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Abstract

Active learning aims to select a small sub-
set of data for annotation such that a classi-
fier learned on the data is highly accurate.
This is usually done using heuristic selec-
tion methods, however the effectiveness of
such methods is limited and moreover, the
performance of heuristics varies between
datasets. To address these shortcomings,
we introduce a novel formulation by re-
framing the active learning as a rein-
forcement learning problem and explicitly
learning a data selection policy, where the
policy takes the role of the active learning
heuristic. Importantly, our method allows
the selection policy learned using simu-
lation on one language to be transferred
to other languages. We demonstrate our
method using cross-lingual named entity
recognition, observing uniform improve-
ments over traditional active learning.

1 Introduction

For most Natural Language Processing (NLP)
tasks, obtaining sufficient annotated text for train-
ing accurate models is a critical bottleneck. Thus
active learning has been applied to NLP tasks to
minimise the expense of annotating data (Thomp-
son et al., 1999; Tong and Koller, 2001; Settles and
Craven, 2008). Active learning aims to reduce cost
by identifying a subset of unlabelled data for anno-
tation, which is selected to maximise the accuracy
of a supervised model trained on the data (Settles,
2010). There have been many successful appli-
cations to NLP, e.g., Tomanek et al. (2007) used
an active learning algorithm for CoNLL corpus to
get an F1 score 84% with a reduction of annotation
cost of about 48%. In prior work most active learn-
ing algorithms are designed for English based on

heuristics, such as using uncertainty or informa-
tiveness. There has been comparatively little work
done about how to learn the active learning strat-
egy itself.

It is no doubt that active learning is extremely
important for other languages, particularly low-
resource languages, where annotation is typically
difficult to obtain, and annotation budgets more
modest (Garrette and Baldridge, 2013). Such set-
tings are a natural application for active learning,
however there is little work to this end. A poten-
tial reason is that most active learning algorithms
require a substantial ‘seed set’ of data for learning
a basic classifier, which can then be used for ac-
tive data selection. However, given the dearth of
data in the low-resource setting, this assumption
can make standard approaches infeasible.

In this paper,1 we propose PAL, short for Pol-
icy based Active Learning, a novel approach for
learning a dynamic active learning strategy from
data. This allows for the strategy to be applied in
other data settings, such as cross-lingual applica-
tions. Our algorithm does not use a fixed heuris-
tic, but instead learns how to actively select data,
formalised as a reinforcement learning (RL) prob-
lem. An intelligent agent must decide whether or
not to select data for annotation in a streaming set-
ting, where the decision policy is learned using a
deep Q-network (Mnih et al., 2015). The policy
is informed by observations including sentences’
content information, the supervised model’s clas-
sifications and its confidence. Accordingly, a rich
and dynamic policy can be learned for annotating
new data based on the past sequence of annotation
decisions.

Furthermore, in order to reduce the dependence
on the data in the target language, which may be
low resource, we first learn the policy of active

1Source code available at https://github.com/
mengf1/PAL
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learning on another language and then transfer it to
the target language. It is easy to learn a policy on
a high resource language, where there is plentiful
data, such as English. We use cross-lingual word
embeddings to learn compatible data representa-
tions for both languages, such that the learned pol-
icy can be easily ported into the other language.

Our work is different for prior work in active
learning for NLP. Most previous active learning
algorithms developed for NER tasks is based on
one language and then applied to the language it-
self. Another main difference is that many ac-
tive learning algorithms use a fixed data selec-
tion heuristic, such as uncertainty sampling (Set-
tles and Craven, 2008; Stratos and Collins, 2015;
Zhang et al., 2016). However, in our algorithm,
we implicitly use uncertainty information as one
kind of observations to the RL agent.

The remainder of this paper is organised as fol-
lows. In Section 2, we briefly review some related
work. In Section 3, we present active learning al-
gorithms, which cross multiple languages. The ex-
perimental results are presented in Section 4. We
conclude our work in Section 5.

2 Related work

As supervised learning methods often require a
lot of training data, active learning is a technique
that selects a subset of data to annotate for train-
ing the best classifier. Existing active learning
(AL) algorithms can be generally considered as
three categories: 1) uncertainty sampling (Lewis
and Gale, 1994; Tong and Koller, 2001), which
selects the data about which the current classi-
fier is the most uncertain; 2) query by commit-
tee (Seung et al., 1992), which selects the data
about which the “committee” disagree most; and
3) expected error reduction (Roy and McCallum,
2001), which selects the data that can contribute
the largest model loss reduction for the current
classifier once labelled. Applications of active
learning to NLP include text classification (Mc-
Callumzy and Nigamy, 1998; Tong and Koller,
2001), relation classification (Qian et al., 2014),
and structured prediction (Shen et al., 2004; Set-
tles and Craven, 2008; Stratos and Collins, 2015;
Fang and Cohn, 2017). Qian et al. used uncer-
tainty sampling to jointly perform on English and
Chinese. Stratos and Collins and Zhang et al. de-
ployed uncertainty-based AL algorithms for lan-
guages with the minimal supervision.

Deep reinforcement learning (DRL) is a
general-purpose framework for decision mak-
ing based on representation learning. Recently,
there are some notable examples include deep Q-
learning (Mnih et al., 2015), deep visuomotor poli-
cies (Levine et al., 2016), attention with recur-
rent networks (Ba et al., 2015), and model predic-
tive control with embeddings (Watter et al., 2015).
Other important works include massively parallel
frameworks (Nair et al., 2015), dueling architec-
ture (Wang et al., 2016) and expert move predic-
tion in the game of Go (Maddison et al., 2015),
which produced policies matching those of the
Monte Carlo tree search programs, and squarely
beaten a professional player when combined with
search (Silver et al., 2016). DRL has been also
studied in NLP tasks. For example, recently, DRL
has been studied for information extraction prob-
lem (Narasimhan et al., 2016). They designed a
framework that can decide to acquire external ev-
idence and the framework is under the reinforce-
ment learning method. However, there has been
fairly little work on using DRL to learn active
learning strategies for language processing tasks,
especially in cross-lingual settings.

Recent deep learning work has also looked at
transfer learning (Bengio, 2012). More recent
work in deep learning has also considered trans-
ferring policies by reusing policy parameters be-
tween environments (Parisotto et al., 2016; Rusu
et al., 2016), using either regularization or novel
neural network architectures, though this work has
not looked at transfer active learning strategies be-
tween languages with shared feature space in state.

3 Methodology

We now show how active learning can be for-
malised as as a decision process, and then show
how this allows for the active learning selection
policy to be learned from data using deep rein-
forcement learning. Later we introduce a method
for transferring the policy between languages.

3.1 Active learning as a decision process

Active learning is a simple technique for labelling
data, which involves first selecting some instances
from an unlabelled dataset, which are then anno-
tated by a human oracle, which is then repeated
many times until a termination criterion is satis-
fied, e.g., the annotation budget is exhausted. Most
often the selection function is based on the pre-
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dictions of a trained model, which has been fit to
the labelled dataset at each stage in the algorithm,
where datapoints are selected based on the model’s
predictive uncertainty (Lewis and Gale, 1994), or
divergence in predictions over an ensemble (Se-
ung et al., 1992). The key idea of these meth-
ods is to find the instances on which the model is
most likely to make errors, such that after their la-
belling and inclusion in the training set, the model
becomes more robust to these types of errors on
unseen data.

The steps in active learning can be viewed as a
decision process, a means of formalising the ac-
tive learning algorithm as a sequence of decisions,
where the stages of active learning correspond to
the state of the system. Accordingly, the state cor-
responds to the selected data for labelling and their
labels, and each step in the active learning algo-
rithm corresponds to a selection action, wherein
the heuristic selects the next items from a pool.
This process terminates when the budget is ex-
hausted.

Effectively the active learning heuristic is oper-
ating as a decision policy, a form of function tak-
ing as input the current state — comprising the la-
belled data, from which a model is trained — and a
candidate unlabelled data point — e.g., the model
uncertainty. This raises the opportunity to con-
sider general policy functions, based on the state
and data point inputs, and resulting in a labelling
decision, and, accordingly a mechanism for learn-
ing such functions from data. We now elaborate
on the components of this process, namely the for-
mulation of the decision process, architecture of
the policy function, and means of learning the de-
cision policy automatically from data.

3.2 Stream-based learning
For simplicity, we make a streaming assumption,
whereby unlabelled data (sentences) arrive in a
stream (Lewis and Gale, 1994).2 As each instance
arrives, an agent must decide the action to take,
namely whether or not the instance should be man-
ually annotated. This process is illustrated in Fig-
ure 1, which illustrates the space of decision se-
quences for a small corpus. As part of this pro-
cess, a separate model, pφ, is trained on the la-
belled data, and updated accordingly as the la-
belled dataset is expanded as new annotations ar-

2This is different to pool-based active learning, where one
of several options is chosen for annotation. Our setup permits
simpler learning, while remaining sufficiently general.

3: Ms. Haag plays Elianti

1: Pierre Vinken will join the board 
2: Mr. Vinken is chairman of Elsevier

4: There is no asbestos in our products
...

label ~  !(ɸ0, x1)

label ~  !(ɸ0, x2)train ɸ1 | ɸ0 x1 y1   

yes;
y1 = PER PER O O O O no

label ~  !(ɸ1, x2)

label ~  !(ɸ1, x3)train ɸ2 | ɸ1 x2 y2   

no

label ~  !(ɸ0, x3)train ɸ'1 | ɸ0 x2 y2   

no

terminate

... ...

terminate

yes;
y2 = O PER O O O O

yes;
y2 = O PER O O O O

... …

Figure 1: Example illustrating sequential active
learning as a Markov Decision process. Data
arrives sequentially, and at each time the active
learning policy, π, must decide whether it should
be labelled or not, based on the state which in-
cludes a predictive model parameterised by φ, and
an unlabelled data instance x. The process con-
tinues until termination, e.g., when the annotation
budget is exhausted. The solid green path shows
the maximum scoring decision sequence.

rive. This model is central to the policy for choos-
ing the labelling actions at each stage, and for de-
termining the reward for a sequence of actions.

This is a form of Markov Decision Process
(MDP), which allows the learning of a policy that
can dynamically select instances that are most in-
formative. As illustrated in Figure 1 at each time,
the agent observes the current state si which in-
cludes the sentence xi, and the learned model
φ. The agent selects a binary action ai, denot-
ing whether to label xi, according to the policy
π. For ai = 1, the corresponding sentence is
labelled and added to the labelled data, and the
model pφ updated to include this new training
point. The process then repeats, terminating when
either the dataset is exhausted or a fixed annota-
tion budget is reached. After termination a reward
is computed based on the accuracy of the final
model, φ. We represent the MDP framework as
a tuple 〈S,A, Pr(si+1|si, a), R〉, where S = {s}
is the space of all possible states, A = {0, 1} is
the set of actions, R(s, a) is the reward function,
and Pr(si+1|si, a) is the transition function.
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3.2.1 State

The state at time i comprises the candidate in-
stance being considered for annotation and the la-
belled dataset constructed in steps 1 . . . i. We rep-
resent the state using a continuous vector, using
the concatenation of the vector representation of
xi, and outputs of the model pφ trained over the
labelled data. These outputs use both the predic-
tive marginal distributions of the model on the in-
stance, and a representation of the model’s confi-
dence. We now elaborate on each component.

Content representation A key input to the
agent is the content of the sentence, xi, which we
encode using a convolutional neural network to ar-
rive at a fixed sized vector representation, follow-
ing Kim (2014). This involves embedding each of
the n words in the sentence to produce a matrix
Xi = {xi,1, xi,2, · · · , xi,n}, after which a series
of wide convolutional filters is applied, using mul-
tiple filters with different gram sizes. Each filter
uses a linear transformation with a rectified linear
unit activation function. Finally the filter outputs
are merged using a max-pooling operation to yield
a hidden state hc, which is used to represent the
sentence.

Representation of marginals The prediction
outputs of the training model, pφ(y|xi), are cen-
tral to all active learning heuristics, and accord-
ingly, we include this in our approach. In order
to generalise existing techniques, we elect to use
the predictive marginals directly, rather than only
using statistics thereof, e.g., entropy. This gener-
ality allows for different and more nuanced con-
cepts to be learned, including patterns of proba-
bilities that span several adjacent positions in the
sentence (e.g., the uncertainty about the boundary
of a named entity).

We use another convolutional neural network to
process the predictive marginals, as shown in Fig-
ure 2. The convolutional layer contains j filters
with ReLU activation, based on a window of width
3 and height equal to the number of classes, and
with a stride of one token. We use a wide convo-
lution, by padding the input matrix to either size
with vectors of zeros. These j feature maps are
then subsampled with mean pooling, such that the
network is easily able to capture the average un-
certainty in each window. The final hidden layer
he is used to represent the predictive marginals.

Pierre 

Vinken 

will

join

the

board

…

Marginals Convolutional layer

Representation 
of marginals

PER LOC ORG O

Figure 2: The architecture for representing predic-
tive marginal distributions, pφ(y|xi), as a fixed di-
mensional vector, to form part of the MDP state.

Confidence of sequential prediction The last
component is a score C which indicates the con-
fidence of the model prediction. This is de-
fined based on the most probable label sequence
under the model, e.g., using Viterbi algorithm
with a CRF, and the probability of this se-
quence is used to represent the confidence, C =
n
√

maxy pφ(y|xi), where n = |xi| is the length of
the sentence.

3.2.2 Action
We now turn to the action, which denotes whether
the human oracle must annotate the current sen-
tence. The agent selects either to annotate xi, in
which case ai = 1, or not, with ai = 0, after which
the agent proceeds to consider the next instance,
xi+1. When action ai = 1 is chosen, an oracle is
requested to annotate the sentence, and the newly
annotated sentence is added to the training data,
and φ updated accordingly. A special ‘terminate’
option applies when no further data remains or the
annotation budget is exhausted, which concludes
the active learning run (referred to as an ‘episode’
or ‘game’ herein).

3.2.3 Reward
The training signal for learning the policy takes
the form of a scalar ‘reward’, which provides feed-
back on the quality of the actions made by the
agent. The most obvious reward is to wait for a
game to conclude, then measure the held-out per-
formance of the model, which has been trained
on the labelled data. However, this reward is de-
layed, and is difficult to related to individual ac-
tions after a long game. To compensate for this,
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we use reward shaping, whereby small interme-
diate rewards are assigned which speeds up the
learning process (Ng, 2003; Lample and Chap-
lot, 2016). At each step, the intermediate reward
is defined as the change in held-out performance,
i.e., R(si−1, a) = Acc(φi) − Acc(φi−1), where
Acc denotes predictive accuracy (here F1 score),
and φi is the trained model after action a has take
place, which may include an additional training in-
stance. Accordingly, when considering the aggre-
gate reward over a game, the intermediate terms
cancel, such that the total reward measures the
performance improvement over the whole game.
Note that the value of R(s, a) can be positive or
negative, indicating a beneficial or detrimental ef-
fect on the performance.

3.2.4 Budget
There is a fixed budget B for the total number of
instances annotated, which corresponds to the ter-
minal state in the MDP. It is a predefined number
and chosen according to time and cost constraints.
A game is finished when the data is exhausted or
the budget reached, and with the final result be-
ing the dataset thus created, upon which the final
model is trained.

3.2.5 Reinforcement learning
The remaining question is how the above compo-
nents can be used to learn a good policy. Different
policies make different data selections, and thus
result in models with different performance. We
adopt a reinforcement learning (RL) approach to
learn a policy resulting a highly accurate model.

Having represented the problem as a MDP,
episode as a sequence of transitions (si, a, r, si+1).
One episode of active learning produces a finite
sequence of states, actions and rewards. We
use a deep Q-learning approach (Mnih et al.,
2015), which formalises the policy using function
Qπ(s, a)→ Rwhich determines the utility of tak-
ing a from state s according to a policy π. In Q-
learning, the agent iteratively updates Q(s, a) us-
ing rewards obtained from each episode, with up-
dates based on the recursive Bellman equation for
the optimal Q:

Qπ(s, a) = E[Ri|si = s, ai = a, π]. (1)

Here, Ri =
∑T

t=i γ
t−irt is the discounted fu-

ture reward and γ ∈ [0, 1] is a factor discounting
the value of future rewards and the expectation is

Algorithm 1 Learn an active learning policy
Input: data D, budget B
Output: π

1: for episode = 1, 2, . . . , N do
2: Dl ← ∅ and shuffle D
3: φ← Random
4: for i ∈ {0, 1, 2, . . . , |D|} do
5: Construct the state si using xi
6: The agent makes a decision according to

ai = arg maxQπ(si, a)
7: if ai = 1 then
8: Obtain the annotation yi
9: Dl ← Dl + (xi,yi)

10: Update model φ based on Dl
11: end if
12: Receive a reward ri using held-out set
13: if |Dl| = B then
14: Store (si, ai, ri,Terminate) inM
15: Break
16: end if
17: Construct the new state si+1

18: Store transition (si, ai, ri, si+1) inM
19: Sample random minibatch of transitions

{(sj , aj , rj , sj+1)} from M, and per-
form gradient descent step on L(θ)

20: Update policy π with θ
21: end for
22: end for
23: return the latest policy π

taken over all transitions involving state s and ac-
tion a.

Following Deep Q-learning (Mnih et al., 2015),
we make use of a deep neural network to compute
the expected Q-value, in order to update the pa-
rameters. We implement the Q-function using a
single hidden layer neural network, taking as in-
put the state representation (hc,he, C) (defined
in §3.2.1), and outputting two scalar values cor-
responding to the values Q(s, a) for a ∈ {0, 1}.
This network uses a rectified linear unit (ReLU)
activation function in its hidden layer.

The parameters in the DQN are learnt using
stochastic gradient descent, based on a regression
objective to match the Q-values predicted by the
DQN and the expected Q-values from the Bell-
man equation, ri + γmaxaQ(si+1, a; θ). Fol-
lowing (Mnih et al., 2015), we use an experi-
ence replay memory M to store each transition
(s, a, r, s′) as it is used in an episode, after which
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Algorithm 2 Active learning by policy transfer
Input: unlabelled data D, budget B, policy π
Output: Dl

1: Dl ← ∅
2: φ← Random
3: for |Dl| 6= B and D not empty do
4: Randomly sample xi from the data pool D

and construct the state si
5: The agent chooses an action ai according to

ai = arg maxQπ(si, a)
6: if ai = 1 then
7: Obtain the annotation yi
8: Dl ← Dl + (xi,yi)
9: Update model φ based on Dl

10: end if
11: D ← D\xi
12: Receive a reward ri using held-out set
13: Update policy π
14: end for
15: return Dl

we sample a mini-batch of transitions from the
memory and then minimize the loss function:

L(θ) = Es,a,r,s′
[(
yi(r, s′)−Q(s, a; θ)

)2]
, (2)

where yi(r, s′) = r + γmaxa′ Q(s′, a′; θi−1) is
the target Q-value, based on the current param-
eters θi−1, and the expectation is over the mini-
batch. Learning updates are made every training
step, based on stochastic gradient descent to min-
imise Eq. 2 w.r.t. parameters θ.

The algorithm for learning is summarised in Al-
gorithm 1. We train the policy by running multi-
ple active learning episodes over the training data,
where each episode is a simulated active learning
run. For each episode, we shuffle the data, and
hide the known labels, which are revealed as re-
quested during the run. A disjoint held-out set
is used to compute the reward, i.e., model accu-
racy, which is fixed over the episodes. Between
each episode the model is reset to its initialisation
condition, with the main changes being the differ-
ent (random) data ordering and the evolving policy
function.

3.3 Cross-lingual policy transfer
We now turn to the question of how the learned

policy can be applied to another dataset. Given
the extensive use of the training dataset, the policy
application only makes sense when employed in a

Algorithm 3 Active learning by policy and model
transfer, for ‘cold-start’ scenario
Input: unlabelled data D, budget B, policy π,

model φ
Output: Dl

1: Dl ← ∅
2: for |Dl| 6= B and D not empty do
3: Randomly sample xi from the data pool D

and construct the state si
4: The agent chooses an action ai according to

ai = arg maxQπ(si, a)
5: if ai = 1 then
6: Dl ← Dl + (xi,−)
7: end if
8: D ← D\xi
9: end for

10: Obtain all the annotations for Dl
11: return Dl

different data setting, e.g., where the domain, task
or language is different. For this paper, we con-
sider a cross-lingual application of the same task
(NER), where we train a policy on a source lan-
guage (e.g., English), and then transfer the learned
policy to a different target language. Cross-lingual
word embeddings provide a common shared rep-
resentation to facilitate application of the policy to
other languages.

We illustrate the policy transfer algorithm in Al-
gorithm 2. This algorithm is broadly similar to
Algorithm 1, but has two key differences. Firstly,
Algorithm 2 makes only one pass over the data,
rather than several passes, as befits an application
to a low-resource language where oracle labelling
is costly. Secondly, the algorithm also assumes
an initial policy, π, which is fine tuned during the
episode based on held-out performance such that
the policy can adapt to the test scenario.3

3.4 Cold-start transfer

The above transfer algorithm has some limita-
tions, which may not be realistic for low-resource
settings: the requirement for held-out evaluation
data and the embedding of the oracle annotator in-
side the learning loop. The former implies more
supervision than is ideal in a low-resource setting,

3Moreover, the algorithm can be extended to a traditional
batch setting by evaluating a batch of data instances and se-
lectinag the best k instances for labelling under the policy.
This could be applied in either the transfer step (Algorithm 2)
or initial policy training (Algorithm 1), or both.
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while the latter places limitations on the commu-
nication with annotator as well as a necessity for
real-time processing, both which are unlikely in a
field linguistics setting.

For this data and- communication-impoverished
setting, denoted as cold-start, we allow only one
chance to request labels for the target data, and,
having no held-out data, do not allow policy up-
dates. The agent needs to select a batch of unla-
belled target instances for annotations, but cannot
use these resulting annotations or any other feed-
back to refine the selection. In this, more difficult
cold-start setting, we bootstrap the process with an
initial model, such that the agent can make infor-
mative decisions in the absence of feedback.

The procedure is outlined in Algorithm 3. Us-
ing the cross-lingual word embeddings, we trans-
fer both a policy and a model into the target lan-
guage. The model, φ, is trained on one source
language, and the policy is learned on a different
source language. Policy learning uses Alg 1, with
the small change that in step 3 the model is ini-
tialised using φ. Consequently the learned policy
can exploit the knowledge from cross-lingual ini-
tialisation, such that it can figure out which aspects
that need to be corrected using target annotated
data. Overall this allows for estimates and con-
fidence values to be produced by the model, thus
providing the agent with sufficient information for
data selection.

4 Experiments

We conduct experiments to validate the proposed
active learning method in a cross-lingual setting,
whereby an active learning policy trained on a
source language is transferred to a target language.
We allow repeated active learning simulations on
the source language, where annotated corpora are
plentiful, to learn a policy, while for target lan-
guages we only permit a single episode, to mimic
a language without existing resources.

We use NER corpora from CoNLL2002/2003
shared tasks,4 which comprise NER annotated text
in English (en), German (de), Spanish (es), and
Dutch (nl), each annotated using the IOB1 la-
belling scheme, which we convert to the IO label-
ing scheme. We use the existing corpus partions,
with train used for policy training, testb used

4 http://www.cnts.ua.ac.be/conll2002/
ner/, http://www.cnts.ua.ac.be/conll2003/
ner/

Bilingual Multilingual Cold-start
tgt src tgt src tgt src pre
de en de en,nl,es de nl en
nl en nl en,de,es nl de en
es en es en,de,nl es de en
- - - - de es en
- - - - nl es en
- - - - es nl en

Table 1: Experimental configuration for the three
settings, showing target language (tgt), source lan-
guage (src) as used for policy learning, and lan-
guage used for pre-training the model (pre).

as held-out for computing rewards, and final re-
sults are reported on testa.

We consider three experimental conditions, as
illustrated in Table 1:

bilingual where English is the source (used for
policy learning) and we vary the target lan-
guage;

multilingual where several source languages are
the used in joint learning of the policy, and a
separate language is used as target; and

cold-start where a pretrained English NER tag-
ger is used to initialise policy learning on a
source language, and in cold-start application
to a separate target language.

Configuration We now outline the parameter
settings for the experimental runs. For learning
an active learning policy, we run N = 10, 000
episodes with budget B = 200 sentences using
Alg. 1. Content representations use three convo-
lutional filters of size 3, 4 and 5, using 128 fil-
ters for each size, while for predictive marginals,
the convolutional filters are of width 3, using 20
filters. The size of the last hidden layer is 256.
The discount factor is set to γ = 0.99. We used
the ADAM algorithm with mini-batches of size 32
for training the neural network. To report perfor-
mance, we apply the learned policy to the target
training set (using Alg. 2 or 3, again with budget
200),5 after which we use the final trained model
for which we report F1 score.

For word embeddings, we use off the shelf CCA
trained multilingual embeddings (Ammar et al.,

5Although it is possible the policy may learn not to use
the full budget, this does not occur in practise.
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Figure 3: The performance of active learning methods on the bilingual and multilingual settings for
three target languages, whereby the active learning policy is trained on only en, or all other languages
excluding the target, respectively.

2016),6 using a 40 dimensional embedding and
fixing these during training of both the policy and
model. As the model, we use a standard linear
chain CRF (Lafferty et al., 2001) for the first two
sets of experiments, while for cold-start case we
use a basic RNN classifier with the same multilin-
gual embeddings as before, and a 128 dimensional
hidden layer.

The proposed method is referred to as PAL, as
shorthand Policy based Active Learning. Sub-
scripts b,m, c are used to denote the bilingual,
multilingual and cold-start experimental configu-
rations. For comparative baselines, we use the fol-
lowing methods:

Uncertainty sampling we use the total token en-
tropy measure (Settles and Craven, 2008),
which takes the instance x maximising∑|x|

t=1H(yt|x, φ), where H is the token en-
tropy. We use the whole training set as the
data pool, and select a single instance for
labelling in each active learning step. This
method was shown to achieve the best re-
sult among model-independent active learn-
ing methods on the CoNLL data.

Random sampling which randomly selects ex-
amples from the unlabelled pool.

Results Figure 3 shows results the bilingual
case, where PALb consistently outperforms the
Random and Uncertainty baselines across the
three target languages. Uncertainty sampling is in-
effective, particularly towards the start of the run,

6http://128.2.220.95/multilingual

as a consequence of its dependence on a high qual-
ity model. The use of content information allows
PALb to make a stronger start, despite the poor ini-
tial model.

Also shown in Figure 3 are results for multilin-
gual policy learning, PALm, which outperform all
other approaches including PALb. This illustrates
that the additional training over several languages
gives rise to a better policy, than only using one
source language. The superior performance is par-
ticularly marked in the early stages of the runs for
Spanish and Dutch, which may indicate that the
approach was better able to learn to exploit the
sentence content information.

We evaluate the cold-start setting in Figure 4.
Recall that in this setting there are no policy or
model updates, as no heldout data is used, and all
annotations arrive in a batch. The model, how-
ever, is initialised with a NER tagger trained on
a different language, which explains why the per-
formance for all methods starts from around 40%
rather than 0%. Even in this challenging eval-
uation setting, our algorithm PALc outperforms
both baseline methods, showing that deep Q learn-
ing allows for better exploitation of the pretrained
classifier, alongside the sentence content.

Lastly, we report the results for all approaches
in Table 2, based on training on the full 200 la-
belled sentences as selected under the different
methods. It is clear that the PAL methods all out-
perform the baselines, and among these the multi-
lingual training of PALm outperforms the bilingual
setting in PALb. Surprisingly, PALc gives the over-
all best results, despite using a static policy and
model during target application, underscoring the
importance of model pretraining. Table 2 also re-
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Figure 4: The performance of active learning methods on the cold-start setting, each showing different
source→ target configurations, in all cases pretraining in en.

de nl es
F1 C/R F1 C/R F1 C/R

Rand. 44.6 100 45.2 100 40.7 100
Uncert. 54.2 60 50.1 25 45.1 30
PALb 57.9 60 54.7 25 53.9 40
PALm 62.7 25 56.3 30 56.0 25
PALc 70.7 10 69.1 10 63.8 10

Table 2: Results from active learning using the dif-
ferent methods, where each approach constructs a
training set of 200 sentences. The three target lan-
guages are shown as columns, reporting in each F1

score (%) and the relative cost reduction to match
the stated performance of the Random strategy.

ports the cost reduction versus random sampling,
showing that the PAL methods can reduce the an-
notation burden to as low as 10%.

5 Conclusion

In this paper, we have proposed a new active learn-
ing algorithm capable of learning active learning
strategies from data. We formalise active learn-
ing under a Markov decision framework, whereby
active learning corresponds to a sequence of bi-
nary annotation decisions applied to a stream of
data. Based on this, we design an active learning
algorithm as a policy based on deep reinforcement
learning. We show how these learned active learn-
ing policies can be transferred between languages,
which we empirically show provides consistent
and sizeable improvements over baseline methods,
including traditional uncertainty sampling. This

holds true even in a very difficult cold-start setting,
where no evaluation data is available, and there is
no ability to react to annotations.
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