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Abstract

Learning word embeddings has received
a significant amount of attention recently.
Often, word embeddings are learned in an
unsupervised manner from a large collec-
tion of text. The genre of the text typi-
cally plays an important role in the effec-
tiveness of the resulting embeddings. How
to effectively train word embedding mod-
els using data from different domains re-
mains a problem that is underexplored. In
this paper, we present a simple yet effec-
tive method for learning word embeddings
based on text from different domains. We
demonstrate the effectiveness of our ap-
proach through extensive experiments on
various down-stream NLP tasks.

1 Introduction

Recently, the learning of distributed representa-
tions for natural language words (or word embed-
dings) has received a significant amount of atten-
tion (Mnih and Hinton, 2007; Turian et al., 2010;
Mikolov et al., 2013a,b,c; Pennington et al., 2014).
Such representations were shown to be able to cap-
ture syntactic and semantic level information asso-
ciated with words (Mikolov et al., 2013a). Word
embeddings were shown effective in tasks such as
named entity recognition (Sienčnik, 2015), sen-
timent analysis (Li and Lu, 2017) and syntactic
parsing (Durrett and Klein, 2015). One common
assumption made by most of the embedding meth-
ods is that, the text corpus is from one single do-
main; e.g., articles from bioinformatics. How-
ever, in practice, there are often text corpora from
multiple domains; e.g., we may have text collec-
tions from broadcast news or Web blogs, whose
words are not necessarily limited to bioinformat-
ics. Can these corpora from different domains help

learn better word embeddings, so as to improve the
downstream NLP applications in a target domain
like bioinformatics? Our answer is yes, because
despite the domain differences, these additional
domains do introduce more text data converying
useful information (i.e., more words, more word
co-occurrences), which can be helpful for consoli-
dating the word embeddings in the target bioinfor-
matics domain.

In this paper, we propose a simple and easy-
to-implement approach for learning cross-domain
word embeddings. Our model can be seen as
a regularized skip-gram model (Mikolov et al.,
2013a,b), where the source domain information is
selectively incorporated for learning the target do-
main word embeddings in a principled manner.

2 Related Work

Learning a continuous representation for words
has been studied for quite a while (Hinton et al.,
1986). Many earlier word embedding meth-
ods employed the computationally expensive neu-
ral network architectures (Collobert and Weston,
2008; Mikolov et al., 2013c). Recently, an ef-
ficient method for learning word representations,
namely the skip-gram model (Mikolov et al.,
2013a,b) was proposed and implemented in the
widely used word2vec toolkit. It tries to use the
current word to predict the surrounding context
words, where the prediction is defined over the
embeddings of these words. As a result, it learns
the word embeddings by maximizing the likeli-
hood of predictions.

Domain adaptation is an important research
topic (Pan et al., 2013), and it has been consid-
ered in many NLP tasks. For example, domain
adaptation is studied for sentiment classification
(Glorot et al., 2011) and parsing (McClosky et al.,
2010), just to name a few. However, there is very
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little work on domain adaptation for word embed-
ding learning. One major reason preventing peo-
ple from using text corpora from different domains
for word embedding learning is the lack of guid-
ance on which kind of information is worth learn-
ing from the source domain(s) for the target do-
main. In order to address this problem, some pi-
oneering work has looked into this problem. For
example, Bollegala et al. (2015) considered those
frequent words in the source domain and the target
domain as the “pivots”. Then it tried to use the piv-
ots to predict the surrounding “non-pivots”, mean-
while ensuring the pivots to have the same em-
bedding across two domains. Embeddings learned
from such an approach were shown to be able to
improve the performance on a cross-domain sen-
timent classification task. However, this model
fails to learn embeddings for many words which
are neither pivots nor non-pivots, which could be
crucial for some downstream tasks such as named
entity recognition.

3 Our Approach

Let us first state the objective of the skip-gram
model (Mikolov et al., 2013a) as follows:

LD =
∑

(w,c)∈D
#(w, c)

(
log σ(w · c)

+
k∑

i=1

Ec′
i∼P (w)[log σ(−w · c′i)]

)
(1)

where D refers to the complete text corpus from
which we learn the word embeddings. The word
w is the current word, c is the context word, and
#(w, c) is the number of times they co-occur in
D. We use w and c to denote the vector represen-
tations forw and c, respectively. The function σ(·)
is the sigmoid function. The word c′i is a “nega-
tive sample” sampled from the distribution P (w) –
typically chosen as the unigram distribution U(w)
raised to the 3/4rd power (Mikolov et al., 2013b).

In our approach, we first learn for each word
w an embedding ws from the source domain Ds.
Next we learn the target domain embeddings as
follows:

L′Dt
= LDt +

∑
w∈Dt∩Ds

αw · ||wt −ws||2 (2)

whereDt refers to the target domain, and wt is the
target domain representation for w. Such an regu-

larized objective can still be optimized using stan-
dard stochastic gradient descent. Note that in the
above formula, the regularization term only con-
siders words that appear in both source and target
domain, ignoring words that only appear in either
the source or the target domain only.

Our approach is inspired by the recent
regularization-based domain adaptation frame-
work (Lu et al., 2016). Here, αw measures the
amount of transfer across the two domains when
learning the representation for word w. If it is
large, it means we require the embeddings of word
w in the two domains to be similar. We define αw

as follows:

αw = σ(λ · φ(w)) (3)

where λ is a hyper-parameter to decide the scaling
factor of the significance function φ(·), which al-
lows the user to control the degree of “knowledge
transfer” from source domain to target domain.

How do we define the significance function
φ(w) that controls the amount of transfer for the
word w? We first define the frequency of the word
w in the dataset D as fD(w), the number of times
the word w appears in the domain D. Based on
this we can define the normalized frequency for
the word w as follows:

FD(w) =
fD(w)

maxw′∈Dk
fD(w′)

(4)

where Dk ⊂ D consists of all except for the top k
most frequent words from D1.

We define the function φ(·) based on the fol-
lowing metric that is motivated by the well-known
Sørensen-Dice coefficient (Sørensen, 1948; Dice,
1945) commonly used for measuring similarities:

φ(w) =
2 · FDs(w) · FDt(w)
FDs(w) + FDt(w)

(5)

Why does such a definition make sense? We
note that the value of φ(w) would be high only
if both both FDs(w) and FDt(w) are high – in
this case the word w is a frequent word across dif-
ferent domains. Intuitively, these are likely those
words whose semantics do not change across the
two domains, and we should be confident about
making their embeddings similar in the two do-
mains. On the other hand, domain-specific words

1In all our experiments, we empirically set k to 20.
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Enwik9 PubMed Gigaword (EN) Yelp IMDB Tweets (EN) Tweets (ES) Eswiki
# tokens 124.3M 124.9M 135.6M 38.9M 29.0M 162.8M 69.4M 102.8M
# sents – 5,000,000 5,400,000 2,376,079 1,230,465 16,185,356 6,785,697 3,684,670

Table 1: Statistics for datasets used for embedding learning in all experiments.

tend to be more frequent in one domain than the
other. In this case, the resulting φ(w) will also
have a lower score, indicating a smaller amount of
transfer across the two domains. While other user-
defined significance functions are also possible, in
this work we simply adopt such a function based
on the above simple observations. We will vali-
date our assumptions with experiments in the next
section.

4 Experiments

We present extensive evaluations to assess the ef-
fectiveness of our approach. Following recent ad-
vice by Nayak et al. (2016) and Faruqui et al.
(2016), to assess the quality of the learned word
embeddings, we considered employing the learned
word embeddings as continuous features in several
down-stream NLP tasks, including entity recogni-
tion, sentiment classification, and targeted senti-
ment analysis.

We have used various datasets from different
domains for learning cross-domain word embed-
dings under different tasks. We list the data statis-
tics in Table 1.

4.1 Baseline Methods
We consider the following baseline methods when
assessing the effectiveness of our approach.

• DISCRETE: only discrete features (such as
bag of words, POS tags, word n-grams and
POS tag n-grams, depending on the actual
down-stream task) were considered. All fol-
lowing systems include both these base fea-
tures and the respective additional features.

• SOURCE: we train word embeddings from
the source domain as additional features.

• TARGET: we train word embeddings from
the target domain as additional features.

• ALL: we combined the data from two do-
mains to form a single dataset for learning
word embeddings as additional features.

• CONCAT: we simply concatenate the learned
embeddings from both source and target do-
mains as additional features.

Method GENIA ACE
P R F1 P R F1

DISCRETE 71.1 63.9 67.3 64.5 52.3 57.7
SOURCE 71.1 62.3 66.4 63.5 57.3 60.3
TARGET 71.6 64.5 67.9 63.3 57.1 60.0
ALL 71.2 61.8 66.1 64.6 57.2 60.7
CONCAT 71.5 64.1 67.6 63.5 57.7 60.5
DARep 71.4 61.5 66.1 62.4 54.5 58.2
This work 72.4 65.4 68.7 64.5 58.9 61.6

Table 2: Results on entity recognition.

• DARep: we use the previous approach of
Bollegala et al. (2015) for learning cross-
lingual word representations as additional
features.

4.2 Entity Recognition
Our first experiment was conducted on entity
recognition (Tjong Kim Sang and De Meulder,
2003; Florian et al., 2004), where the task is to ex-
tract semantically meaning entities and their men-
tions from the text.

For this task, we built a standard entity recogni-
tion model using conditional random fields (Laf-
ferty et al., 2001). We used the standard fea-
tures which are commonly used for different meth-
ods, including word unigrams and bigrams, bag-
of-words features, POS tag window features, POS
tag unigrams and bigram features. We conducted
two sets of experiments on two different datasets.
The first dataset is the GENIA dataset (Ohta et al.,
2002), a popular dataset used in bioinformatics,
and the second is the ACE-2005 dataset (Walker
et al., 2006), which is a standard dataset used for
various information extraction tasks.

For the GENIA dataset which consists of 10,946
sentences, we used Enwik9 as the source domain
and PubMed as the target domain for learning
word embeddings. We set the dimension of word
representations as 50.

For the experiments on ACE, we selected the
BN subset of ACE2005, which consists of 4,460
CNN headline news and share a similar domain
with Gigaword. We used Enwik9 as the source
domain and Gigaword as the target domain. We
followed a procedure similar to GENIA for exper-
iments.

To tune our hyperparameter λ, we first split the
last 10% of the training set as the development
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Figure 1: Results on sentiment classification. Left: Yelp (source) to IMDB (target). Right: IMDB
(source) to Yelp (target).

portion. We then trained a model using the re-
maining 90% as the training portion and used the
development portion for development of the hy-
perparameter λ. After development, we re-trained
the models using the original training set2.

We report the results in Table 2. From the re-
sults we can observe that the embeddings learned
using our algorithm can lead to improved perfor-
mance when used in this particular down-stream
NLP task. We note that in such a task, many en-
tities consist of domain-specific terms, therefore
learning good representations for such words can
be crucial. As we have discussed earlier, our reg-
ularization method enables our model to differen-
tiate domain-specific words from words which are
more general in the learning process. We believe
this mechanism can lead to improved learning of
representations for both types of words.

4.3 Sentiment Classification

The second task we consider is sentiment classi-
fication, which is essentially a text classification
task, where the goal is to assign each text docu-
ment a class label indicating its sentiment polarity
(Pang et al., 2002; Liu, 2012).

This is also the only task presented in the pre-
vious DARep work by Bollegala et al. (2015). As
such, we largely followed Bollegala et al. (2015)
for experiments. Instead of using the dataset they
used which only consists of 2,000 reviews, we
considered two much larger datasets – IMDB and
Yelp 2014 – for such a task, which was previously
used in a sentiment classification task (Tang et al.,
2015). IMDB dataset (Diao et al., 2014) is crawled
from the movie review site IMDB3 which con-
sists of 84,919 reviews. Yelp 2014 dataset consists

2We selected the optimal value for the hyper-parameter
λ from the set λ ∈ {0.1, 1, 5, 10, 20, 30, 50} for all experi-
ments in this paper.

3http://www.imdb.com

of 231,163 online reviews provided by the Yelp
Dataset Challenge4.

Following Bollegala et al. (2015), for this task
we simply learned the word embeddings from the
training portion of the review datasets themselves
only. No external data was used for learning word
embeddings. As Bollegala et al. (2015) only eval-
uated on a small dataset in their paper for such
a task, to understand the effect of varying the
amount of training data, we also tried to train our
model on datasets with different sizes. We con-
ducted two sets of experiments: we first used the
Yelp dataset as the source domain and IMDB as
the target domain, and then we switched these two
datasets in our second set of experiments. Fig-
ure 1 shows the F1 measures for different word
embeddings when different amounts of training
data were used. We also compared with the pre-
vious approach for domain adaptation (Lu et al.,
2016) which only employs discrete features. We
can observe that when the dataset becomes large,
our learned word embeddings are shown to be
more effective than all other approaches. When
the complete training set is used, our model sig-
nificantly outperforms DARep (p < 0.05 for both
directions with bootstrap resampling test (Koehn,
2004)). DARep appears to be effective when the
training dataset is small. However, as the train-
ing set size increases, there is no significant im-
provement for such an approach. As we can also
observe from the figure, our approach consistently
gives better results than baseline approaches (ex-
cept for the second experiment when 20% of the
data was used). Furthermore, when the amount
of training data increases, the differences between
our approach and other approaches generally be-
come larger.

Such experiments show that our model works

4https://www.yelp.com/dataset challenge
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Model English Spanish
P. R. F1 P. R. F1

DISCRETE 44.8 37.0 40.5 46.0 39.8 42.7
SOURCE 44.1 36.3 39.8 46.1 40.5 43.1
TARGET 46.5 39.1 42.5 46.5 40.8 43.4
ALL 45.4 37.0 40.8 46.4 40.7 43.3
CONCAT 46.7 39.3 42.7 46.6 41.0 43.6
DARep 46.2 39.8 42.8 46.2 40.9 43.4
This work 46.9 39.9 43.1 46.6 41.4 43.9

Table 3: Results on targeted sentiment analysis.

well when different amounts of data are available,
and our approach appears to be more competitive
when a large amount of data is available.

4.4 Targeted Sentiment Analysis

We also conducted experiments on targeted senti-
ment analysis (Mitchell et al., 2013) – the task of
jointly recognizing entities and their sentiment in-
formation. We used the state-of-the-art system for
targeted sentiment analysis by Li and Lu (2017)
whose code is publicly available 5, and used the
data from (Mitchell et al., 2013) which consists
of 7,105 Spanish tweets and 2,350 English tweets,
with named entities and their sentiment informa-
tion annotated. Note that the model of Li and
Lu (2017) is a structured prediction model that
involves latent variables. The experiments here
therefore allow us to assess the effectiveness of
our approach on such a setup involving latent vari-
ables. We follow Li and Lu (2017) and report
precision (P.), recall (R.) and F1-measure (F1)
for such a targeted sentiment analysis task, where
the prediction is regarded as correct if and only if
both the entity’s boundary and its sentiment infor-
mation are correct. Also, unlike previous experi-
ments, which are conducted on English only, these
experiments additionally allow us to assess our ap-
proach’s effectiveness when a different language
other than English is considered.

For the English task, we used Enwik9 as the
source domain for learning word embeddings, and
our crawled English tweets as the target domain.
For the Spanish task, we used Eswiki as the source
domain, and we also crawled Spanish tweets as the
target domain. See Table 1 for the statistics. Sim-
ilar to the experiments conducted for entity recog-
nition, we split the first 80% of the data for train-
ing, the next 10% for development and the last
10% for evaluation. We tuned the hyper-parameter
λ using the development set and re-trained the em-
beddings on the dataset combining the training and

5Available at http://statnlp.org/research/st/.

the development set, which are then used in fi-
nal evaluations. Results are reported in Table 3,
which show our approach is able to achieve the
best results across two datasets in such a task, and
outperforms DARep (p < 0.05). Interestingly,
the concatenation approach appears to be competi-
tive in this task, especially for the Spanish dataset,
which appears to be better than the DARep ap-
proach. However, we note such an approach does
not capture any information transfer across differ-
ent domains in the learning process. In contrast,
our approach learns embeddings for the target do-
main by capturing useful cross-domain informa-
tion and therefore can lead to improved modeling
of embeddings that are shown more helpful for this
specific down-stream task.

5 Conclusion and Future Work

In this paper, we presented a simple yet effec-
tive algorithm for learning cross-domain word em-
beddings. Motivated by the recent regularization-
based domain adaptation framework (Lu et al.,
2016), the algorithm performs learning by aug-
menting the skip-gram objective with a simple reg-
ularization term. Our work can be easily extended
to multi-domain scenarios. The method is also
flexible, allowing different user-defined metrics to
be incorporated for defining the function control-
ling the amount of domain transfer.

Future work includes performing further in-
vestigations to better understand and to visual-
ize what types of information has been trans-
ferred across domains and how such informa-
tion influence different types of down-stream
NLP tasks. It is also important to under-
stand how such an approach will work on
other types of models such as neural networks
based NLP models. Our code is available at
http://statnlp.org/research/lr/.
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