
document with arbitrary structure. As depicted in
Figure 1, this may be the original text of a pro-
cessed document, identified tokens, or mentions
of named entities. An Annotator is a config-
urable module that performs some processing task
on a given document. It can read and write anal-
ysis information from and to the Annotation
objects, allowing to pass information among
different Annotators. The annotator does not
implement the processing task itself, but dele-
gates between different modules that implement
the same functionality. For instance, Tokenizer
modules scan the original text of a document with
specific strategies and return a set of identified to-
kens. A TokenizerAnnotator is configured
by the user to utilize a particular Tokenizer

5http://event.ifi.uni-heidelberg.de/
?page_id=517

86



Figure 1: The geoparsing framework architecture, including the three major components: annotation
pipeline, geoparsing modules, and gazetteer.

module. It passes all required information to the
module and adds annotations for retrieved output
tokens. This additional layer of abstraction al-
lows to separate pipeline maintenance tasks from
the implementation of the actual data processing
methods. The AnnotationPipeline consists
of a set of Annotators, which are run sequen-
tially over the input document.

Geoparsing Modules: The main objective of
our framework is the unification of the geopars-
ing process, with a focus on extensibility and us-
ability. Therefore, we use a modular design and
an easy-to-use processing pipeline as described
above. The geoparsing process is divided into four
steps, which are represented by modules:
• ToponymRecognizer: Extracts topo-

nyms from a given input text document.
• ToponymLinker: Links each toponym to

places in the gazetteer. Due to ambiguity,
multiple matches per toponym are possible.
• ToponymDisambiguator: Resolves am-

biguous matches.
• SpatialInference: Infers the location

of unlinked toponyms.
For each step, an Annotator feeds the correct
input to the respective module and then adds its
output to the Annotation object.

The processing steps need to be executed in se-
quence, but may be re-run multiple times. For ex-
ample, running a disambiguation process before
the entity recognition step does not make sense.
However, re-running a recognition module after a
first complete geoparsing pass may improve the
results in the second run.

Gazetteer: We developed a generic gazetteer
model that allows to incorporate a wide spectrum
of place related information. Its central concept
is a geographic place, which may have multiple
names, footprints, types, properties, and relation-
ships, depending on the available data. This al-
lows us to incorporate data from multiple hetero-
geneous sources.

To enable multilingual and context sensitive
geoparsing, we allow each place name to have a
language entry and a set of flags (e.g., is historic or
is official). By supporting multiple footprints per
place, different spatial representations like points,
lines, or polygons are possible. This enables the
use of different geographic resolutions and allows
us to capture irregularities such as historic changes
or political border conflicts. Since a place may
fulfil different functions, multiple types can be as-
signed to each geographic place. In addition, each
place may have an arbitrary number of properties
with an assigned type and value (e.g., its popula-
tion or a Wikipedia link). To link places within the
gazetteer, typed place relationships can be defined
(e.g., sister city or topographic neighbor) and used
to implement administrative hierarchies. Option-
ally, relationships may have a value assigned, e.g.,
a place co-occurrence score (Overell and Rüger,
2008; Spitz et al., 2016). With a flexible type
scheme, complex ontologies for place types, prop-
erty types, and relationship types can be created
by using parent-child and similar-to relationships
among types. This allows the integration of type
systems of existing gazetteers, while maintaining
expressiveness by linking related types. Figure 2

87



Figure 2: Mapping of GeoNames and OSM ad-
ministrative levels to a German administrative hi-
erarchy in the HeidelPlace gazetteer model.

shows an exemplary mapping of GeoNames and
OSM administrative levels to administrative hi-
erarchies in the PlaceType entity class of the
HeidelPlace gazetteer model. Furthermore, prove-
nance and validity times can be recorded for each
place and its descriptors. This allows to docu-
ment data origin and temporal validity such as the
change in population, which is especially impor-
tant for historic text corpora.

To support easy access to the gazetteer database,
we provide an API written in Java using JPA.
This includes a mapping of the database schema
to Java classes as well as a flexible query inter-
face. It serves as an abstraction layer for com-
plex database-level access to the underlying data
model. A set of predefined filters for each place
descriptor can be used to narrow the place search.
Users may implement more filters through the JPA
Criteria API. For advanced use cases, plain SQL
queries support low-level access if desired.

Gazetteer Creation and Integration: Before
we can perform actual geoparsing, we first need
to fill our gazetteer with data. To demonstrate the
applicability of the proposed gazetteer model, we
implemented the model in a relational database
schema using PostgreSQL 9.4 with PostGIS 2.2.
We developed an importer for GeoNames to il-
lustrate how the transformation and integration of
data into our model works. A subset of the GeoN-
ames dump from September 7th, 2016 was im-
ported into the gazetteer database. It consists of
4.6 million places, with high coverage of higher-
level administrative divisions and many populated
places. We obtain basic POI coverage by adding
hotels, airports, and castles. More than 6.3 mil-
lion place names were extracted, 3.8 million of
which are distinct (1.66 places per toponym, 1.38

Figure 3: The gazetteer browsing GUI. The search
filters can be specified at the top. On the left side
the places are listed and shown on a map. The data
for a selected place is displayed on the right side.

toponyms per place). We use this data for the
demonstration scenario. Due to the complexity of
merging gazetteers, we refrain from elaborating on
the conflation of gazetteers in this demonstration.

3 Demonstration Scenario

In the following, we describe the demonstration of
four key usage scenarios of the framework.

Gazetteer Browsing: To make the geopars-
ing process transparent to the user, visual feed-
back is important. For the gazetteer component,
we provide a user-friendly GUI called “Gazetteer
Viewer”, which was developed using JavaFX (see
Figure 3). The GUI allows users to conveniently
browse the gazetteer data and aids them in under-
standing the underlying data model. The user can
narrow search results by specifying a set of fil-
ters in the filter mask in the top area. By clicking
”Search”, the gazetteer is scanned for places that
match the specified criteria. A list of identified
places and an overview map with their locations
are displayed on the left side. If a place is selected
in the list or map, its details are shown on the right
side. To follow links between places, double click-
ing on an entry in the relationship table opens a
separate view with details of the related place.

With this tool, data exploration can be greatly
improved. Neither manual database queries nor
knowledge about the database layout are required.
Furthermore, the data is clearly structured and vi-
sualized to quickly convey relevant information.
To display the geoparsing process, we developed a
second GUI as described in the following.

88



Figure 4: The geoparsing GUI. The input filed for text and the modules selection is located at the top.
The annotations are shown below in an interactive area where the user can gain more information. For
each geoparsing method a separate result view is shown.

Performing Geoparsing: The usage of the
geoparsing framework is demonstrated with a set
of exemplary geoparsing modules. Here, the fo-
cus lies on showcasing the interplay between the
modules and not on methodical sophistication.
For toponym recognition, we include three mod-
ules. The first module applies the location name
finder of OpenNLP, while the second uses Stan-
ford NER to detect location entities. The third
module is based on gazetteer look-ups for proper
nouns as well as basic linguistic considerations. A
single toponym linking module is also provided,
which links toponyms to gazetteer entries via an
exact name matching filter. For toponym disam-
biguation, two basic modules are implemented.
The first module gives precedence to places with
higher population, whereas the second module
gives precedence to pairs of candidate places that
are geographically closer. Since spatial inference
is a non-trivial task, we implement no exemplary
inference module in this demonstration.

To exemplify how a geoparser can be imple-
mented based on our geoparsing framework, we
provide a JavaFX-based GUI called “Geoparser
Viewer”. The viewer is depicted in Figure 4. It
supports a set of pre-configured modules and vi-
sualizes the geoparsing process. In the viewer, the
user first provides an input text document and se-
lects a module per geoparsing step. The geopars-

ing process can then be run by clicking “Geop-
arse”. Alternatively, geoparsing can be executed
step-by-step by clicking the respective buttons.
Resulting annotations are visualized in the bottom
part of the window (in Figure 4, results for mul-
tiple geoparsing methods are shown, as described
in the last use-case). This visualization helps the
user to analyze the geoparsing results, as we dis-
cuss in the next scenario. The simple replacement
of modules highlights the benefit of a modular de-
sign and clearly structured processing pipeline.

Analyzing Geoparsing Results: If a geopars-
ing method produces unexpected output or if its
behavior is not clear, detailed analysis of the pro-
cess is required. The result view of the “Geoparser
Viewer” allows to conveniently analyze the geop-
arsing results. On the left side, identified named
entities are highlighted in the original text. Since
geoparsers may use general NER tools like Stan-
fordNER, our recognition module can also add an-
notations for named entities other than locations.
Knowing the type of other entities may be of use
for later processing steps (e.g., disambiguation).
Therefore, each color represents a named entity
type (among others, yellow for persons, red for
locations, blue for organizations). Additionally,
a list with all identified named entities is shown.
Selections in the text are reflected in the list and
vice versa. If a location entity is selected, a list of

89



linked places from the gazetteer is shown. A map
displays the location for a selected linked place to
quickly surmise the geographic context.

The results of the geoparsing process highly de-
pend on the gazetteer data. For example, the type,
administrative level, population, or mention fre-
quency of a place may influence the recognition
and disambiguation step. Hence, it may be of in-
terest to see what information is stored for a linked
place to draw conclusions about the geoparser de-
cisions. By double-clicking on a linked place en-
try, a separate view is shown that is similar to the
“Gazetteer Viewer”. With such a visual analy-
sis, experimentation and debugging of geoparsing
methods is greatly simplified.

Comparing Geoparsing Methods: Another
valuable feature is the comparison of different
geoparsing modules. In the “Geoparser Viewer”,
multiple geoparsing methods can be compared
qualitatively. If multiple modules per geoparsing
step are selected, each combination from the cross
product of all module combinations is considered
a geoparsing method. After clicking “Geoparse”
or any of the step-by-step buttons, a result view
for each method is shown (see Figure 4).

The clearly structured and interactive visualiza-
tion allows the user to quickly surmise the differ-
ences between several geoparsing methods. Of
course, this does not replace quantitative perfor-
mance analyses that allow for a more representa-
tive performance evaluation. Instead, it provides
the means to easily test special cases and helps to
better understand the geoparsing process and the
employed modules.

4 Conclusion and Ongoing Work

In this paper, we presented HeidelPlace, a flexi-
ble and extensible geoparsing framework built on
two paradigms. On the one hand, it introduces a
generic gazetteer model that supports the integra-
tion of heterogeneous gazetteer sources. A com-
fortable query API and a user-friendly GUI aid
users in maintaining and exploring the gazetteer.
On the other hand, HeidelPlace utilizes a mod-
ularized pipeline for the entire geoparsing pro-
cess. Since each geoparsing step is represented as
a module within a flexible annotation-based pro-
cessing pipeline, new approaches can easily be in-
tegrated and tested.

Our ongoing work includes the implementa-
tion of an evaluation component that enables a

standardized quantitative comparison of different
geoparsing approaches, the development of an
UIMA component to simplify integration into ex-
isting IE pipelines, a web-service that supports re-
mote queries to the gazetteer and geoparser, and
the implementation of state-of-the-art modules as
a starting point for a production-ready toolbox that
can be improved and expanded by the community.

References
Geoffrey Andogah, Gosse Bouma, and John Nerbonne.

2012. Every Document Has a Geographical Scope.
Data Knowl. Eng., 81-82:1–20.

Linda L Hill. 2000. Core Elements of Digital
Gazetteers: Placenames, Categories, and Footprints.
ECDL, LNCS 1923:280–290.

Johannes Hoffart. 2015. Discovering and Disam-
biguating Named Entities in Text. Dissertation,
Saarland University.

Carsten Keler, Krzyzstof Janowicz, and Mohamed
Bishr. 2009. An Agenda for the Next Genera-
tion Gazetteer: Geographic Information Contribu-
tion and Retrieval. In GIS ’09, pages 91–100.

Jochen L. Leidner. 2007. Toponym Resolution in Text:
Annotation, Evaluation and Applications of Spatial
Grounding of Place Names. Dissertation, University
of Edinburgh.

Michael D. Lieberman and Hanan Samet. 2011. Multi-
faceted Toponym Recognition for Streaming News.
In SIGIR ’11, pages 843–852.

Michael D. Lieberman and Hanan Samet. 2012. Adap-
tive Context Features for Toponym Resolution in
Streaming News. In SIGIR ’12, pages 731–740.

Christopher D Manning, John Bauer, Jenny Finkel,
Steven J Bethard, Mihai Surdeanu, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In ACL ’14, pages 55–60.

Tiago H. V. M. Moura and Clodoveu A. Davis. 2014.
Integration of Linked Data Sources for Gazetteer
Expansion. In GIR ’14, pages 5:1–5:8.

Simon E. Overell and Stefan M. Rüger. 2008. Us-
ing Co-Occurrence Models for Placename Disam-
biguation. Int. Journal of Geographical Inf. Science,
22(3):265–287.

Andreas Spitz, Johanna Geiß, and Michael Gertz. 2016.
So Far Away and Yet So Close: Augmenting To-
ponym Disambiguation and Similarity with Text-
based Networks. In SIGMOD GeoRich ’16, pages
2:1–2:6.

Lei Zhang and Achim Rettinger. 2014. X-LiSA: Cross-
lingual Semantic Annotation. Proceedings of the
VLDB Endowment, 7(13):1693–1696.

90


