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Abstract

Morphological segmentation has traditionally
been modeled with non-hierarchical models,
which yield flat segmentations as output. In
many cases, however, proper morphologi-
cal analysis requires hierarchical structure—
especially in the case of derivational morphol-
ogy. In this work, we introduce a discrimina-
tive, joint model of morphological segmenta-
tion along with the orthographic changes that
occur during word formation. To the best
of our knowledge, this is the first attempt to
approach discriminative segmentation with a
context-free model. Additionally, we release
an annotated treebank of 7454 English words
with constituency parses, encouraging future
research in this area.1

1 Introduction

In NLP, supervised morphological segmentation
has typically been viewed as either a sequence-
labeling or a segmentation task (Ruokolainen et al.,
2016). In contrast, we consider a hierarchical ap-
proach, employing a context-free grammar (CFG).
CFGs provide a richer model of morphology: They
capture (i) the intuition that words themselves have
internal constituents, which belong to different cat-
egories, as well as (ii) the order in which affixes
are attached. Moreover, many morphological pro-
cesses, e.g., compounding and reduplication, are
best modeled as hierarchical; thus, context-free
models are expressively more appropriate.

The purpose of morphological segmentation is
to decompose words into smaller units, known as
morphemes, which are typically taken to be the
smallest meaning-bearing units in language. This
work concerns itself with modeling hierarchical
structure over these morphemes. Note a simple flat

1We found post publication that CELEX (Baayen et al.,
1993) has annotated words for hierarchical morphological
segmentation as well.

morphological segmentation can also be straightfor-
wardly derived from the CFG parse tree. Segmenta-
tions have found use in a diverse set of NLP appli-
cations, e.g., automatic speech recognition (Afify
et al., 2006), keyword spotting (Narasimhan et al.,
2014), machine translation (Clifton and Sarkar,
2011) and parsing (Seeker and Çetinoğlu, 2015).
In contrast to prior work, we focus on canoni-
cal segmentation, i.e., we seek to jointly model
orthographic changes and segmentation. For in-
stance, the canonical segmentation of untestably is
un+test+able+ly, where we map ably to able+ly,
restoring the letters le.

We make two contributions: (i) We introduce
a joint model for canonical segmentation with a
CFG backbone. We experimentally show that this
model outperforms a semi-Markov model on flat
segmentation. (ii) We release the first morphology
treebank, consisting of 7454 English word types,
each annotated with a full constituency parse.

2 The Case For Hierarchical Structure

Why should we analyze morphology hierarchi-
cally? It is true that we can model much of mor-
phology with finite-state machinery (Beesley and
Karttunen, 2003), but there are, nevertheless, many
cases where hierarchical structure appears requi-
site. For instance, the flat segmentation of the word
untestably7→un+test+able+ly is missing impor-
tant information about how the word was derived.
The correct parse [[un[[test]able]]ly], on the other
hand, does tell us that this is the order in which the
complex form was derived:

test able7−−→testable un7−→untestable
ly7−→untestably.

This gives us insight into the structure of the
lexicon—we expect that the segment testable exists
as an independent word, but ably does not.

Moreover, a flat segmentation is often semanti-
cally ambiguous. There are two potentially valid
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Figure 1: Canonical segmentation parse trees for untestably and unlockable. For both words, the scope of un is ambiguous.
Arguably, (a) is the only correct parse tree for untestably; the reading associated with (b) is hard to get. On the other hand,
unlockable is truly ambiguous between “able to be unlocked” (c) and “unable to be locked” (d).

readings of untestably depending on how the neg-
ative prefix un scopes. The correct tree (see Fig-
ure 1) yields the reading “in the manner of not
able to be tested.” A second—likely infelicitous
reading—where the segment untest forms a con-
stituent yields the reading “in a manner of being
able to untest.” Recovering the hierarchical struc-
ture allows us to select the correct reading; note
there are even cases of true ambiguity; e.g., unlock-
able has two readings: “unable to be locked” and
“able to be unlocked.”

We also note that theoretical linguists often im-
plicitly assume a context-free treatment of word
formation, e.g., by employing brackets to indicate
different levels of affixation. Others have explicitly
modeled word-internal structure with grammars
(Selkirk, 1982; Marvin, 2002).

3 Parsing the Lexicon

A novel component of this work is the development
of a discriminative parser (Finkel et al., 2008;
Hall et al., 2014) for morphology. The goal is
to define a probability distribution over all trees
that could arise from the input word, after reversal
of orthographic and phonological processes. We
employ the simple grammar shown in Table 1.
Despite its simplicity, it models the order in which
morphemes are attached.

More formally, our goal is to map a surface form
w (e.g., w=untestably) into its underlying canon-
ical form u (e.g., u=untestablely) and then into a
parse tree t over its morphemes. We assume u,w ∈
Σ∗, for some discrete alphabet Σ.2 Note that a
parse tree over the string implicitly defines a flat
segmentation given our grammar—one can simply
extract the characters spanned by all preterminals in
the resulting tree. Before describing the joint model

2For efficiency, we assume u ∈ Σ|w|+k, k = 5.

in detail, we first consider its pieces individually.

3.1 Restoring Orthographic Changes

To extract a canonical segmentation (Naradowsky
and Goldwater, 2009; Cotterell et al., 2016), we re-
store orthographic changes that occur during word
formation. To this end, we define the score function

scoreη(u, a, w) = exp
(
g(u, a, w)>η

)
(1)

where a is a monotonic alignment between the
strings u and w. The goal is for scoreη to as-
sign higher values to better matched pairs, e.g.,
(w=untestably, u=untestablely). We refer to
Dreyer et al. (2008) for a thorough exposition.

For ease of computation, we can encode
this function as a weighted finite-state machine
(WFST) (Mohri et al., 2002). This requires,
however, that the feature function g factors over
the topology of the finite-state encoding. Since
our model conditions on the word w, the feature
function g can extract features from any part of this
string. Features on the output string, u, however,
are more restricted. In this work, we employ a
bigram model over output characters. This implies
that each state remembers exactly one character:
the previous one. See Cotterell et al. (2014) for
details. We can compute the score for two strings
u and w using a weighted generalization of the
Levenshtein algorithm. Computing the partition
function requires a different dynamic program,
which runs in O(|w|2 · |Σ|2) time. Note that since
|Σ| ≈ 26 (lower case English letters), it takes
roughly 262 = 676 times longer to compute the
partition function than to score a pair of strings.

Our model includes several simple feature tem-
plates, including features that fire on individual edit
actions as well as conjunctions of edit actions and
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ROOT → WORD

WORD → PREFIX WORD

WORD → WORD SUFFIX

WORD → Σ+

PREFIX → Σ+

SUFFIX → Σ+

Table 1: The context-free grammar used in this work to model
word formation. The productions closely resemble those of
Johnson et al. (2006)’s Adaptor Grammar.

characters in the surrounding context. See Cotterell
et al. (2016) for details.

3.2 Morphological Analysis as Parsing

Next, we need to score an underlying canonical
form (e.g., u=untestablely) together with a parse
tree (e.g., t=[[un[[test]able]]ly]). Thus, we define
the parser score with the following function

scoreω(t, u) = exp

 ∑
π∈Π(t)

f(π, u)>ω

 (2)

where Π(t) is the set of anchored productions in the
tree t. An anchored production π is a grammar rule
in Chomsky normal form attached to a span, e.g.,
Ai,k → Bi,jCj,k. Each π is then assigned a weight
by the linear function f(π, u)>ω, where the func-
tion f extracts relevant features from the anchored
production as well as the corresponding span of
the underlying form u. This model is typically re-
ferred to as a weighted CFG (WCFG) (Smith and
Johnson, 2007) or a CRF parser.

For f , we define three span features: (i) indi-
cator features on the span’s segment, (ii) an indi-
cator feature that fires if the segment appears in
an external corpus3 and (iii) the conjunction of the
segment with the label (e.g., PREFIX) of the sub-
tree root. Following Hall et al. (2014), we employ
an indicator feature for each production as well as
production backoff features.

4 A Joint Model

Our complete model is a joint CRF (Koller and
Friedman, 2009) where each of the above scores
are factors. We define the following probability
distribution over trees, canonical forms and their

3We use the Wikipedia dump from 2016-05-01.

alignments to the original word

pθ(t,a, u | w) = (3)
1

Zθ(w)
scoreω(t, u) · scoreη(u, a, w)

where θ = {ω,η} is the parameter vector and the
normalizing partition function as

Zθ(w) =∑
u′∈Σ|w|+k

∑
a∈A(u′,w)

(4)

∑
t′∈T (u′)

scoreω(t′, u′) · scoreη(u′, a, w)

where T (u) is the set of all parse trees for the
string u. This involves a sum over all possible
underlying orthographic forms and all parse trees
for those forms.

The joint approach has the advantage that it al-
lows both factors to work together to influence the
choice of the underlying form u. This is useful
as the parser now has access to which words are
attested in the language; this helps guide the rela-
tively weak transduction model. On the downside,
the partition function Zθ now involves a sum over
all strings in Σ|w|+k and all possible parses of each
string! Finally, we define the marginal distribution
over trees and underlying forms as

pθ(t, u | w) =
∑

a∈A(u,w)

pθ(t, a, u | w) (5)

where A(u,w) is the set of all monotonic align-
ments between u and w. The marginalized form
in eq. (5) is our final model of morphological seg-
mentation since we are not interested in the latent
alignments a.

4.1 Learning and Inference
We use stochastic gradient descent to opti-
mize the log-probability of the training data∑N

n=1 log pθ(t(n), u(n) | w(n)); this requires the
computation of the gradient of the partition func-
tion ∇θ logZθ. We may view this gradient as an
expectation:

∇θ logZθ(w) = (6)

E(t,a,u)∼pθ(·|w)

 ∑
π∈Π(t)

f(π, u)> + g(u, a, w)>


We provide the full derivation in Appendix A with
an additional Rao-Blackwellization step that we
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Segmentation Tree

Morph. F1 Edit Acc. Const. F1

Flat 78.89 (0.9) 0.72 (0.04) 72.88 (1.21) N/A
Hier 85.55 (0.6) 0.55 (0.03) 73.19 (1.09) 79.01 (0.5)

Table 2: Results for the 10 splits of the treebank. Segmentation quality is measured by morpheme F1, edit distance and accuracy;
tree quality by constituent F1.

make use of in the implementation. While the sum
over all underlying forms and trees in eq. (6) may
be achieved in polynomial time (using the Bar-
Hillel construction), we make use of an importance-
sampling estimator, derived by Cotterell et al.
(2016), which is faster in practice. Roughly
speaking, we approximate the hard-to-sample-
from distribution pθ by taking samples from
an easy-to-sample-from proposal distribution q.
Specifically, we employ a pipeline model for q con-
sisting of WFST and then a WCFG sampled from
consecutively. We then reweight the samples using
the unnormalized score from pθ. Importance sam-
pling has found many uses in NLP ranging from
language modeling (Bengio et al., 2003) and neural
MT (Jean et al., 2015) to parsing (Dyer et al., 2016).
Due to a lack of space, we omit the derivation of
the importance-sampled approximate gradient.

4.2 Decoding

We also decode by importance sampling. Given
w, we sample canonical forms u and then run the
CKY algorithm to get the highest scoring tree.

5 Related Work

We believe our attempt to train discriminative gram-
mars for morphology is novel. Nevertheless, other
researchers have described parsers for morphology.
Most of this work is unsupervised: Johnson et al.
(2007) applied a Bayesian PCFG to unsupervised
morphological segmentation. Similarly, Adaptor
Grammars (Johnson et al., 2006), a non-parametric
Bayesian generalization of PCFGs, have been ap-
plied to the unsupervised version of the task (Botha
and Blunsom, 2013; Sirts and Goldwater, 2013).
Relatedly, Schmid (2005) performed unsupervised
disambiguation of a German morphological ana-
lyzer (Schmid et al., 2004) using a PCFG, using the
inside-outside algorithm (Baker, 1979). Also, dis-
criminative parsing approaches have been applied
to the related problem of Chinese word segmenta-
tion (Zhang et al., 2014).

6 Morphological Treebank

Supervised morphological segmentation has histor-
ically been treated as a segmentation problem, de-
void of hierarchical structure. A core reason behind
this is that—to the best of our knowledge—there
are no hierarchically annotated corpora for the task.
To remedy this, we provide tree annotations for a
subset of the English portion of CELEX (Baayen
et al., 1993). We reannotated 7454 English types
with a full constituency parse.4 The resource will
be freely available for future research.

6.1 Annotation Guidelines
The annotation of the morphology treebank
was guided by three core principles. The first
principle concerns productivity: we exclusively
annotate productive morphology. In the context of
morphology, productivity refers to the degree that
native speakers actively employ the affix to create
new words (Aronoff, 1976). We believe that for
NLP applications, we should focus on productive
affixation. Indeed, this sets our corpus apart from
many existing morphologically annotated corpora
such as CELEX. For example, CELEX contains
warmth7→warm+th, but th is not a productive
suffix and cannot be used to create new words.
Thus, we do not want to analyze hearth 7→hear+th
or, in general, allow wug7→wug+th. Second, we
annotate for semantic coherence. When there are
several candidate parses, we choose the one that is
best compatible with the compositional semantics
of the derived form.

Interestingly, multiple trees can be considered
valid depending on the linguistic tier of interest.
Consider the word unhappier. From a semantic per-
spective, we have the parse [[un [happy]] er] which
gives us the correct meaning “not happy to a greater
degree.” However, since the suffix er only attaches
to mono- and bisyllabic words, we get [un[[happy]
er]] from a phonological perspective. In the linguis-
tics literature, this problem is known as the brack-

4In many cases, we corrected the flat segmentation as well.
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eting paradox (Pesetsky, 1985; Embick, 2015). We
annotate exclusively at the syntactic-semantic tier.

Thirdly, in the context of derivational mor-
phology, we force spans to be words themselves.
Since derivational morphology—by definition—
forms new words from existing words (Lieber and
Štekauer, 2014), it follows that each span rooted
with WORD or ROOT in the correct parse corre-
sponds to a word in the lexicon. For example,
consider unlickable. The correct parse, under our
scheme, is [un [[lick] able]]. Each of the spans
(lick, lickable and unlickable) exists as a word. By
contrast, the parse [[un [lick]] able] contains the
span unlick, which is not a word in the lexicon. The
span in the segmented form may involve changes,
e.g., [un [[achieve] able]], where achieveable is not
a word, but achievable (after deleting e) is.

7 Experiments

We run a simple experiment to show the empirical
utility of parsing words—we compare a WCFG-
based canonical segmenter with the semi-Markov
segmenter introduced in Cotterell et al. (2016).
We divide the corpus into 10 distinct train/dev/test
splits with 5454 words for train and 1000 for each
of dev and test. We report three evaluation met-
rics: full form accuracy, morpheme F1 (Van den
Bosch and Daelemans, 1999) and average edit dis-
tance to the gold segmentation with boundaries
marked by a distinguished symbol. For the WCFG
model, we also report constituent F1—typical for
sentential constituency parsing— as a baseline
for future systems. This F1 measures how well
we predict the whole tree (not just a segmenta-
tion). For all models, we use L2 regularization
and run 100 epochs of ADAGRAD (Duchi et al.,
2011) with early stopping. We tune the regu-
larization coefficient by grid search considering
λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

7.1 Results and Discussion

Table 2 shows the results. The hierarchical WCFG
model outperforms the flat semi-Markov model on
all metrics on the segmentation task. This shows
that modeling structure among the morphemes, in-
deed, does help segmentation. The largest improve-
ments are found under the morpheme F1 metric
(≈ 6.5 points). In contrast, accuracy improves by
< 1%. Edit distance is in between with an improve-
ment of 0.2 characters. Accuracy, in general, is an
all or nothing metric since it requires getting every

canonical segment correct. Morpheme F1, on the
other hand, gives us partial credit. Thus, what this
shows us is that the WCFG gets a lot more of the
morphemes in the held-out set correct, even if it
only gets a few more complete forms correct. We
provide additional results evaluating the entire tree
with constituency F1 as a future baseline.

8 Conclusion

We presented a discriminative CFG-based model
for canonical morphological segmentation and
showed empirical improvements on its ability
to segment words under three metrics. We ar-
gue that our hierarchical approach to modeling
morphemes is more often appropriate than the
traditional flat segmentation. Additionally, we
have annotated 7454 words with a morpholog-
ical constituency parse. The corpus is avail-
able online at http://ryancotterell.github.

io/data/morphological-treebank to allow for
exact comparison and to spark future research.
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Quick training of probabilistic neural nets by impor-
tance sampling. In AISTATS.

Antal Van den Bosch and Walter Daelemans. 1999.
Memory-based morphological analysis. In ACL.

2329

http://ryancotterell.github.io/data/ morphological-treebank
http://ryancotterell.github.io/data/ morphological-treebank


Jan A. Botha and Phil Blunsom. 2013. Adaptor gram-
mars for learning non-concatenative morphology. In
EMNLP, pages 345–356.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In ACL.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
FSTs. In ACL.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. 2016.
A joint model of orthography and morphological
segmentation. In NAACL.

Markus Dreyer, Jason R. Smith, and Jason Eisner.
2008. Latent-variable modeling of string transduc-
tions with finite-state methods. In EMNLP.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR, 12:2121–2159.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In NAACL.

David Embick. 2015. The Morpheme: A Theoretical
Introduction, volume 31. Walter de Gruyter GmbH
& Co KG.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, condi-
tional random field parsing. In ACL, volume 46,
pages 959–967.

David Leo Wright Hall, Greg Durrett, and Dan Klein.
2014. Less grammar, more features. In ACL, pages
228–237.
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A Derivation of Eq. 6

Here we provide the gradient of the log-partition function as an expectation:

∇θ logZθ(w) =
1

Zθ(w)
∇θZθ(w) (7)

=
1

Zθ(w)
∇θ

 ∑
u′∈Σ|w|+k

∑
a∈A(u′,w)

∑
t′∈T (u′)

scoreω(t′, u′) · scoreη(u′, a, w)


=

1

Zθ(w)

∑
u′∈Σ|w|+k

∑
a∈A(u′,w)

∑
t′∈T (u′)

∇θ
(
scoreω(t′, u′) · scoreη(u′, a, w)

)
=

1

Zθ(w)

∑
u′∈Σ|w|+k

∑
a∈A(u′,w)

∑
t′∈T (u′)

(
scoreη(u′, a, w) · ∇ωscoreω(t′, u′)

+ scoreω(t′, u′) · ∇ηscoreη(u′, a, w)
)

=
1

Zθ(w)

∑
u′∈Σ|w|+k

∑
a∈A(u′,w)

∑
t′∈T (u′)

scoreη(u′, a, w) · scoreω(t′, u′)

 ∑
π∈Π(t′)

f(π, u′)> + g(u′, a, w)>


=

∑
u′∈Σ|w|+k

∑
a∈A(u′,w)

∑
t′∈T (u′)

scoreη(u′, a, w) · scoreω(t′, u′)

Zθ(w)

 ∑
π∈Π(t′)

f(π, u)> + g(u′, a, w)>


= E(t,a,u)∼pθ(·|w)

 ∑
π∈Π(t)

f(π, u)> + g(u, a, w)>

 (8)

The result above can be further improved through Rao-Blackwellization. In this case, when we sample
a tree–underlying form pair (t, u), we marginalize out all alignments that could have given rise to the
sampled pair. The final derivation is show below:

∇θ logZθ(w) = E(t,a,u)∼pθ(·|w)

 ∑
π∈Π(t)

f(π, u)> + g(u, a, w)>


= E(t,u)∼pθ(·|w)

 ∑
π∈Π(t)

f(π, u)> +
∑

a∈A(u,w)

pθ(a | u,w)g(u, a, w)>

 (9)

This estimator in eq. (9) will have lower variance than eq. (8).
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