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Abstract

To create conversational systems working in
actual situations, it is crucial to assume that
they interact with multiple agents. In this
work, we tackle addressee and response se-
lection for multi-party conversation, in which
systems are expected to select whom they ad-
dress as well as what they say. The key chal-
lenge of this task is to jointly model who is
talking about what in a previous context. For
the joint modeling, we propose two model-
ing frameworks: 1) static modeling and 2) dy-
namic modeling. To show benchmark results
of our frameworks, we created a multi-party
conversation corpus. Our experiments on the
dataset show that the recurrent neural network
based models of our frameworks robustly pre-
dict addressees and responses in conversations
with a large number of agents.

1 Introduction

Short text conversation (STC) has been gaining pop-
ularity: given an input message, predict an appropri-
ate response in a single-round, two-party conversa-
tion (Wang et al., 2013; Shang et al., 2015). Model-
ing STC is simpler than modeling a complete con-
versation, but instantly helps applications such as
chat-bots and automatic short-message replies (Ji et
al., 2014).

Beyond two-party conversations, there is also a
need for modeling multi-party conversation, a form
of conversation with several interlocutors convers-
ing with each other (Traum, 2003; Dignum and
Vreeswijk, 2003; Uthus and Aha, 2013). For exam-
ple, in the Ubuntu Internet Relay Chat (IRC), sev-

Figure 1: Addressee and response selection for multi-party

conversation. A SYSTEM is required to select an appropriate

addressee from the interlocutors in the conversational context

and an appropriate response from the fixed set of candidates.

eral users cooperate to find a solution for a techni-
cal issue contributed by another user. Each agent
might have one part of the solution, and these pieces
have to be combined through conversation in order
to come up with the whole solution.

A unique issue of such multi-party conversations
is addressing, a behavior whereby interlocutors in-
dicate to whom they are speaking (Jovanović and
Akker, 2004; Akker and Traum, 2009). In face-
to-face communication, the basic clue for speci-
fying addressees is turning one’s face toward the
addressee. In contrast, in voice-only or text-
based communication, the explicit declaration of ad-
dressee’s names is more common.

In this work, we tackle addressee and response
selection for multi-party conversation: given a con-
text, predict an addressee and response. As Fig-
ure 1 shows, a system is required to select an ad-
dressee from the agents appearing in the previous
context and a response from a fixed set of candidate
responses (Section 3).
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The key challenge for predicting appropriate ad-
dressees and responses is to jointly capture who
is talking about what at each time step in a con-
text. For jointly modeling the speaker-utterance in-
formation, we present two modeling frameworks:
1) static modeling and 2) dynamic modeling (Sec-
tion 5). While speakers are represented as fixed
vectors in the static modeling, they are represented
as hidden state vectors that dynamically change
with time steps in the dynamic modeling. In prac-
tice, our models trained for the task can be applied
to retrieval-based conversation systems, which re-
trieves candidate responses from a large-scale repos-
itory with the matching model and returns the high-
est scoring one with the ranking model (Wang et al.,
2013; Ji et al., 2014; Wang et al., 2015). Our trained
models work as the ranking model and allow the
conversation system to produce addressees as well
as responses.

To evaluate the trained models, we provide a cor-
pus and dataset. By exploiting Ubuntu IRC Logs1,
we build a large-scale multi-party conversation cor-
pus, and create a dataset from it (Section 6). Our
experiments on the dataset show the models instanti-
ated by the static and dynamic modeling outperform
a strong baseline. In particular, the model based on
the dynamic modeling robustly predicts appropriate
addressees and responses even if the number of in-
terlocutors in a conversation increases.2

We make three contributions in this work:

1. We formalize the task of addressee and re-
sponse selection for multi-party conversation.

2. We present modeling frameworks and the per-
formance benchmarks for the task.

3. We build a large-scale multi-party conversation
corpus and dataset for the task.

2 Related Work

This work follows in the footsteps of Ritter et al.
(2011), who tackled the response generation prob-
lem: given a context, generate an appropriate re-
sponse. While previous response generation ap-

1http://irclogs.ubuntu.com/
2Our code, corpus, and dataset are publicly available at

https://github.com/hiroki13/response-ranking

proaches utilize statistical models on top of heuris-
tic rules or templates (Levin et al., 2000; Young et
al., 2010; Walker et al., 2003), they apply statistical
machine translation based techniques without such
heuristics, which leads to recent work utilizing the
SMT-based techniques with neural networks (Shang
et al., 2015; Vinyals and Le, 2015; Sordoni et al.,
2015; Serban et al., 2016).

As another popular approach, retrieval-based
techniques are used to retrieve candidate responses
from a repository and return the highest scoring one
with the ranking model (Ji et al., 2014; Wang et al.,
2015; Hu et al., 2014; Wang et al., 2013; Lu and Li,
2013). Stemming from this approach, the next utter-
ance classification (NUC) task has been proposed, in
which a system is required to select an appropriate
response from a fixed set of candidates (Lowe et al.,
2015; Kadlec et al., 2015). The NUC is regarded as
focusing on the ranking problem of retrieval-based
system, since it omits the candidate retrieving step.
The merit of NUC is that it allows us to easily evalu-
ate the model performance on the basis of accuracy.

Our proposed addressee and response selection
task is an extension of the NUC. We generalize the
task by integrating the addressee detection, which
has been regarded as a problematic issue in multi-
party conversation (Traum, 2003; Jovanović and
Akker, 2004; Uthus and Aha, 2013). Basically,
the addressee detection has been tackled in the
spoken/multimodal dialog system research, and the
models largely rely on acoustic signal or gaze infor-
mation (Jovanović et al., 2006; Akker and Traum,
2009; Ravuri and Stolcke, 2014). This current work
is different from such previous work in that our mod-
els predict addressees with only textual information.

For predicting addressees or responses, how the
context is encoded is crucial. In single-round con-
versation, a system is expected to encode only one
utterance as a context (Ritter et al., 2011; Wang et
al., 2013). In contrast, in multi-turn conversation,
a system is expected to encode multiple utterances
(Shang et al., 2015; Lowe et al., 2015). Very re-
cently, individual personalities have been encoded
as distributed embeddings used for response genera-
tion in two-party conversation (Li et al., 2016). Our
work is different from that work in that our proposed
personality-independent representation allows us to
handle new agents unseen in the training data.
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Type Notation

Input
Responding Agent ares

Context C
Candidate Responses R

Output
Addressee a ∈ A(C)

Response r ∈ R

Table 1: Notations for the ARS task.

3 Addressee and Response Selection

We propose and formalize the task of addressee and
response selection (ARS) for multi-party conversa-
tion. The ARS task assumes the situation where a
responding agent gives a response to an addressee
following a context.3

Notation
Table 1 shows the notations for the formalization.
We denote vectors with bold lower-case (e.g. xt, h),
matrices with bold upper-case (e.g. W, Ha), scalars
with italic lower-case or upper-case (e.g. am, Q),
and sets with bold italic lower-case or cursive upper-
case (e.g. x, C) letters.

Formalization
Given an input conversational situation x, an ad-
dressee a and a response r are predicted:

GIVEN : x = (ares, C, R)

PREDICT : a, r

where ares is a responding agent, C is a context and
R is a set of candidate responses. The context C is
a sequence of previous utterances up to the current
time step T :

C = (ua1,1, · · · ,uaT ,T )

where uat,t is an utterance given by an agent at at a
time step t. Each utterance uat,t is a sequence of Nt

tokens:

uat,t = (wat,t,1, · · · , wat,t,Nt)

where wat,t,n is a token index in the vocabulary V .
3In actual situations, responses can be addressed to multiple

agents. In this work, we assume the situation where one specific
agent can be the addressee of a response.

To predict an addressee a as a target output, we
select an agent from a set of the agents appearing in
a context A(C). Note that a ground-truth addressee
is always included in A(C). To predict an appropri-
ate response r, we select a response from a set of
candidate responses R, which consists of Q candi-
dates:

R = {r1, · · · , rQ}

rq = (wq,1, · · · , wq,Nq)

where rq is a candidate response, which consists of
Nq tokens, and wq,n is an token index in the vocab-
ulary V .

4 Dual Encoder Models

Our proposed models are extensions of the dual
encoder (DE) model in (Lowe et al., 2015). The
DE model consists of two recurrent neural networks
(RNN) that respectively compute the vector repre-
sentation of an input context and candidate response.

A generic RNN, with input xt ∈ Rdw and recur-
rent state ht ∈ Rdh , is defined as:

ht = f(ht−1,xt) = π(Whht−1 + Wxxt) (1)

where π is a non-linear function, Wx ∈ Rdh×dw is a
parameter matrix for xt, Wh ∈ Rdh×dh is a param-
eter matrix for ht−1, and the recurrence is seeded
with the 0 vector, i.e. h0 = 0. The recurrent state
ht acts as a compact summary of the inputs seen up
to time step t.

In the DE model, each word vector of the con-
text C and the response rq is consumed by each
RNN, and is then summarized into the context vec-
tor hc ∈ Rdh and the response vector hq ∈ Rdh . Us-
ing these vectors, the model calculates the probabil-
ity that the given candidate response is the ground-
truth response given the context as follows:

Pr(y(rq) = 1|C, rq) = σ(hT
c W hq) (2)

where y is a binary function mapping from rq to
{0, 1}, in which 1 represents the ground-truth sam-
ple and 0 represents the false one, σ is the logistic
sigmoid function, and W ∈ Rdh×dh is a parameter
matrix. As extensions of this model, we propose our
multi-party encoder models.
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5 Multi-Party Encoder Models

For capturing multi-party conversational streams,
we jointly encode who is speaking what at each time
step. Each agent and its utterance are integrated into
the hidden states of an RNN.

We present two multi-party modeling frame-
works: (i) static modeling and (ii) dynamic mod-
eling, both of which jointly utilize agent and ut-
terance representation for encoding multiple-party
conversation. What distinguishes the models is that
while the agent representation in the static modeling
framework is fixed, the one in the dynamic modeling
framework changes along with each time step t in a
conversation.

Modeling Frameworks

As an instance of the static modeling, we propose a
static model to capture the speaking-orders of agents
in conversation. As an instance of the dynamic mod-
eling, we propose a dynamic model using an RNN
to track agent states. Note that the agent represen-
tations are independent of each personality (unique
user). The personality-independent representation
allows us to handle new agents unseen in the training
data.

Formally, similar to Eq. 2, both of the models
calculate the probability that the addressee ap or re-
sponse rq is the ground-truth given the input x:

Pr(y(ap) = 1|x) = σ ([ares ; hc]
T Wa ap) (3)

Pr(y(rq) = 1|x) = σ ([ares ; hc]
T Wr hq) (4)

where y is a binary function mapping from ap or
rq to {0, 1}, in which 1 represents the ground-truth
sample and 0 represents the false one. The func-
tion σ is the logistic sigmoid function. ares ∈ Rda

is a responding agent vector, ap ∈ Rda is a candi-
date addressee vector, hc ∈ Rdh is a context vector,
hq ∈ Rdh is a candidate response vector. These vec-
tors are respectively defined in each model. Wa ∈
R(da+dh)×dh is a parameter matrix for the addressee
selection probability, and Wr ∈ R(da+dh)×dh is a
parameter matrix for the response selection proba-
bility. These model parameters are learned during
training.

On the basis of Eqs. 3 and 4, a resulting addressee

Figure 2: Illustrative example of our static model.

and response are selected as follows:

â = argmax
ap∈A(C)

Pr(y(ap) = 1|x) (5)

r̂ = argmax
rq∈R

Pr(y(rq) = 1|x) (6)

where â is the highest probability addressee of a set
of agents in the context A(C), and r̂ is the highest
probability response of a set of candidate responses
R.

5.1 A Static Model

In the static model, agent matrix A is defined for the
agent vectors in Eqs. 3 and 4. This agent matrix can
be defined arbitrarily. We define the agent matrix A
on the basis of agents’ speaking orders. Intuitively,
the agents that spoke in recent time steps are more
likely to be an addressee. Our static model captures
such property.

The static model is shown in Figure 2. First,
agents in the context A(C) and a responding agent
ares are sorted in descending order based on each
latest speaking time. Then the order is assigned as
an agent index am ∈ (1, · · · , |A(C)|) to each agent.
In the table shown in Figure 2, the responding agent
(represented as SYSTEM) has the agent index 1 be-
cause he spoke at the most recent time step t = 6.
Similarly, User 1 has the index 2 because he spoke
at the second most recent time step t = 5, and User
2 has the index 3 because he spoke at the third t = 3.

Each speaking-order index am is associated with
the am-th column of the agent matrix A:

am = A[∗, am]
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Figure 3: Illustrative example of our dynamic model.

Similarly, a responding agent vector ares and a can-
didate addressee vector ap in Eqs. 3 and 4 are re-
spectively extracted from A, i.e. ares = A[∗, ares]
and ap = A[∗, ap].

Consuming the agent vectors, an RNN updates its
hidden state. For example, at the time step t = 1 in
Figure 2, the agent vector a1 of User 1 is extracted
from A on the basis of agent index 2 and then con-
sumed by the RNN. Then, the RNN consumes each
word vector w of User 1’s utterance. By consum-
ing the agent vector before word vectors, the model
can capture which agent speaks the utterance. The
last state of the RNN is regarded as hc. As the tran-
sition function f of RNN (Eq. 1), we use the Gated
Recurrent Unit (GRU) (Cho et al., 2014; Chung et
al., 2014).

For the candidate response vector hq, each word
vector (wq,1, · · · ,wq,Nq) in the response rq is sum-
marized with the RNN. Using these vectors ares, ap,
hc, and hq, we predict a next addressee and response
with the Eqs. 3 and 4.

5.2 A Dynamic Model

In the static model, agent representation A is a
fixed matrix that does not change in a conversational
stream. In contrast, in the dynamic model, agent
representation At tracks each agent’s hidden state
which dynamically changes with time steps t.

Figure 3 shows the overview of the dynamic
model. Initially, we set a zero matrix as initial agent
state A0, and each column vector of the agent matrix
corresponds to an agent hidden state vector. Then,
each agent state is updated by consuming the utter-

ance vector at each time step. Note that the states
of the agents that are not speaking at the time are
updated by zero vectors.

Formally, each column of At corresponds to an
agent state vector:

am,t = At[∗, am]

where an agent state vector am,t of an agent am at a
time step t is the am-th column of the agent matrix
At.

Each vector of the matrix is updated at each time
step, as shown in Figure 3. An agent state vector
am,t ∈ Rda for each agent am at each time step t is
recurrently computed:

am,t = g(am,t−1,um,t), am,0 = 0

where um,t ∈ Rdw is a summary vector of an ut-
terance of an agent am and computed with an RNN.
As the transition function g, we use the GRU. For
example, at a time step t = 2 in Figure 3, the agent
state vector a1,2 is influenced by its utterance vector
u1,2 and updated from the previous state a1,1.

The agent matrix updated up to the time step T is
denoted as AT , which is max-pooled and used as a
summarized context vector:

hc = max
i

AT [i]

The agent matrix AT is also used for a responding
agent vector ares and a candidate addressee vector
ap, i.e. ares = AT [∗, ares] and ap = AT [∗, ap]. rq

is summarized into a response vector hq in the same
way as the static model.

5.3 Learning

We train the model parameters by minimizing the
joint loss function:

L(θ) = α La(θ) + (1 − α) Lr(θ) +
λ

2
||θ||2

where La is the loss function for the addressee selec-
tion, Lr is the loss function for the response selec-
tion, α is the hyper-parameter for the interpolation,
and λ is the hyper-parameter for the L2 weight de-
cay.
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Figure 4: The flow of the corpus and dataset creation. From the

original logs, we extract addressee IDs and add them to the cor-

pus. As the dataset, we add candidate responses and the labels.

For addressee and response selection, we use the
cross-entropy loss functions:

La(θ) = −
∑

n

[ log Pr(y(a+) = 1|x)

+ log (1 − Pr(y(a−) = 1|x) ]

Lr(θ) = −
∑

n

[ log Pr(y(r+) = 1|x)

+ log (1 − Pr(y(r−) = 1|x) ]

where x is the input set for the task, i.e. x =
(ares, C, R), a+ is a ground-truth addressee, a− is a
false addressee, r+ is a ground-truth response, and
r− is a false response. As a false addressee a−,
we pick up and use the addressee with the high-
est probability from the set of candidate addressees
except the ground-truth one (A(C) \ a+). As a
false response, we randomly pick up and use a re-
sponse from the set of candidate responses except
the ground-truth one (R \ r+).

6 Corpus and Dataset

Our goal is to provide a multi-party conversation
corpus/dataset that can be used over a wide range
of conversation research, such as turn-taking model-
ing (Raux and Eskenazi, 2009) and disentanglement
modeling (Elsner and Charniak, 2010), as well as for
the ARS task. Figure 4 shows the flow of the cor-
pus and dataset creation process. We firstly crawl
Ubuntu IRC Logs and preprocess the obtained logs.

Corpus Dataset
Train Dev Test

No. of Docs 7355 6,606 367 382
No. of Utters 2.4 M 2.1 M 13.2 k 15.1 k
No. of Words 27.0 M 23.8 M 1.5 M 1.7 M
No. of Samples - 665.6 k 45.1 k 51.9 k
Avg. W. / U. 11.1 11.1 11.2 11.3
Avg. A. / D. 26.8 26.3 30.68 32.1

Table 2: Statistics of the corpus and dataset. “Docs” is docu-

ments, “Utters” is utterances, “W. / U.” is the number of words

per utterance, “A. / D.” is the number of agents per document.

Then, from the logs, we extract and add addressee
information to the corpus. In the final step, we set
candidate responses and labels as the dataset. Table
2 shows the statistics of the corpus and dataset.

6.1 Ubuntu IRC Logs

The Ubuntu IRC Logs is a collection of logs from
Ubuntu-related chat rooms. In each chat room, a
number of users chat on and discuss various topics,
mainly related to technical support with Ubuntu is-
sues.

The logs are put together into one file per day for
each room. Each file corresponds to a document
D. In a document, one line corresponds to one log
given by a user. Each log consists of three items
(Time, UserID, Utterance). Using such informa-
tion, we create a multi-party conversation corpus.

6.2 The Multi-Party Conversation Corpus

To pick up only the documents written in En-
glish, we use a language detection library (Nakatani,
2010). Then, we remove the system logs from each
document and leave only user logs. For segmenting
the words in each utterance, we use a word tokenizer
(TreebankWordTokenizer) of the Natural
Language Toolkit4. Using the preprocessed docu-
ments, we create a corpus, whose row consists of
the three items (UserID, Addressee, Utterance).

First, the IDs of the users in a document are col-
lected into the user ID list by referring to the UserID
in each log. Then, as the addressee user ID, we ex-
tract the first word of each utterance. In the Ubuntu
IRC Logs, users follow the name mention conven-
tion (Uthus and Aha, 2013), in which they express

4http://www.nltk.org/
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their addressee by mentioning the addressee’s user
ID at the beginning of the utterance. By exploiting
the name mentions, if the first word of each utter-
ance is identical to a user ID in the user ID list, we
extract the addressee ID and then create a table con-
sisting of (UsetID, Addressee, Utterance). In
the case that addressee IDs are not explicitly men-
tioned at the beginning of the utterance, we do not
extract anything.

6.3 The ARS Dataset

By exploiting the corpus, we create a dataset for
the ARS task. If the line of the corpus includes
an addressee ID, we regard it as a sample for the
task. As the ground truth addressees and responses,
we straightforwardly use the obtained addressee IDs
and the preprocessed utterances.

As false responses, we sample utterances else-
where within a document. This document-within
sampling method makes the response selection task
more difficult than the random sampling method5.
One reason for this is that common or similar top-
ics in a document are often discussed and the used
words tend to be similar, which makes the word-
based features for the task less effective. We par-
titioned the dataset randomly into a training set
(90%), a development set (5%) and a test set (5%).

7 Experiments

We provide performance benchmarks of our learn-
ing architectures on the addressee and response se-
lection (ARS) task for multi-party conversation.

7.1 Experimental Setup

Datasets
We use the created dataset for the experiments. The
number of candidate responses RES-CAND (|R|) is
set to 2 or 10.

Evaluation Metrics
We evaluate performance by accuracies on
three aspects: addressee-response pair selection
(ADR-RES), addressee selection (ADR), and re-
sponse selection (RES). In the addressee-response
pair selection, we regard the answer as correct if
both the addressee and the response are correctly

5Lowe et al. (2015) adopted the random sampling method.

selected. In the addressee/response selection, we re-
gard the answer as correct if the addressee/response
is correctly selected.

Optimization
The models are trained by backpropagation through
time (Werbos, 1990; Graves and Schmidhuber,
2005). For the backpropagation, we use stochastic
gradient descent (SGD) with a mini-batch training
method. The mini-batch size is set to 128. The
hyper-parameter α for the interpolation between the
two loss functions (Section 5.3) is set to 0.5. For the
L2 weight decay, the hyper-parameter λ is selected
from {0.001, 0.0005, 0.0001}.

Parameters of the models are randomly ini-
tialized over a uniform distribution with support
[−0.01, 0.01]. To update parameters, we use Adam
(Kingma and Ba, 2014) with the default setting sug-
gested by the authors. As the word embeddings,
we used the 300 dimension vectors pre-trained by
GloVe6 (Pennington et al., 2014). To avoid over-
fitting, the word vectors are fixed across all exper-
iments. The hidden dimensions of parameters are
set to dw = 300 and dh = 50 in the both models,
and da is set to 300 in the static model and 50 in the
dynamic model.

To identify the best training epoch and model con-
figuration, we use the early stopping method (Yao et
al., 2007). In this method, if the best accuracy of
ADR-RES on the development set has not been up-
dated for consecutive 5 epochs, training is stopped
and the best performing model is picked up. The
max epochs is set to 30, which is sufficient for con-
vergence.

Implementation Details
For computational efficiency, we limit the length of
a context C as CT−Nc+1:T = (uT−Nc+1, · · · , uT ),
where Nc, called context window, is the number
of utterances prior to a time step t. We set Nc to
{5, 10, 15}. In addition, we truncate the utterances
and responses at a maximum of 20 words. For batch
processing, we zero-pad them so that the number of
words is constant. Out-of-vocabulary words are re-
placed with <unk>, whose vector is the averaged
vector over all word vectors.

6http://nlp.stanford.edu/projects/glove/
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RES-CAND = 2 RES-CAND = 10
Nc ADR-RES ADR RES ADR-RES ADR RES

Chance - 0.62 1.24 50.00 0.12 1.24 10.00

Baseline
5 36.97 55.73 65.68 16.34 55.73 28.19
10 37.42 55.63 67.79 16.11 55.63 29.48
15 37.13 55.62 67.89 15.44 55.62 29.19

Static
5 46.99 60.39 75.07 21.98 60.26 33.27
10 48.67 60.97 77.75 23.31 60.66 35.91
15 49.27 61.95 78.14 23.49 60.98 36.58

Dynamic
5 49.80 63.19 76.07 23.72 63.28 33.62
10 53.85 66.94 78.16 25.95 66.70 36.14
15 54.88 68.54 78.64 27.19 68.41 36.93

Table 3: Benchmark results: accuracies on addressee-response selection (ADR-RES), addressee selection (ADR), and response

selection (RES). Nc is the context window. Bolded are the best per column.

Baseline Model
We set a baseline using the term frequency-inverse
document frequency (TF-IDF) retrieval model for
the response selection (Lowe et al., 2015). We firstly
compute two TF-IDF vectors, one for a context win-
dow and one for a candidate response. Then, we
compute a cosine similarity for these vectors, and
select the highest scoring candidate response as a
result. For the addressee selection, we adopt a rule-
based method: to determine the agent that gives an
utterance most recently except a responding agent,
which captures the tendency that agents often re-
spond to the other that spoke immediately before.

7.2 Results
Overall Performance
Table 3 shows the empirical benchmark results. The
dynamic model achieves the best results in all the
metrics. The static model outperforms the baseline,
but is inferior to the dynamic model.

In addressee selection (ADR), the baseline model
achieves around 55% in accuracy. This means that if
you select the agents that spoke most recently as an
addressee, the half of them are correct. Compared
with the baseline, our proposed models achieve bet-
ter results, which suggests that the models can se-
lect the correct addressees that spoke at more pre-
vious time steps. In particular, the dynamic model
achieves 68% in accuracy, which is 7 point higher
than the accuracy of static model.

In response selection (RES), our models outper-
form the baseline. Compared with the static model,

Figure 5: Accuracies in addressee-response selection using dif-

ferent amount of samples for training.

the dynamic model achieves around 0.5 point higher
in accuracy.

Effects of the Context Window
In response selection, a performance boost of our
proposed models is observed for the context win-
dow Nc = 10 over Nc = 5. Comparing the results
of the models with the context window Nc = 10 and
Nc = 15, the performance is improved but relatively
small, which suggests that the performance almost
reaches the convergence. In addressee selection, the
performance improvements of the static model with
the broader context window is limited. In contrast,
in the dynamic model, a steady performance boost
is observed, yielding an increase of over 5 points be-
tween Nc = 15 and Nc = 5,
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No. of Agents 2-5 6-10 11-15 16-20 21-30 31-100 101-305
No. of Samples 3731 5962 5475 4495 5619 7956 18659

ADR-RES
Baseline 52.13 43.51 39.98 42.96 39.70 36.55 29.22

Static 64.17 55.92 50.72 53.04 48.69 49.61 42.86
Dynamic 66.90 57.73 54.32 55.64 51.61 55.88 52.14

ADR
Baseline 84.94 70.82 62.14 65.52 58.89 51.28 41.47

Static 86.33 74.37 66.12 68.54 63.43 59.24 50.99
Dynamic 87.64 76.48 69.99 72.21 66.90 66.78 62.11

RES
Baseline 60.71 61.24 64.51 65.58 67.93 71.66 71.38

Static 73.60 73.45 74.54 75.95 75.17 81.50 81.60
Dynamic 75.64 74.12 75.53 75.17 76.05 81.96 81.81

Table 4: Performance comparison for different numbers of agents appearing in the context. The numbers are accuracies on the test

set with the number of candidate responses CAND-RES = 2 and the context window Nc = 15.

Effects of the Sample Size
Figure 5 shows the accuracy curves of addressee-
response selection (ADR-RES) for different train-
ing sample sizes. We use 1/2, 1/4, and 1/8 of
the whole training samples for training. The results
show that as the amount of the data increases, the
performance of our models are improved and grad-
ually approaches the convergence. Remarkably, the
performance of the dynamic models using the 1/8
samples is comparable to that of the static model us-
ing the whole samples.

Effects of the Number of Participants
To shed light on the relationship between the model
performance and the number of agents in multi-party
conversation, we investigate the effect of the num-
ber of agents participating in each context. Table 4
compares the performance of the models for differ-
ent numbers of agents in a context.

In addressee selection, the performance of all
models gradually gets worse as the number of agents
in the context increases. However, compared with
the baseline, our proposed models suppress the per-
formance degradation. In particular, the dynamic
model predicts correct addressees most robustly.

In response selection, unexpectedly, the perfor-
mance of all the models gets better as the number
of agents increases. Detailed investigation on the in-
teraction between the number of agents and the re-
sponse selection complexity is an interesting line of
future work.

8 Conclusion

We proposed addressee and response selection for
multi-party conversation. Firstly, we provided the
formal definition of the task, and then created a cor-
pus and dataset. To present benchmark results, we
proposed two modeling frameworks, which jointly
model speakers and their utterances in a context.
Experimental results showed that our models of the
frameworks outperform a baseline.

Our future objective to tackle the task of predict-
ing whether to respond to a particular utterance. In
this work, we assume that the situations where there
is a specific addressee that needs an appropriate re-
sponse and a system is required to respond. In actual
multi-party conversation, however, a system some-
times has to wait and listen to the conversation that
other participants are engaging in without needless
interruption. Hence, the prediction of whether to
respond in a multi-party conversation would be an
important next challenge.
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